最新《高考风向标》年高考数学一轮复习-第十五章-第2讲-古典概型与几何概型精品课件-理教学讲义ppt
- 格式:ppt
- 大小:1.14 MB
- 文档页数:2
千里之行,始于足下。
202X年高考数学一轮复习讲义——古典概型与几何概型古典概型与几何概型是数学中常用的概率计算方法,对于高考数学复习格外重要。
下面我们来具体介绍一下古典概型与几何概型。
古典概型是指试验样本空间中每一个基本大事发生的概率相等的情形。
这种情形下,我们可以通过计数的方法来确定概率。
常见的例子有扔硬币和掷骰子。
以扔硬币为例,假设试验为连续扔一枚硬币,硬币只有正面和反面两个可能的结果。
将正面定义为大事A,反面定义为大事B。
依据古典概型,硬币正反面消灭的概率相等,即P(A) = P(B) = 1/2。
同理,对于掷骰子的状况,我们可以将掷骰子消灭的点数定义为不同的大事,依据古典概型,掷骰子消灭的每个点数的概率相等,为1/6。
古典概型在实际问题中也有很多应用,比如抽样问题。
假如一个罐子中有红球、白球、蓝球三种颜色的球,从中随机抽取一个球,求抽到红球的概率。
依据古典概型,红球、白球、蓝球的概率相等,为1/3。
几何概型是指试验样本空间可以用几何图形来表示,并且每个大事的概率可以用几何概率来计算。
常见的例子有投点问题和长方形求面积问题。
以投点问题为例,假设将一个点随机地投掷到一个正方形区域中,点落在某个子区域内的概率可以用子区域的面积与正方形区域的面积之比来计算。
例如,正方形区域边长为a,投点落在一个边长为x的小正方形内的概率为P = x^2 / a^2。
第1页/共2页锲而不舍,金石可镂。
对于长方形求面积问题,假设有一块土地的外形为长方形,现在要在上面随机地选取一个点,求这个点在土地上落的概率。
依据几何概型,这个点落在土地上任何一个子区域内的概率等于子区域的面积与整个土地的面积之比。
正由于几何概型的面积比例关系,我们可以将计算概率问题转化为计算几何问题,从而简化计算步骤。
在高考数学中,古典概型与几何概型是常考的学问点,把握这两个概率计算方法对于正确解题格外重要。
在复习时,需要娴熟把握古典概型和几何概型的定义和计算方法,并通过大量的练习题来巩固学习。
第15讲古典概型与几何概型A 组一、选择题1、从个位数与十位数之和为奇数的两位数中任取一个,其个位数是0的概率为()A .94B .13 C .92 D .912、锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同.从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为() A .891 B .2591C .4891 D .60913、如图,在圆心角为直角的扇形OAB 中,分别以OA 、OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-π2 B.12-π1 C.π2D.π1 4、(2016重庆二诊理5)在区间[1,4]上任取两个数,则所取两个数的和大于3的概率为() A.181 B.329 C.3223 D.1817二、填空题5、从0,1,2,3,4,5,6,7,8,9中任取七个不同的数则这七个数的中位数是6的概率为___________。
6、投掷两颗骰子,其向上的点数分别为m 和n ,则复数(m +ni)(n -mi)为实数的概率为。
7、已知正方体1111D C B A ABCD -内有一个内切球O ,则在正方体内任取点M ,点M 在球O 内的概率是。
8、若区域{}2),(≤+=y x y x M ,在区域M 内的点的坐标为),(y x ,则022≥-y x 的概率是________。
三、解答题9、某校高三有5名同学报名参加甲、乙、丙三所高校的自主招生考试,每人限报一所高校。
求这三所高校中每个学校都至少有一名同学报考的概率。
10、某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.B组一、选择题1、某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为()A.110B.120C.140D.11202、10张奖券中只有3张有奖,5个人购买,至少有1人中奖的概率是() A.310 B.112 C.12 D.11123、已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为21,则AD AB=()A.12B.144、(2016全国卷12)从区间[]10,随机抽取n 2个数,2121,...,,,,...,,n n y y y x x x 构成n 个数对()()),(,...,,,,,2221n n y x y x x x 其中两数的平方和小于1的数共有m 个,则用随机模拟的方法得到的圆周率π的近似值为() A.m n 4 B.m n 2 C.n m 4 D.nm 2二、填空题5、某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为。
1.古典概率(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。
(等可能性)我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。
P (A )=总的基本事件个数包含的基本事件个数A在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数。
(3)所有的基本事件必须是互斥的;(4)m 为事件A 所包含的基本事件数,求m 值时,要做到不重不漏。
求某个随机事件A 包含的基本事件的个数和实验中基本事件的总数常用的方法是列举法(画树状图和列表),注意做到不重不漏。
例1、从字母a ,b ,c ,d 中任意取出两个不同字母的试验中,有哪些基本事件?例2、单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一个正确答案。
如果考生掌握了考察的内容,他可以选择唯一正确的答案。
假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?例3 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点)所以基本事件数n=6,事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),其包含的基本事件数m=3所以,P (A )=n m =63=21=0.5例4.从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
例5、现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.例6、同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?例7.三张卡片上分别写上字母E 、E 、B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为 。
千里之行,始于足下。
202X年高考数学一轮复习——古典概型与几何概率古典概型与几何概率是高中数学中的重要学问点,也是高考数学中的常考内容。
本文将从古典概型和几何概率的概念入手,介绍其基本原理和解题方法,并供应一些例题进行练习。
古典概型是指在一次试验中,全部可能的结果都是等可能发生的状况。
在古典概型中,我们可以通过计算样本空间中的元素个数和大事的发生状况来确定大事的概率。
常见的古典概型有:掷硬币、抛骰子、抽球等。
例如,抛一枚硬币,只有正面和反面两种可能结果,概率分别为1/2。
抛一颗骰子,可能结果为1、2、3、4、5、6,概率也均为1/6。
在计算古典概型的概率时,可以使用如下公式:P(A) = 大事A的可能结果数 / 总的可能结果数其中,P(A)表示大事A发生的概率。
除了古典概型,高中数学还有一种常见的概率计算方法叫做几何概率。
几何概率是建立在几何模型的基础上,通过几何图形的面积或长度等来计算概率。
几何概率的计算方法主要包括:1. 正方形模型:假如试验的样本空间是一个平方区域,大事的可能结果是一个面积确定的子区域,那么大事的概率可以用子区域的面积与平方区域的面积之比来表示。
第1页/共3页锲而不舍,金石可镂。
2. 圆模型:假如试验的样本空间是一个圆形区域,大事的可能结果是一个圆弧所确定的子区域,那么大事的概率可以用子区域的弧长与圆的周长之比来表示。
几何概率的计算方法相对来说较为简洁直观,但要留意选择适当的几何模型来确定样本空间和大事的可能结果。
接下来,我们通过几个例题来加深对古典概型和几何概率的理解:例题1:一枚均匀硬币一次抛掷,正面朝上的概率是多少?解析:由于硬币只有正面和反面两种可能结果,并且两种结果是等可能发生的,所以正面朝上的概率为1/2。
例题2:一个标准骰子一次抛掷,点数为偶数的概率是多少?解析:骰子的可能结果为1、2、3、4、5、6,其中偶数为2、4、6三种结果,所以点数为偶数的概率为3/6 = 1/2。