水轮发电机组轴线调整
- 格式:doc
- 大小:23.50 KB
- 文档页数:2
卧式水轮发电机组轴线调整方案探究摘要:经济发展愈发蓬勃,人们生活水平也日益提高,能源问题也日益凸显。
水力发电,因其启动过程迅速,实际负荷调整方便,且是可再生能源、清洁能源的一种,因此,备受欢迎。
水电机组依据其大轴布置形式即可分为卧式和立式两种。
本文则特针对卧式发电机组简单易操作的轴线调整方法进行研究,并通过典型案例证明该方法将促使卧式发电机组得以满足相关规程要求。
关键词:卧式水轮发电机组;轴线调整;检修技术;水轮发电机组轴线调整是其检修技术关键之一,将直接影响该机组的正常运行。
一般而言,卧式水轮发电机组的轴线调整方法极为复杂,其计算过程也较为繁琐,因此人员操作较难。
一、卧式水轮发电机组轴线调整目的卧式水轮发电机组轴线调整,是将其水轮机大轴同发电机大轴之间的同心度、倾斜度予以调整,以此促使该水轮发电机大轴的同轴度、同法兰面联结的倾斜度、大轴摆度、推力头正反向的端面振动量足以满足水轮发电机组实际安装技术规范要求,以此也将保证该轴承的油温、瓦温、间隙都能符合满足规定要求[1]。
二、卧式水轮发电机组的轴线调整过程(一)轴线调整前期准备卧式水轮发电机组的转轮需吊入转轮室,以此同水轮机大轴相互连接,其转轮、大轴则向着X轴方方向循序移动12mm,以此方便后期的盘车、安装。
在水轮机大轴、转轮及其转轮室间隙、同主轴所密封的法兰间隙需足够均匀,并适当优化调节该大轴水平于0.03mm/m.在此同时,需将其转轮同大轴予以固定并进行水导轴承的安装,以此方式也将保障该结构同大轴之间接触足够良好。
再次将上述一个水平、两个间隙再次复测,如若尚不满足相关设计要求则需予以重新调整,直至满足设计要求为止。
在此同时,该水轮机大轴法兰极为该后面机组盘车基准,在盘车过程中,也将不发生转动。
发电机部分需将其2各径向轴瓦同发电机大轴之间相互配合,将其研刮整平,将其接触点挑出,保障该轴承座得以一并安装至发电机基础板之上,并利用钢板塞尺及水准仪将其一并调整至发电机基础板所设计高程处。
水轮发电机组轴线偏差调整与应用探讨【摘要】水轮发电机组轴线调整俗称“盘车”,是水轮发电机组大修必不可少的环节,但传统的调整方法实施困难,轴线偏差量的计算公式推导繁琐,安装工人不易掌握。
笔者结合自身多年水轮发电机组轴线调整实践经验,介绍一种新的轴线偏差调整思路,并通过具体的应用实例加以阐述,为同类型机组轴线调整提供了借鉴。
【关键词】水轮发电机组;轴线调整;倾斜偏差;中心偏差;应用实例近年来,随着社会用电需求的不断上升,水电事业也得到了一定发展。
水轮发电机是水电站最为关键的设备。
水轮发电机组轴线的调整俗称“盘车”,是机组安装后期最重要的一项工作,机组大修也必须经过盘车检查,机组轴线的好坏综合反应了加工制造和安装检修质量,更会直接影响机组的运行稳定性。
而传统的调整方法实施困难,轴线偏差量的计算公式推导繁琐,安装工人不易掌握,这直接水轮发电机组大修的质量,对发电机组的正常运行造成了严重的影响。
因此,加强对水轮发电机组轴线偏差调整的研究具有重要意义。
1.轴线调整目的水轮发电机组的轴线调整,对于卧轴混流式水轮发电机组是调整水轮机大轴与发电机大轴的同心度、倾斜度,使水轮发大轴同轴度、大轴联结法兰面倾斜度、大轴各部摆度和推力头(含正、反方向)各部端面振动量符合水轮发电机组安装技术规范及制造厂技术要求,从而保证各轴承的间隙、瓦温、油温在规定范围内。
2.轴线调整卧轴混流式水轮发电机组轴线偏差既有中心偏差又有倾斜偏差,在轴线调整过程中应该两者兼顾,同时调整。
2.1轴线倾斜偏差调整发电机组轴线倾斜偏差调整可用传统百分表测量调整,即旋转发电机大轴测量出倾斜偏差,经计算各轴承座倾斜值之后,根据轴的长度再调整。
由于这种方法在轴线调整中不容易操作,在实际调整过程中,一般使用方形水平仪和游标卡尺分别测量出大轴垂直方向倾斜量和大轴水平方向倾斜量,通过千斤顶、楔子板调整使发电机组大轴倾斜偏差符合设计要求。
这种方法的特点是比较直观,操作简单,好学、易懂,工作人员容易掌握。
两阶段轴线调整技术在水轮发电机组轴线调整中的应用摘要:科技日益发展,经济日渐蓬勃,水轮发电机组制造技术也不断提高,其单机装机容量日渐提升,大型水轮发电机组数量也将日益增多。
于大型水力发电机组而言,维持稳定运行,是实现工程经济效应的首要保障。
因此,为了维持水轮发电机组的正常运行,首要方式在于调整该水轮发电机组轴线,由此,本文特针对两阶段轴线调整技术在水轮发电机组轴线调整中的应用进行了系统分析。
关键词:水轮发电机组;轴线调整;两阶段轴线调整技术;水轮发电机组在正常运行过程中,其摆度幅值同振动大小都是该机组质量的重要衡量标准之一,同时也是反应该机组的设计质量、安装水平、制造工艺的性能指标。
发电机组产生振动原因很多,例如电磁力不均衡、转轮重量不均衡等等,因此,不仅需要通过有效设计来把控制造阶段因素以外,也需严格控制安装施工阶段工艺控制,通过科学检查方法、调整手段,将水轮发电机组轴线特性更趋于平稳优良,从而科学控制该导轴承摆度满足规范标准水平,以此显著控制机组出现不良情况。
一.水轮发电机组轴线特性及其摆度原因的系列分析(一)机组轴系主要构成水轮发电机的轴系一般均是由分段轴系的上端轴、转子、发电机主轴、水轮机主轴、转轮这五部分所构成,各个部分依托法兰连接方式,组建而成该水电机组的轴系。
机组理论中心线则是该机组转动部分用作为旋转运动过程的理论轨迹中心。
鉴于机组类型差异性特点,其上端轴结构都有所不同。
双调结构的水轮发电机组在其轴系端部均设有受油器,受油器及其操作油管也作为轴系转动部件[1].(二)水轮发电机组摆度产生原因鉴于水轮发电机组体型较大,深受其运输条件、加工制造等因素所限制,其水轮发电机的上端轴、主轴、水轮机主轴一般均为独立部件供货,依托法兰连接方式,在施工现场予以轴系连接。
理论上而言,如若联轴后主轴线同该发电机组理论旋转中心线完全重合,则该机组转动部分实际运动情况最为稳定,为此该状态即可视为机组摆度为零。
浅谈水轮发电机组的轴线调整一、前言水轮发电机组轴线调整通常一般意义叫做盘车,是发电机组轴线调整质量的好与否,直接影响发电机组大修的质量,同时对发电机组的正常运行造成严重的影响,所以立轴式水轮发电机组轴线调整显得尤为重要。
二、立轴式水轮发电机组轴线盘车的应用条件1、弹性盘车必须在弹性油箱受力调整合格后进行,否则会造成盘车摆度假象。
为避免主轴倾斜弹性盘车应布置二部瓦。
因上导及下导距离较近(3.6米),顶落转子时,容易导致转动部件倾斜,故采用上导瓦和水导瓦(间距7.69米)间隙调整在0.03~0.05mm的方法,使转动部件处于强迫垂直状态。
2、检查各固定部件与转动部件的间隙,保证内部无杂物遗留。
发电机定转子间隙用白布带拉一圈。
水轮机转轮四周用塞尺检查。
三、立轴式水轮发电机组轴线盘车的应用过程1、固定部件同心度测量用球心器、内径千分尺、加长杆、钢琴线、重锤、油桶、透平油等测量固定部件同心度。
测量结果符合《水轮发电机组安装技术规范GB8564-2003》和ALSTOM相关标准。
2、上机架水平度测量调整(一)测量数据《水轮发电机组安装技术规范GB8564-2003》规定“对于不可调式无支柱螺钉支撑的弹性油箱推力轴承和多弹簧支撑结构的推力轴承的机架的水平偏差不应大于0.02mm/m。
(二)弹性油箱支撑件水平度测量调整推力瓦厚度测量调整,允许误差范围0.02~0.05mm。
推力瓦支柱高度测量调整,允许误差范围0.02~0.05mm。
推力瓦支柱相对高度测量(推力瓦装前),允许范围0.02~0.05mm。
镜板预装,测量镜板水平,允许误差范围0.02~0.05mm。
卡环厚度测量,允许误差范围0.02~0.05mm。
回装上导瓦架、上导瓦、水导瓦,上导推力充油至上导瓦架高度。
(三)转动部件推中心启动推力循环油泵和注油泵,将转动部件尽可能推至机组中心处位置,使空气间隙均匀。
在转动部件推中心过程中,因弹性油箱变形(详见弹性油箱结构图)导致在上导处推动转动部件时,转动部件未能整体移动,而是上导的推动量转换成弹性油箱的变形量。
应用投影分析法进行水轮发电机组轴线调整发布时间:2023-02-28T02:24:56.011Z 来源:《中国电业与能源》2022年10月19期作者:唐文利[导读] 机组轴向调节的实践中,把发电机轴、发电机下轴的竖直度、法兰水平值分别投射到同一平面上,唐文利安徽响水涧抽水蓄能有限公司安徽芜湖 241082摘要:机组轴向调节的实践中,把发电机轴、发电机下轴的竖直度、法兰水平值分别投射到同一平面上,利用投影法进行分析和计算,找出最好的轴方向,使下轴与水泵轴的法兰处折线最小,保证了该装置的最佳轴线。
本文以作者多年的工作经验为基础,运用投影分析方法,对机组轴向调整问题进行了简要的分析。
关键词:投影分析法;水轮发电机组;轴线调整引言:目前,水电站发电机组为垂直轴、半伞形,下部机座装有推力轴承,将水轮吊入井底调节中心,然后将下端轴与水机轴相连,然后将转子提升到下端。
在此,我们要分析和讨论的问题是,怎样确定水轮机轴与下转轴的最佳联轴角,为了确保运动控制的准确性,实现了各个轴线的协调。
通过减小法兰处折线和减小凸缘错齿,使机组的最佳轴线得到了保证。
在轴向上,也就是沿着水轮发电机的大轴方向,承载着整个水轮发电机组的所有重量,通过推力头传送到推进器上的水轮机的重量,以确保推进器(镜板)与水轮发电机的轴的垂直性,在推进器和透镜之间装有一个塑料隔离垫圈,由上、下导、水导轴承、水导轴承径向受力,以承受水轮发电机组转动时的径向摇摆力,由联轴法兰将发电机轴与水轮机轴连接。
1水轮发电机组轴线调整概述及重要性1.1水轮发电机组轴线调整概述机组轴向调节是机组大修的一个重要指标。
若某一组机组的轴线不理想,在运行时会产生较大的振荡。
旋转构件所受的磁力不均衡和水力失衡将增大,机组的振动增大,并导致各轴承的运转陷入一个恶性循环。
所谓“轴差”,是单位的轴与旋转中心线不相符合。
机架轴系指旋转大轴的几何中心轴线,它包括:上轴(激励轴)、发电机轴、水轮轴等;该装置的转动中心,即穿过镜片的中心线。
水轮发电机组轴线调整技术探讨摘要:水轮发电机组推力轴承支撑着整个机组的轴向负荷,通过润滑油膜使得随轴系转动的镜板和固定静止部件推力轴瓦分离,它是保证机组安全可靠并长期稳定运行的最关键部件之一。
产生机组振动的原因较多,如水力不平衡、转轮重量不平衡、转子重量不平衡、电磁力不均衡以及机组轴线偏差等因素,除了通过设计、制造阶段控制部分因素外,安装施工阶段的工艺控制保障也尤为重要,其中通过科学的检查方法以及调整手段,使机组轴线特性趋于优良,进而控制各导轴承摆度达到规范优良水平,可有效降低机组轴摆动幅度,减少机组振动。
基于此,本篇文章对水轮发电机组轴线调整技术进行研究,以供参考。
关键词:水轮发电机组;轴线;调整技术引言水轮发电机组经过一段长周期正常运行后,突发振动,是水电站经常会遇到的一种机组非正常运行现象。
对机组突发振动的分析,一般要结合机组上次检修以来,机组运行工况的变化,从水力、电气、机械等多方面进行综合分析,从而确定处理方向,找准故障原因,针对性开展检修,缩小检修范围,以便及时恢复。
基于此,本文探究水轮发电机组轴线调整技术的应用。
1概念误区机组轴线:①机组旋转大轴的几何中心线;②由顶轴(或励磁机轴)、发电机主轴(或转子支架中心体加中间轴)及水轮机主轴等各轴几何中心连线组成的;③由顶轴(或励磁机轴)、发电机主轴及水轮机主轴等组成,一条贯穿机组主轴的中心线叫机组轴线。
3种说法是一致的,第三种表达更详细一点。
机组旋转中心线:①贯穿于镜板镜面中心的垂线;②一条贯串推力轴承镜板镜面中心的垂线。
两种说法也是普遍一致的。
轴线为转动部分静态时几何中心线,旋转中心线为转动部分做旋转运动时,受到推力轴承的承托和导轴承的限制所形成的运动轨迹线,它是一条拟的线:①坚轴水轮发电机组的固定部件有上部机架、定子、下部机架、水轮顶盖、上下固定止漏环、转轮室,这些固定部件几何中心的连线称为机组中心线;②通过机组安装基准件中心的铅垂线是机组中心线;③套于水轮机和发电机转动部分外面的主要固定部件的中心的连线。
浅谈中小型水电站水轮发电机组的轴线偏移与处理摘要:水轮发电机组是中小型水电站的核心设备,其运行故障问题会直接影响水电站发电效率。
本文将结合白水河一级水电厂水轮发电机组的运行故障问题,分析其故障原因,并提出几点具体的检修方法,包括轴线调整方法、轴瓦受力调整方法等,以期为中小型水电站机组故障检修提供参考。
关键字:中小型水电站;水轮发电机组;常见故障;检修方法前言:在中小型水电站的水轮发电机组运行过程中,可能由于内部温度过高、定子结构变形、并网偏差等原因,产生一系列的故障问题,严重时会导致机组停止运行,而且容易缩短机组使用寿命。
因此,做好水轮发电机组故障检修工作十分重要,需要根据以往故障检修管理经验,总结高效的故障检修方法,并将故障检修工作提前化,确保水轮发电机组的稳定运行。
一、工程概况及故障问题分析(一)工程概况白水河一级水电厂地理位置处于南盘江直流,在贵州省安龙县德卧镇区域内,距离贵阳市335km、距离南宁市500km、距离昆明市350km。
在白水河一级水电厂中,包含一个35kV开关站和3台2MW水轮发电机组,总装机容量为6MW。
水轮发电机组均为卧轴混流式机组,其中,1号和2号机组与1号主变压器之间采用扩大单元连接线,3号机组与2号主变压器之间则采用单元接线。
两台主变压器经35kV母线汇聚,通过35kV白长线连接到白水河二级水电厂。
升压为110kV,并通过110kV安德白线连接到系统中。
(二)轴线偏移问题分析在2018年4月期间对白水河一级水电厂的2号机组设备进行C级检修时意外发现,将尾水管和转轮拆除后,检查转轮和导叶汽蚀情况,观测到水轮机大轴和顶杆内环间隙出现明显偏差。
为进一步确定水轮发电机组的中心位置是否出现偏移,需要对机组进行盘车检查。
根据盘车数据显示,在顶盖与座环中心往下的斜右侧方向发生偏移,具体为面向前导的方向。
二、水轮发电机组轴线偏移处理方法(一)轴线调整方法针对上述故障问题,检修人员通过与白水河一级水电厂厂方协商,决定先单独进行顶盖调整。
立式水轮发电机组主轴轴线的测量与调整水轮发电机组主轴轴线的测量与调整,是机组检修或安装中最重要的工序之一。
是衡量检修质量的重要指标。
因此,必须引起检修人员的高度重视。
1 机组轴线的测量立式水轮发电机组的主轴,一般是由顶轴、发电机主轴和水轮机主轴所组成的。
通过推力头和镜板,将主轴和机组的转动部分支承在推力轴承上。
假设镜板摩擦面与整根轴线绝对垂直,那么,在机组运转时,主轴将围绕其理论旋转中心稳定旋转。
然而,其实上整根轴线与镜板不可能绝对垂直。
如图1,因此,机组运转时,主轴将偏离理论旋转中心而产生摆度。
原因是,为防止轴电流产生而加在推力底面和镜板之间的环氧树脂绝缘垫薄厚不均;机械加工误差和安装原因造成推力头与主轴不垂直;主轴法兰有折线。
实践中我们发现.镜板摩擦面与主轴不垂直是轴线产生摆度的主要原因,根据目前我国机械工业的加工水平,其它原因只是偶然会遇到。
因此,本文将着重讨论如何测量和消除镜板摩擦面与轴线不垂直所产生的主轴摆度。
轴线的测量与调整,就是在组装好的轴线,用盘车的方法,使其慢慢旋转,并用千分表,测出有关部位的摆度值,借以分析轴线产生摆度的原因,大小和方位。
并通过刮削镜板绝缘垫或者在推力头与绝缘垫之间加薄铜箔的方法,尽量使镜板与主轴垂直,直到其摆度减少到允许的范围内。
附表是原水电部部颁规程规定的水轮发电机组轴线的允许摆度值。
这里需说明:绝对摆度是指在该处测量出的实际摆度值,单位为mm。
在任何情况下,水轮机导轴承的绝对摆度不得超过以下值:转速在250转/分以下机组为0.35㎜。
转速在250转/分以上机组为0.25㎜。
盘车就是用人为的方法,使机组转动部分慢慢旋转。
盘车的方法有三种:大、中型机组一般以厂内桥式起重机为动力,叫作机械盘车。
在定子、转子绕组中通电,产生电磁力来拖动,叫电动盘车。
对于小型机组,一般广泛采用人力直接推动的方式,叫作人工盘车。
盘车前应做好下列准备工作:(1)在上导轴颈、主轴法兰和水导处,沿圆周划八等分。
低碳世界L O W C A R B O N W O R L DLOW CARBON WORLD 2014/2卧式水轮发电机组的轴线调整彭高维(广西桂茂电力有限责任公司,广西河池546300)【摘要】水轮发电机组的轴线调整的关键技术之一是水轮机组检修。
水轮机组检修与机组运行工况和安全有着直接的关系。
但是卧式机组攀扯调整轴线的施工操作比较复杂,计算工作量比较繁重,也不适宜工作人员的操作使用。
以卧式水轮发电机组作为例子,介绍一种容易操作和使用的攀扯方法,并通过在实际机组上检验其效果。
实践结果证明,使用这种方法对轴线调整,发电机组摆度及其工况都符合相规定的要求,为以后相同类型的发电机机组的轴线调整提供了宝贵的经验。
【关键词】卧式;水轮发电机组;轴线调整【中图分类号】TV734.21【文献标识码】B【文章编号】2095-2066(2014)04-0064-02引言随着经济的不断发展,人民的生活质量也得到了明显的提高,能源危机现象越发严重,水力发电由于其启动的速度过快,调整比较方便,而且具有清洁、可再生的特点,而得到了比较快的发展,根据水电大轴布置的不同,可以将其分为两种形式,即分立式以及卧式,本文重点讨论了卧式三支点混流式水流发电组的安全,以及轴线调整的注意要点。
1水轮大电机在连接的注意事项水轮机部分应将转轮吊入转轮室与水轮机大轴联接,未来更加方便以后的盘车以及安装工作,因此需要将转轮及其大轴向-X 方向移动10mm ,调整转轮与转轮室间隙、水轮机大轴与主轴密封法兰间隙均匀,病调整大轴水平在0.02mm/m 内。
此时将转轮与大轴固定,安装水导轴承(之前已经与大轴轴颈配合研刮好),确保与大轴能够良好接触。
再次复测上述2个间隙和1个水平,当发现与规定设计要求不匹配的时候,需要再一次地进行重复调整,反复如此,当达到设计的具体的要求的时候,方可进行下一步的操作,这时水轮机大轴法兰就是后面机组盘车的基准,在盘车期间不能再发生转动。
立式水轮发电机组主轴轴线的测量与调整水轮发电机组主轴轴线的测量与调整,是机组检修或安装中最重要的工序之一。
是衡量检修质量的重要指标。
因此,必须引起检修人员的高度重视。
1 机组轴线的测量立式水轮发电机组的主轴,一般是由顶轴、发电机主轴和水轮机主轴所组成的。
通过推力头和镜板,将主轴和机组的转动部分支承在推力轴承上。
假设镜板摩擦面与整根轴线绝对垂直,那么,在机组运转时,主轴将围绕其理论旋转中心稳定旋转。
然而,其实上整根轴线与镜板不可能绝对垂直。
如图1,因此,机组运转时,主轴将偏离理论旋转中心而产生摆度。
原因是,为防止轴电流产生而加在推力底面和镜板之间的环氧树脂绝缘垫薄厚不均;机械加工误差和安装原因造成推力头与主轴不垂直;主轴法兰有折线。
实践中我们发现.镜板摩擦面与主轴不垂直是轴线产生摆度的主要原因,根据目前我国机械工业的加工水平,其它原因只是偶然会遇到。
因此,本文将着重讨论如何测量和消除镜板摩擦面与轴线不垂直所产生的主轴摆度。
轴线的测量与调整,就是在组装好的轴线,用盘车的方法,使其慢慢旋转,并用千分表,测出有关部位的摆度值,借以分析轴线产生摆度的原因,大小和方位。
并通过刮削镜板绝缘垫或者在推力头与绝缘垫之间加薄铜箔的方法,尽量使镜板与主轴垂直,直到其摆度减少到允许的范围内。
附表是原水电部部颁规程规定的水轮发电机组轴线的允许摆度值。
这里需说明:绝对摆度是指在该处测量出的实际摆度值,单位为mm。
在任何情况下,水轮机导轴承的绝对摆度不得超过以下值:转速在250转/分以下机组为0.35㎜。
转速在250转/分以上机组为0.25㎜。
盘车就是用人为的方法,使机组转动部分慢慢旋转。
盘车的方法有三种:大、中型机组一般以厂内桥式起重机为动力,叫作机械盘车。
在定子、转子绕组中通电,产生电磁力来拖动,叫电动盘车。
对于小型机组,一般广泛采用人力直接推动的方式,叫作人工盘车。
盘车前应做好下列准备工作:(1)在上导轴颈、主轴法兰和水导处,沿圆周划八等分。
水轮发电机组受力和轴线调整实践探究发布时间:2023-02-27T03:05:54.310Z 来源:《当代电力文化》2022年10月19期作者:唐文利[导读] 水轮发电机组的轴线调整是机组在安装中的一个关键环节,它的好坏将直接关系到机组的安装质量、运行振荡以及机组的可靠性与安全。
唐文利唐安徽响水涧抽水蓄能有限公司安徽芜湖 241082摘要:水轮发电机组的轴线调整是机组在安装中的一个关键环节,它的好坏将直接关系到机组的安装质量、运行振荡以及机组的可靠性与安全。
本文围绕水轮发电机组安装中轴线调整的实践立题,从分析其结构特性入手,着重论述了其原理、方法以及具体的实现方法,并结合实际进行了分析、探讨和总结,为以后的水轮机组轴线调整提供参考。
关键词:水轮发电;机组受力;轴线调整引言:在实际安装水轮发电机组轴线时,轴系加工、装配误差等原因,必须进行轴线测量、调整,确保轴线与转动中心线的相互偏差不超过允许值。
用盘车法对发电机导轴承、连轴法兰、水轮机导轴承的摆度值进行了检测和确定。
机组轴线不符合要求,必然导致在盘车过程中各个轴颈部位出现较大的摆度,其根本原因是各个轴颈的转动中心不符合要求,以及机组轴系转动中心与镜片工作面的垂直度不符合要求。
在实际应用中,应根据机组的结构特性,在完成了机组的受力调节后,再结合盘车试验资料,灵活地采用推轴、加垫等方法。
1水轮发电机组结构按配置形式,水轮发电机组可分为水平型和垂直型两种。
水平机组适用于中小型、贯流式和冲击式机组,而垂直机组则适用于大、中、低速机组[[]]。
垂直装置根据其推力支座的位置,可分为悬挂型和伞型两种。
在此基础上,悬挂机组的推力轴承位于转子的上面,而伞机组的推力轴承位于转子的下面。
2机组受力调整2.1卧式机组受力调整用工具千斤顶在正、反推力瓦上压紧后,用专用扭矩扳手将正、反支撑螺栓拧紧,力矩为100N·m,再将反支撑螺栓按照反推瓦和镜片的设计间隙,转动相应的支撑螺杆的周向长度,最后拧紧锁紧螺栓。
论述立式水轮发电机组轴线调整发布时间:2022-05-13T08:35:39.308Z 来源:《科技新时代》2022年3期作者:张家磊[导读] 并对在机组盘车过程中遇到的各种问题进行了分析和处理,为同类型机组轴线调整提供参考。
云南新景电业有限公司云南省玉溪市 653100摘要:本文主要论述了冲击式水轮发电机组在年度C修过程中轴线如何调整进行分析,并对在机组盘车过程中遇到的各种问题进行了分析和处理,为同类型机组轴线调整提供参考。
关键词:立轴悬式冲击式水轮发电机组盘车轴线调整1概述大春河XX电站位于云南省新平县境内,为径流引水式电站,设计水头762.4m,引用流量4.8m3/s,总装机容量2*15MW。
水轮发电机组为立轴冲击式机组,冷却方式为空气冷却,额定转速600r/min,最大飞逸转速为1045r/min,水轮发电机组俯视旋转方向为顺时针方向。
水轮机型号:CJA475-L-185/2*11.5,配套发电机型号:SF15-10/3300立轴悬垂型三相同步发电机。
机组共四部轴承,即上导轴承,推力轴承,下导轴承,水导轴承。
上、下导轴瓦均采用8块顶瓦螺栓支撑的乌金瓦。
推力轴承与上导轴承置于同一油槽内,位于上导轴承下方,采用8块支柱螺栓加托盘刚性支撑的弹性金属塑料瓦。
水导轴承采用筒式瓦,瓦面为巴氏合金。
大春河XX电站1号机组自2008年投产以来,未进行过机组A修。
运行过程中较2号机组振动大。
为减轻机组振动过大问题,利用机组年度C修,对机组进行盘车,找中心,对轴线重新进行调整。
2轴线调整准备2.1机组盘车方式的选择盘车就是用人为的方式使机组的转动部分缓慢旋转,借助百分表测量机组摆渡值,以此来检查机组轴线是否合格。
盘车方式一般可分为三种:人工盘车:利用杠杆原理,人力直接推动旋转部分转动,适用于中小型机组。
机械盘车:利用起重设备作为动力,通过钢丝绳和滑轮组拖动旋转部分转动。
电动盘车:在定子和转子绕组中通电,产生电磁力拖动旋转部分转动。
水轮发电机组轴线调整
水轮发电机组轴线调整
adjustment shaft of hydro turbine and generator
shullunfod旧nJ一zu zhouxlont一oozheng 水轮发电机组轴线调整(adjustment shaft of hydro turbine and generator)减小轴线误差,减轻机组运行中转动部件不平衡力,是机组安装、检修中的一项重要工作。
机组各连接部件存在着制造和安装上的误差,使得机组主轴线(即主轴中心线)与其旋转中心线不相重合而存在着不同程度的倾斜或曲折.悬式机组常采用发电机轴和水轮机轴直接连接的结构。
伞式机组目前常采用顶轴、转子中心体和水轮机轴连接的结构.当推力轴承镜板的镜面与轴线不垂直时,则会出现轴线倾斜;当法兰结合面与轴线不垂直时,则会出现轴线曲折。
轴线存在较大的倾斜和曲折,在机组运行中将出现较大的摆度,对推力轴承和导轴承产生周期性的机械整劲力,也可能引起较大的磁力和水力不平衡力,致使机组运行处于不稳定状态。
轴线的测量轴线测量的方法,一般是以上导限位作支点,通过吊车牵引推力头或转子转动的机械盘车或通过电动盘车设备,在定、转子绕组中通以直流电,并对定子分相通电控制转子转动的电动盘车方法,在机组主轴转动的一周中按等分8点停留,同时用安设在上导、下导、法兰、水导等处的百分表,测量其摆度值。
从而可求得轴线对推力镜面的不垂直度与法兰处的曲折,为进行轴线处理提供依据。
对盘车测量数据的整理,以绘制各部摆度曲线为好,按比例绘制轴线的水平投影,可直观显示各部最大摆度方位和数值,方便于轴线处理计算。
采用刚性支柱式推力轴承的水电机组,其轴线应满足《水轮发电机组安装技术规范》(GB8564一88)中表23的规定,超过规定允许值为不合格轴线,应进行处理。
采用液压支柱式推力轴承的水电机组,由于其推力瓦有自动调整受力的能力,故对机组轴线的要求有所放宽。
但对液压支柱式推力轴承的安装要求是很严格的。
通过调整推力支架或底座,要求镜板镜面的水平度应不大于0.02 mm/m,并要求最终在机组转动部件处于机组中心时,通过顶落转子各弹性油箱的压缩量,其最大偏差应不大于0.20 mm为合格。
其采用的是所谓“弹性盘车”,要求在弹性油箱受力调整合格的条件下,将机组转动部分移至机组中心。
然后用上导、下导或水导将轴抱上,间隙调整至0.05 mm左右进行盘车。
要求镜板边缘处到得的轴向摆度应不超过GB8564 一88规范表24的规定。
轴线的处理若发电机轴线对镜面的不垂直度和法兰曲折均超过了GB8564一88表23规定的允许值,且机组大修具备分解法兰进行曲折处理的条件,则轴线的处理工作应分别在推力头和法兰两处进行。
若只处理推力头,而不处理轴线曲折,则在进行推力头处理方位和数值计算中,应兼顾水导摆度的减小。
在水电机组安装中,也可采取分别进行盘车和处理的方法。
先对发电机进行单独盘车,将发电机轴线处理合格后.再与水轮机轴相连进行整体盘车,再处理法兰结合面,使水导处摆度调整至合格范围内。
推力头的处理,一般采用修刮方法可获得较长时间轴线不变的效果。
修刮工作可直接修刮推力底面(无垫时)或修刮其结合面间的绝缘垫板。
运行实践表明前者处理效果好于后者。
法兰曲折的处理.可采用在法兰结合面问加垫或修刮法兰结合面的方法.只要处理工艺正确,处理后一般不再变化。
修刮量及其方位的确定.可根据由盘车成果所绘制的轴线水平投影求得,修刮面应呈楔形.实际修刮按台阶形进行。
加垫厚度应与修刮量相等,但其方向1卜好相反。
轴线的调整是指机组轴线合格的转动部分中心的调整。
经过调整,一方面应使发电机转子旋转中心与定子中心同心.水轮机转轮旋转中心与固定止漏环同心;另一方面要使推力轴承的各瓦受力均衡,各导轴承的中心同心,使机组转动部分在机组中心运行。
精确的调整可明显减小发电机的磁力不平衡力和水轮机的水力不平衡力以及轴承对
轴机械整劲力使机组运行中的振动、摆度幅值均处于优良的标准范围内。
轴线的调整有两种情况.一种是既要进行移轴调整轴线的位置.又要进行推力轴承各瓦的受力调整。
这时.由于在进行推力瓦受力调整时,同时可调整主轴旋转中心线的倾角,故可获得较好的调整质量。
调性时,先应将主轴平移,使发电机转子中心移到定子中心,然后用上导轴承将主轴上部固定。
再通过调整推力各瓦的高度,使水轮机转轮的旋转中心移到固定止漏环中心,与此同时将推力各瓦的受力调整均匀。
最后再进行各导轴承间隙的计算与调整。
另一种是不进行推力轴承各瓦的受力调整.只进行移轴调整轴线。
这种情况只有在机组中心(指定子中心和水轮机固定止漏环中心的连线)和主轴旋转中心线倾角相差不大,才能满足轴线调整的要求。
这时应以水轮机固定止漏环中心为基准,通过移轴将水轮机转轮旋转中心移至与固定止漏环基本同心即可。
轴线调整的质量,最终应以测量的发电机空气间隙和水轮止漏环间隙是否在规定的范围内来衡量。