yˆ 58.5101 0.4303 x1 2.3449 x2 10.3065 x3
通常,进行多元线性回归的步骤如下:
(1)做自变量与因变量的散点图,根据散点图的形 状决定是否可以进行线性回归;
(2)输入自变量与因变量;
(3)利用命令: [b,bint,r,rint,s]=regress(y,X,alpha),rcoplot(r,rint) 得到回归模型的系数以及异常点的情况;
中为了“夸大”残差的差异性,一般先在样本中部去 掉C个数据(通常取c=n/4),再利用F统计量判断差 异的显著性:
F RSS2 /((n c) / 2 k 1) RSS2 ~ F ((n c) / 2 k 1, (n c) / 2 k 1) RSS1 /((n c) / 2 k 1) RSS1
体重指数 = 体重(kg)/身高(m)的平方 吸烟习惯: 0表示不吸烟,1表示吸烟 建立血压与年龄、体重指数、吸烟习惯之间的回归模型
模型建立
血压y,年龄x1,体重指数x2,吸烟习惯x3
y与x1的散点图
y与x2的散点图
线性回归模型
y 0 1x1 2ຫໍສະໝຸດ x2 3x3 回归系数0, 1, 2, 3 由数据估计, 是随机误差
22.0 25.3 27.4];
x3=[0 1 0 1 1 0 1 0 1 0 1 0 0 0 0
1 0 0 0 ...
0 0 1 0 0 1 1 0 1 0 1];
X=[ones(n,1), x1',x2',x3']; [b,bint,r,rint,s]=regress(y',X); s2=sum(r.^2)/(n-m-1); b,bint,s,s2 rcoplot(r,rint)