立体表面交线的投影
- 格式:pptx
- 大小:4.62 MB
- 文档页数:6
学习内容教学方法任务实施(一)相贯线的性质1、相贯线的概念两个基本体相交(或称相贯),表面产生的交线称为相贯线。
本节只讨论最为常见的两个曲面立体相交的问题。
2、相贯线的性质:(1)相贯线是两个曲面立体表面的共有线,也是两个曲面立体表面的分界线。
相贯线上的点是两个曲面立体表面的共有点。
(2)两个曲面立体的相贯线一般为封闭的空间曲线,特殊情况下可能是平面曲线或直线。
求两个曲面立体相贯线的实质就是求它们表面的共有点。
作图时,依次求出特殊点和一般点,判别其可见性,然后将各点光滑连接起来,即得相贯线。
(二)相贯线的画法两个相交的曲面立体中,如果其中一个是柱面立体(常见的是圆柱面),且其轴线垂直于某投影面时,相贯线在该投影面上的投影一定积聚在柱面投影上,相贯线的其余投影可用表面取点法求出。
1、讲解例题(例3-8)如图3-21(a)所示,求正交两圆柱体的相贯线。
分析:两圆柱体的轴线正交,且分别垂直于水平面和侧面。
相贯线在水平面上的投影积聚在小圆柱水平投影的圆周上,在侧面上的投影积聚在大圆柱侧面投影的圆周上,故只需求作相贯线的正面投影。
出示模型辅助讲解。
a)立体图(b)3-21正交两圆柱的相贯线讲授法演示法任务实施边画图边讲解作图方法与步骤。
2、相贯线的近似画法相贯线的作图步骤较多,如对相贯线的准确性无特殊要求,当两圆柱垂直正交且直径有相差时,可采用圆弧代替相贯线的近似画法。
如图3-22所示,垂直正交两圆柱的相贯线可用大圆柱的D/2为半径作圆弧来代替。
图3-22 相贯线的近似画法3、两圆柱正交的类型两圆柱正交有三种情况:(1)两外圆柱面相交;(2)外圆柱面与内圆柱面相交;(3)两内圆柱面相交。
这三种情况的相交形式虽然不同,但相贯线的性质和形状一样,求法也是一样的。
如图3-23所示。
出示模型辅助讲解。
(a)两外圆柱面相交(b)外圆柱面与内圆柱面相交讲授法演示法(c)两内圆柱面相交图3-23两正交圆柱相交的三种情况(三)相贯线的特殊情况两曲面立体相交,其相贯线一般为空间曲线,但在特殊情况下也可能是平面曲线或直线。
第三章基本立体的投影、截交线、相贯线§1立体的投影1.1平面立体的投影本节教学目标:掌握平面立体的投影特性和作图方法;掌握拉伸体的形成、投影及画法;熟悉平面立体表面中特殊位置的点、线的三面投影及画法。
重点:平面立体的投影特性及表面取点、取线的投影。
难点:平面立体表面中特殊位置处点、线的投影。
引入:通过对前面知识的学习已经知道,很多的机械零件都是由一些简单的基本形体组成,比如螺栓,我们可以将它分成正六棱柱、圆柱体和圆锥台三部分。
如果我们要绘制此螺栓的三视图,同学们都应该知道必须要绘制正六棱柱、圆柱体和圆锥台的三视图。
任何一个复杂的物体都可以看成由基本体组成,按组成基本体表面的性质进行分类,基本体可分为平面体和曲面体。
平面立体侧表面的交线称为棱线若平面立体所有棱线互相平行,称为棱柱。
若平面立体所有棱线交于一点,称为棱锥。
1.1.1棱柱的投影1. 以正六棱柱为例,分析平面立体的结构,(1)正六棱柱共有几个表面?有何关系?(2)正六棱柱共有几条侧棱?有何关系?提问:1)不同位置的投影有什么不同?2)应怎样放置最合理?提示:使尽可能多的表面和棱线处于特殊位置。
2.投影特性分析(1)投影分析:上、下两个底面——平行的两个侧面——其余的几个侧面(2)三面投影图分析(3)绘图步骤:1)建立投影面系;2)根据三等原则绘制三面投影;3)区分可见性。
3. 棱柱体的投影特性(重点:学生应掌握)(1)当棱柱的底面平行于某一投影面时,棱柱的投影在该面上为与底面相等的正多边形。
(2)另两面投影为几个相邻的矩形线框。
4. 棱柱表面取点、线重点:所取的点、线属于棱柱的哪个面上?进而再求三面投影。
***若点所在平面的投影可见,点的投影可见;若平面的投影积聚成直线,点的投影也可见。
例:例:已知四棱柱,试完成其V、H投影。
(图7-1)图7-1四棱柱的投影1.1.2棱锥的投影棱锥的投影是棱锥各顶点同面投影连线的集合。
1. 棱锥的定义2. 棱锥的形体分析(1)投影分析:下底面——顶点——其余的几个侧面(2)三面投影图分析(3)绘图步骤:1)建立投影面系;2)根据三等原则绘制三面投影;3)区分可见性。
第四章立体的表面交线形体表面常见到两种交线,一种是由平面与立体相交而形成的表面交线即截交线,另一种是由两立体相交而形成的表面交线相贯线,如图4-1所示。
图4-1立体表面交线实例第一节平面体的截交线基本形体经平面切割后形成新的形体,切割基本形体的平面称为截平面,截平面与形体表面的交线称为截交线,由截交线围成的平面图形称为截面(或断面),它是新形体的一个表面,如图4-2所示。
截交线是相交两表面的共有线,也是它们的分界线,这些分界线是由一系列共有点组成的,因此求截交线可归纳为求立体表面共有点的问题。
图4-2 平面体截交线的概念一、平面体表面取点平面体表面取点就是根据平面体表面上的一个投影,求作该点其余的投影,并判别其可见性。
在特殊位置平面上的点可利用该平面的积聚性投影作图求得;在一般位置平面上的点,则要利用“找点先找线”的方法求得,即过已知点作一辅助直线,求出辅助直线的投影,再求辅助直线上已知点的投影。
其次要注意判别点的可见性,即点的投影的可见性与它所在立体表面的可见性一致。
【例4-1】如图4-3所示,已知三棱柱的表面上点A和点B的正面投影(a’)和b’,求出它们的水平投影和侧面投影。
图4-3 三棱柱表面取点分析:由图4-3(a)可以看出,点A的正面投影不可见,可判断A在三棱柱的后棱面上;点B正面投影可见,又位于右侧,可判断B在三棱柱的右侧棱面上,由于三棱柱棱面的水平投影及后棱面的侧面投影均有积聚性,因此可利用积聚性直接作图。
作图:①根据“长对正”的投影规律,如图4-3(b)所示,由点a´和b’向下引一条铅垂线与正三棱柱后棱面及右侧棱面的水平投影(斜直线)相交,交点即为A点、B点的水平投影a和b。
②根据“高平齐,宽相等”的投影规律,由a'、b'和a、b求得a"、b"。
③判别可见性,点A所在的平面,其水平投影和侧面投影均具有积聚性,所以无需判别它的可见性。
点B所在的右侧棱面其侧面投影不可见,故b" 不可见,标记为(b")。