k>0,所以2x-3y=
=
=
>0,
lg2 lg3
lg2·lg3
lg2·lg3
25
2lg 5lg lg·(2lg5−5lg2) lg·lg32
故2x>3y,2x-5z=
=
=
<0,故2x<5z.
lg2 lg5
lg2·lg5
lg2·lg5
所以3y<2x<5z.
解法三(作商法):
令2x=3y=5z=k,由x,y,z为正数,知k>1.
1
log0.1 0.7
,c=0.70.3,则a,b,c的大小关系为(
A.a<c<b
B.a<b<c
C.b<c<a
D.c<a<b
1
【解析】选A.因为log51<log52<log5 5,所以0<a< ,
2
因为b=
1
log0.1 0.7
=log0.70.1>log0.70.7=1,
所以b>1,因为0.71<0.70.3<0.70,
即ln
ln
x<x,从而当x>1,y>1时, = < ,
e
e
e
1−
令g(t)= ,t>1,g'(t)= <0,g(t)在(1,+∞)上单调递减,
e
e
则由x>1,y>1, < 得y>x>1,所以y>x>z.
e e
思维升华
(1)若题设涉及三个指数式连等或三个对数式连等,则可利用特例法求解,也可在