第五章高分子物理
- 格式:ppt
- 大小:3.83 MB
- 文档页数:2
高分子物理课程电子教案第一章:高分子物理概述1.1 教学目标了解高分子的基本概念掌握高分子材料的分类和特点理解高分子物理的研究内容和方法1.2 教学内容高分子的定义和基本概念高分子材料的分类和特点高分子物理的研究内容和方法高分子材料的结构和性质关系1.3 教学方法采用多媒体课件进行讲解结合实例和案例分析高分子材料的分类和特点通过实验演示高分子物理的研究方法和原理1.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第二章:高分子链的结构与运动2.1 教学目标了解高分子链的结构特点掌握高分子链的运动方式和动力学行为理解高分子链的构象和统计分布2.2 教学内容高分子链的结构特点和构象高分子链的运动方式和动力学行为高分子链的统计分布和相变现象2.3 教学方法采用多媒体课件进行讲解结合数学模型和物理图像分析高分子链的运动行为通过实验观察高分子链的构象变化和相变现象2.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第三章:高分子材料的力学性能3.1 教学目标了解高分子材料的力学性能特点掌握高分子材料的应力-应变关系和断裂行为理解高分子材料的粘弹性行为和疲劳性能3.2 教学内容高分子材料的力学性能特点和测试方法高分子材料的应力-应变关系和断裂行为高分子材料的粘弹性行为和疲劳性能3.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的力学性能特点通过实验操作和观察理解高分子材料的粘弹性行为和疲劳性能3.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第四章:高分子材料的热性能4.1 教学目标了解高分子材料的热性能特点掌握高分子材料的熔融行为和热稳定性理解高分子材料的热膨胀和导热性能4.2 教学内容高分子材料的热性能特点和测试方法高分子材料的熔融行为和热稳定性高分子材料的热膨胀和导热性能4.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的热性能特点通过实验操作和观察理解高分子材料的热膨胀和导热性能课堂提问和讨论课后作业和练习题实验报告和分析第五章:高分子材料的电性能5.1 教学目标了解高分子材料的电性能特点掌握高分子材料的导电性和绝缘性理解高分子材料的电荷注入和电荷传输5.2 教学内容高分子材料的电性能特点和测试方法高分子材料的导电性和绝缘性高分子材料的电荷注入和电荷传输5.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的电性能特点通过实验操作和观察理解高分子材料的电荷注入和电荷传输5.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第六章:高分子材料的溶液性质了解高分子材料在溶液中的溶解行为掌握高分子材料的溶液性质和溶液模型理解高分子材料溶液的相行为和溶液理论6.2 教学内容高分子材料在溶液中的溶解行为和相行为高分子材料的溶液性质和溶液模型高分子材料溶液的粘度和流变性质6.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的溶液性质通过实验操作和观察理解高分子材料溶液的粘度和流变性质6.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第七章:高分子材料的界面性质7.1 教学目标了解高分子材料在不同界面上的行为掌握高分子材料界面性质的表征方法理解高分子材料在界面上的相互作用和功能化7.2 教学内容高分子材料在不同界面上的行为和相互作用高分子材料界面性质的表征方法和技术高分子材料界面功能化和应用7.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料界面的性质通过实验操作和观察理解高分子材料界面的功能化和应用7.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第八章:高分子材料的光学性能8.1 教学目标了解高分子材料的光学性能特点掌握高分子材料的光吸收和发射行为理解高分子材料的光化学反应和光物理过程8.2 教学内容高分子材料的光学性能特点和测试方法高分子材料的光吸收和发射行为高分子材料的光化学反应和光物理过程8.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的光学性能特点通过实验操作和观察理解高分子材料的光化学反应和光物理过程8.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第九章:高分子材料的环境稳定性和可持续性9.1 教学目标了解高分子材料的环境稳定性和可持续性重要性掌握高分子材料的环境稳定性和降解行为理解高分子材料的可持续性和环境影响评估9.2 教学内容高分子材料的环境稳定性和降解行为高分子材料的可持续性和环境影响评估高分子材料的生物降解和回收利用9.3 教学方法采用多媒体课件进行讲解结合实验数据和图像分析高分子材料的环境稳定性通过实验操作和观察理解高分子材料的可持续性和环境影响评估9.4 教学评估课堂提问和讨论课后作业和练习题实验报告和分析第十章:高分子材料的应用和未来发展10.1 教学目标了解高分子材料在各个领域的应用掌握高分子材料的功能化和智能化理解高分子材料的未来发展趋势和挑战10.2 教学内容高分子材料在各个领域的应用和实例高分子材料的功能化和智能化技术高分子材料的未来发展趋势和挑战10.3 教学方法采用多媒体课件进行讲解结合实例和案例分析高分子材料的应用和功能化通过讨论和思考题引导学生理解高分子材料的未来发展趋势10.4 教学评估课堂提问和讨论课后作业和练习题思考题和研究报告重点和难点解析1. 高分子链的结构与运动:理解高分子链的结构特点,掌握高分子链的运动方式和动力学行为,以及高分子链的统计分布和构象。
第5章聚合物的非晶态5.1复习笔记一、高分子的凝聚态结构高分子的凝聚态结构:分子链之间的几何排列和堆砌结构,包括非晶态结构、晶态结构、液晶态结构、取向态结构和共混聚合物的织态结构等。
高分子链结构是决定聚合物基本性质的内在因素,凝聚态结构随着形成条件的变化而变化,是直接决定聚合物本体性质的关键因素。
二、非晶态聚合物的结构模型目前对非晶态高聚物结构的争论交点,主要集中在完全无序还是局部有序。
1.无规线团模型(1)1949年,Flory从统计热力学理论出发推导出“无规线团模型”。
该模型认为:在非晶态聚合物中,高分子链无论在 溶剂或者是本体中,均具有相同的旋转半径,呈现无扰的高斯线团状态。
(2)实验证据①橡胶弹性理论;②在非晶聚合物的本体和溶液中,分别用高能辐射使高分子发生交联。
未发现本体体系中发生分子内交联的倾向比溶液中大;③用X光小角散射测定含有标记分子的聚苯乙烯本体试样中聚苯乙烯分子的旋转半径,与在溶液中聚苯乙烯分子的回转半径相近。
2.两相球粒模型(1)1972年,Yeh 提出两相球粒模型。
该模型认为:非晶态聚合物存在着一定程度的局部有序。
包含粒子相和粒间相两个部分,一根分子链可以通过几个粒子和粒间相。
(2)支持该模型的事实①橡胶弹性的回缩力;②聚合物的非晶和结晶密度比为96.0~85.0/≈c a ρρ,按分子链成无规线团形态的完全无序的模型计算65.0/<c a ρρ,实际密度比偏高;③聚合物结晶速度很快;④某些非晶态聚合物缓慢冷却或热处理后密度增加,球粒增大。
二、非晶态聚合物的力学状态和热转变图5-1非晶态聚合物温度形变曲线“三态两区”:玻璃态、高弹态、黏流态、玻璃化转变(玻璃态与高弹态之间的转变)、粘流转变(高弹态与黏流态之间的转变)。
玻璃态:键长和键角的运动,形变小,模量大。
外力除去后,形变立刻回复,是普弹性。
玻璃化转变:链段开始发生运动,模量下降。
对应的转变温度T g为玻璃化温度。
高分子物理课后答案第一章:高分子链的结构一、根据化学组成不同,高分子可分为哪几类?(1、分子主链全部由碳原子以共价键相连接的碳链高分子2、分子主链除含碳外,还有氧、氮、硫等两种或两种以上的原子以共价键相连接的杂链高分子3、主链中含有硅、硼、磷、铝、钛、砷、锑等元素的高分子称为元素高分子4、分子主链不含碳,且没有有机取代基)二、什么是构型,不同构型分别影响分子的什么性能?(构型是指分子中由化学键所固定的原子在空间的几何构型;1、旋光异构影响旋光性2、几何异构影响弹性 3、键接异构对化学性能有很大影响)三、什么是构造,分子构造对高分子的性能有什么影响?(分子构造是指聚合物分子的各种形状,线性聚合物分子间没有化学键结构,可以在适当溶剂中溶解,加热时可以熔融,易于加工成型。
支化聚合物的化学性质与线形聚合物相似,但其物理机械性能、加工流动性能等受支化的影响显著。
树枝链聚合物的物理化学性能独特,其溶液黏度随分子量增加出现极大值。
)四、二元共聚物可分为哪几种类型?(嵌段共聚物、接枝共聚物、交替共聚物、统计共聚物)五、什么是构象?什么是链段?分子结构对旋转位垒有什么影响?(构象表示原子基团围绕单元链内旋转而产生的空间排布。
把若干个链组成的一段链作为一个独立运动的单元,称为链段。
位垒:1、取代基的基团越多,位垒越大2、如果分子中存在着双键或三键,则邻近双键或三键的单键的内旋转位垒有较大下降。
)六、什么是平衡态柔性?什么是动态柔性?影响高分子链柔性的因素有哪些?(平衡态柔性是指热力学平衡条件下的柔性,取决于反式与旁式构象之间的能量差。
动态柔性是指外界条件影响下从一种平衡态构象向另一种平衡态构象转变的难易程度,转变速度取决于位能曲线上反式与旁式构象之间转变位垒与外场作用能之间的联系。
影响因素:一、分子结构:1、主链结构2、取代基3、支化交联4、分子链的长链二、外界因素:温度、外力、溶剂)七、自由连接链?自由旋转链?等效自由连接链?等效自由旋转链?蠕虫状链?(自由连接链:即键长l 固定,键角⊙不固定,内旋转自由的理想化模型。
第五章 聚合物的分子运动和转变1.聚合物分子运动的特点: ①.运动单元的多重性 ②.分子运动的时间依赖性 ③.分子运动的温度依赖性2.运动单元的多重性: A.具有多种运动模式 B.具有多种运动单元A.具有多种运动模式:由于高分子的长链结构,分子量不仅高,还具有多分散性,此外,它还可以带有不同的侧基,加上支化,交联,结晶,取向,共聚等,使得高分子的运动单元具有多重性,或者说高聚物的分子运动有多重模式B.具有多种运动单元:如侧基、支链、链节、链段、整个分子链等* 各种运动单元的运动方式①.链段的运动: 主链中碳-碳单键的内旋转, 使得高分子链有可能在整个分子不动,即分子链质量中心不变的情况下, 一部分链段相对于另一部分链段而运动②.链节的运动: 比链段还小的运动单元③.侧基的运动: 侧基运动是多种多样的, 如转动, 内旋转, 端基的运动等④.高分子的整体运动: 高分子作为整体呈现质量中心的移动⑤.晶区内的运动: 晶型转变,晶区缺陷的运动,晶区中的局部松弛模式等3.分子运动的时间依赖性: 在一定的温度和外力作用下, 高聚物分子从一种平衡态过渡到另一种平衡态需要一定时间的,这种现象即为分子运动的时间依赖性; 因为各种运动单元的运动都需克服内摩擦阻力, 不可能瞬时完成4.松弛现象:除去外力,橡皮开始回缩,其中的高分子链也由伸直状态逐渐过渡到卷曲状态,即松弛状态。
故该过程简称松弛过程。
5.松弛时间τ : 形变量恢复到原长度的1/e 时所需的时间 6.分子运动的温度依赖性:①.温度升高,使分子的内能增加:运动单元做某一模式的运动需要一定的能量, 当温度升高到运动单元的能量足以克服的能垒时,这一模式的运动被激发。
②.温度升高使聚合物的体积增加:分子运动需要一定的空间, 当温度升高到使自由空间达到某种运动模式所需要的尺寸后, 这一运动就可方便地进行。
7.黏弹行为的五个区域: ①.玻璃态 ②.玻璃化转变区 ③.高弹态(橡胶-弹性平台区) ④.粘弹转变区 ⑤.粘流态8.图- -:模量-温度曲线----各区的运动单元、特点、名字、描述玻璃化转变为高弹态,转变温度称为玻璃化温度Tg高弹态转变为粘流态,转变温度称为粘流温度Tf* 非晶聚合物:()()t -τΔx t =Δx 0e①.从相态角度来看,玻璃态,高弹态,粘流态均属液相,即分子间的相互排列均是无序的。
1、构型是指分子中由化学键所固定的原子在空间的排列。
要改变构型,必须经过化学键的断裂与重组。
2、构象是指由于单键的内旋转而产生的分子中原子的空间位置上的变化。
3、链段:聚合物分子链的一部分(或一段),是高分子链运动的基本结构单元。
4、高分子链能够通过内旋转作用改变其构象的性能称为高分子链的柔顺性。
5、等规度:全同或间同立构单元所占的百分数。
6、均方末端距:末端距: 线型高分子链的一端至另一端的直线距离。
用一向量(h)表示.。
均方末端距用来表示高分子的尺寸。
7,等效自由连接链:将含有n 个键长为l 、键角θ固定、旋转不自由的键组成的链视为一个含有Z 个长度为b 的链段组成的可以自由旋转的链,称为等效自由连接链。
特性粘度:高分子在c →0时,单位浓度的增加对溶液的增比浓度或相对粘度对数的贡献。
其数值不随溶液浓度的大小而变化,但随浓度的表示方法而异。
第二章晶系:根据晶体的特征对称元素所进行的分类。
取向:聚合物的取向是指在某种外力作用下,分子链或其他结构单元沿着外力作用方向的择优排列。
高分子合金的相容性:两种或两种以上高分子,通过共混形成微观结构均一程度不等的共混物所具有的亲和性。
1、凝聚态:物质的物理状态,是根据物质的分子运动在宏观力学性能上的表现来区分的,通常包括固体、液体和气体。
高分子的凝聚态是指高分子链之间的几何排列和堆砌状态,包括固体和液体。
2、内聚能密度:单位体积的内聚能,CED = ∆E/Vm 。
内聚能是克服分子间作用力,把1mol 液体或固体分子移至分子引力范围之外所需的能量。
3、球晶:高聚物从熔体或浓溶液中结晶时生成的一种常见的结晶形态。
4、结晶度:试样中结晶部分所占的质量分数(质量结晶度xcm)或者体积分数(体积结晶度xcv)。
5、一些物质的结晶结构受热熔融或被溶剂溶解后,表观虽然变成了具有流动性的液体物质,但结构上仍然保持着晶体结构特有的一维或二维有序排列,形成一种兼有部分晶体和液体性质的过渡状态,这种中间状态称为液晶态。
第一章高分子链的结构全同立构:高分子链全部由一种旋光异构单元键接而成间同立构:高分子链由两种旋光异构单元交替键接而成构型:分子中由化学键所固定的原子在空间的几何排列,这种排列是热力学稳定的,要改变构型必需经过化学键的断裂与重组分子构造(Architecture):指聚合物分子的各种形状,一般高分子链的形状为线形,还有支化或交联结构的高分子链,支化高分子根据支链的长短可以分为短支链支化和长支链支化两种类型共聚物的序列结构:是指共聚物根据单体的连接方式不同所形成的结构,共聚物的序列结构分为四类:无规共聚物、嵌段共聚物、交替共聚物、接枝共聚物接枝共聚物:由两种或多种单体经接枝共聚而成的产物,兼有主链和支链的性能。
嵌段共聚物(block copolymer):又称镶嵌共聚物,是将两种或两种以上性质不同的聚合物链段连在一起制备而成的一种特殊聚合物。
梯形聚合物:是由两个以上的单链相连生成的带状大分子链,结构类似梯型的聚合物。
远程相互作用:因柔性高分子链弯曲所导致的沿分子链远距离的原子或基团之间的空间相互作用。
远程相互作用可表现为斥力或引力,无论是斥力还是引力都使内旋转受阻,构想数减少,柔性下降,末端距变大。
自由连接链:假定分子是由足够多的不占体积的化学键自由结合而成,内旋转时没有键角限制和位垒障碍,其中每个键在任何方向取向的几率都相同。
(极端理想化假设)自由旋转链:假定链中每一个键都可以在键角所允许的方向自由转动,不考虑空间位阻对转动的影响等效自由连接链:若干个键组成的一链段算作一个独立的单元,称之为“链段”,链段间自由结合,无规取向,这种链的均方末端距与自由连接链的计算方式等效。
高斯链:将一个原来含有n个键长为l、键角θ固定、旋转不自由的键组成的链,视为一个含有Z个长度为b的链段组成的等效自由连接链,其(末端距)分布符合高斯分布函数,故称作这种高分子链称为“高斯链”。
(末端距分布符合高斯分布函数的高分子链称为“高斯链”)。