武平县第一中学校2018-2019学年高二上学期第二次月考试卷数学
- 格式:doc
- 大小:594.00 KB
- 文档页数:15
武平县外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. (2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )A .7B .9C .11D .132. 设函数f (x )=的最小值为﹣1,则实数a 的取值范围是( )A .a ≥﹣2B .a >﹣2C .a ≥﹣D .a >﹣3. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π4. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R5. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( )A .B .C .D .6. 下列命题中正确的是( ) (A )若p q ∨为真命题,则p q ∧为真命题( B ) “0a >,0b >”是“2b aa b+≥”的充分必要条件 (C ) 命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠或2x ≠,则2320x x -+≠”(D ) 命题:p 0R x ∃∈,使得20010x x +-<,则:p ⌝R x ∀∈,使得210x x +-≥7. 设x ∈R ,则x >2的一个必要不充分条件是( )A .x >1B .x <1C .x >3D .x <38.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.15B.C.15D.15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.9.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞)B.(1,)C.(2.+∞)D.(1,2)10.已知AC⊥BC,AC=BC,D满足=t+(1﹣t),若∠ACD=60°,则t的值为()A.B.﹣C.﹣1 D.11.“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的()A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件12.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C. D.二、填空题13.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于 .14.设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )=其中a ,b ∈R.若=,则a+3b 的值为 .15.若数列{a n }满足:存在正整数T ,对于任意的正整数n ,都有a n+T =a n 成立,则称数列{a n }为周期为T 的周期数列.已知数列{a n }满足:a1>=m (m >a ),a n+1=,现给出以下三个命题:①若m=,则a 5=2;②若 a 3=3,则m 可以取3个不同的值; ③若m=,则数列{a n }是周期为5的周期数列.其中正确命题的序号是 .16.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 .17.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 . 18.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .三、解答题19.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的参数方程为⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数,],0[πθ∈),直线l 的参数方程为2cos 2sin x t y t ì=+ïí=+ïîaa (t 为参数).(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的极坐标;(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.【命题意图】本题考查圆的参数方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.20.已知函数f(x)=ax3+2x﹣a,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.(i)证明:n≥2时存在唯一x n且;(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.215(Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.22.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?23.已知函数f(x)=(ax2+x﹣1)e x,其中e是自然对数的底数,a∈R.(Ⅰ)若a=0,求曲线f(x)在点(1,f(1))处的切线方程;(Ⅱ)若,求f(x)的单调区间;(Ⅲ)若a=﹣1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围.24.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.(1)若p=,求A∩B;(2)若A∩B=B,求实数p的取值范围.武平县外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵x+x﹣1=3,则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.故选:A.【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.2.【答案】C【解析】解:当x≥时,f(x)=4x﹣3≥2﹣3=﹣1,当x=时,取得最小值﹣1;当x<时,f(x)=x2﹣2x+a=(x﹣1)2+a﹣1,即有f(x)在(﹣∞,)递减,则f(x)>f()=a﹣,由题意可得a﹣≥﹣1,解得a≥﹣.故选:C.【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题.3.【答案】A【解析】考点:三角函数的图象性质.4. 【答案】B【解析】解:P={x|x=3},M={x|x >1}; ∴P ⊊M . 故选B .5. 【答案】 C【解析】解:设四面体的内切球的球心为O , 则球心O 到四个面的距离都是R , 所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R= 故选C .【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).6. 【答案】D【解析】对选项A ,因为p q ∨为真命题,所以,p q 中至少有一个真命题,若一真一假,则p q ∧为假命题,故选项A 错误;对于选项B ,2baab+≥的充分必要条件是,a b 同号,故选项B 错误;命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠且2x ≠,则2320x x -+≠”,故选项C 错误;故选D .7. 【答案】A【解析】解:当x >2时,x >1成立,即x >1是x >2的必要不充分条件是, x <1是x >2的既不充分也不必要条件,x >3是x >2的充分条件,x <3是x >2的既不充分也不必要条件, 故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.8. 【答案】C【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,且VE ^平面ABCD ,如图所示,所以此四棱锥表面积为1S =262创?1123+22622创创?15=,故选C .4646101011326E VD CBA9. 【答案】C【解析】解:∵双曲线渐近线为bx ±ay=0,与圆x 2+(y ﹣2)2=1相交 ∴圆心到渐近线的距离小于半径,即<1∴3a 2<b 2, ∴c 2=a 2+b 2>4a 2,∴e=>2 故选:C .【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.10.【答案】A【解析】解:如图,根据题意知,D 在线段AB 上,过D 作DE ⊥AC ,垂足为E ,作DF ⊥BC ,垂足为F ;若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A.【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.11.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.12.【答案】B【解析】解:设圆锥底面圆的半径为r,高为h,则L=2πr,∴=(2πr)2h,∴π=.故选:B.二、填空题13.【答案】25【解析】考点:分层抽样方法.14.【答案】﹣10.【解析】解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.15.【答案】①②.【解析】解:对于①由a n+1=,且a1=m=<1,所以,>1,,,∴a5=2 故①正确;对于②由a3=3,若a3=a2﹣1=3,则a2=4,若a1﹣1=4,则a1=5=m.若,则.若a1>1a1=,若0<a1≤1则a1=3,不合题意.所以,a3=2时,m即a1的不同取值由3个.故②正确;若a=m=>1,则a2=,所a3=>1,a4=1故在a1=时,数列{a}是周期为3的周期数列,③错;n故答案为:①②【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目16.【答案】菱形;矩形.【解析】解:如图所示:①∵EF∥AC,GH∥AC且EF=AC,GH=AC∴四边形EFGH是平行四边形又∵AC=BD∴EF=FG∴四边形EFGH是菱形.②由①知四边形EFGH是平行四边形又∵AC⊥BD,∴EF⊥FG∴四边形EFGH是矩形.故答案为:菱形,矩形【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.17.【答案】+=1.【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,∵圆C:(x+4)2+y2=100的圆心为C(﹣4,0),半径R=10,∴由动圆B与圆C相内切,可得|CB|=R﹣r=10﹣|BD|,∵圆B经过点A(4,0),∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10,∵|AC|=8<10,∴点B的轨迹是以A、C为焦点的椭圆,设方程为(a>b>0),可得2a=10,c=4,∴a=5,b2=a2﹣c2=9,得该椭圆的方程为+=1.故答案为:+=1.18.【答案】【解析】解:由题意可得三棱锥B 1﹣AA 1D 1的体积是=,三角形AB1D 1的面积为4,设点A 1到平面AB 1D 1的距离等于h ,则,则h=故点A 1到平面AB 1D 1的距离为.故答案为:.三、解答题19.【答案】【解析】(Ⅰ)设D 点坐标为)q q ,由已知得C 是以(0,0)O 因为C 在点D 处的切线与l 垂直,所以直线OD 与直线+2=0x y +的斜率相同,34πθ=,故D 点的直角坐标为(1,1)-,极坐标为3)4p . (Ⅱ)设直线l :2)2(+-=x k y 与半圆)0(222≥=+y y x 相切时21|22|2=+-kk0142=+-∴k k 32-=∴k ,32+=k (舍去)设点)0,2(-B ,则2ABk ==-故直线l 的斜率的取值范围为]22,32(--. 20.【答案】【解析】解:(Ⅰ)f'(x )=3ax 2+2,若a ≥0,则f'(x )>0,函数f (x )在R 上单调递增;若a <0,令f'(x )>0,∴或,函数f (x )的单调递增区间为和;(Ⅱ)(i )由(Ⅰ)得,f n (x )=nx 3+2x ﹣n 在R 上单调递增,又f n (1)=n+2﹣n=2>0,f n ()====﹣当n≥2时,g(n)=n2﹣n﹣1>0,,n≥2时存在唯一x n且(i i)当n≥2时,,∴(零点的区间判定)∴,(数列裂项求和)∴,又f1(x)=x3+2x﹣1,,(函数法定界),又,∴,∴,(不等式放缩技巧)命题得证.【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题.21.【答案】【解析】解:(Ⅰ)解法一:依题意有,答案一:∵∴从稳定性角度选甲合适.(注:按(Ⅱ)看分数的标准,5次考试,甲三次与乙相当,两次优于乙,所以选甲合适.答案二:∵乙的成绩波动大,有爆发力,选乙合适.解法二:因为甲5次摸底考试成绩中只有1次90,甲摸底考试成绩不低于90的概率为;乙5次摸底考试成绩中有3次不低于90,乙摸底考试成绩不低于90的概率为.所以选乙合适.(Ⅱ)依题意知5次摸底考试,“水平相当”考试是第二次,第三次,第五次,记为A,B,C.“水平不相当”考试是第一次,第四次,记为a,b.从这5次摸底考试中任意选取2次有ab,aA,aB,aC,bA,bB,bC,AB,AC,BC共10种情况.恰有一次摸底考试两人“水平相当”包括共aA,aB,aC,bA,bB,bC共6种情况.∴5次摸底考试成绩统计,任意抽查两次摸底考试,恰有一次摸底考试两人“水平相当”概率.【点评】本题主要考查平均数,方差,概率等基础知识,运算数据处理能力、运算求解能力、应用意识,考查化归转化思想、或然与必然思想.22.【答案】【解析】解:(Ⅰ)设测试成绩的中位数为x,由频率分布直方图得,(0.0015+0.019)×20+(x﹣140)×0.025=0.5,解得:x=143.6.∴测试成绩中位数为143.6.进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.(Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,则ξ~B(3,),∴E(ξ)=.∴最后抢答阶段甲队得分的期望为[]×20=30,∵P(η=0)=,P(η=1)=,P(η=2)=,P(η=3)=,∴Eη=.∴最后抢答阶段乙队得分的期望为[]×20=24.∴120+30>120+24,∴支持票投给甲队.【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.23.【答案】【解析】解:(Ⅰ)∵a=0,∴f(x)=(x﹣1)e x,f′(x)=e x+(x﹣1)e x=xe x,∴曲线f(x)在点(1,f(1))处的切线斜率为k=f(1)=e.又∵f(1)=0,∴所求切线方程为y=e(x﹣1),即.ex﹣y﹣4=0(Ⅱ)f′(x)=(2ax+1)e x+(ax2+x﹣1)e x=[ax2+(2a+1)x]e x=[x(ax+2a+1)]e x,①若a=﹣,f′(x)=﹣x2e x≤0,∴f(x)的单调递减区间为(﹣∞,+∞),②若a<﹣,当x<﹣或x>0时,f′(x)<0;当﹣<x<0时,f′(x)>0.∴f(x)的单调递减区间为(﹣∞,﹣],[0,+∞);单调递增区间为[﹣,0].(Ⅲ)当a=﹣1时,由(Ⅱ)③知,f(x)=(﹣x2+x﹣1)e x在(﹣∞,﹣1)上单调递减,在[﹣1,0]单调递增,在[0,+∞)上单调递减,∴f(x)在x=﹣1处取得极小值f(﹣1)=﹣,在x=0处取得极大值f(0)=﹣1,由,得g′(x)=2x2+2x.当x<﹣1或x>0时,g′(x)>0;当﹣1<x<0时,g′(x)<0.∴g(x)在(﹣∞,﹣1]上单调递增,在[﹣1,0]单调递减,在[0,+∞)上单调递增.故g(x)在x=﹣1处取得极大值,在x=0处取得极小值g(0)=m,∵数f(x)与函数g(x)的图象仅有1个公共点,∴g(﹣1)<f(﹣1)或g(0)>f(0),即..【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.24.【答案】【解析】解:(1)当p=时,B={x|0≤x≤},∴A∩B={x|2<x≤};(2)当A∩B=B时,B⊆A;令2p﹣1>p+3,解得p>4,此时B=∅,满足题意;当p≤4时,应满足,解得p不存在;综上,实数p的取值范围p>4.。
武平县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 2. 如图,一个底面半径为R 的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是( )A .B .C .D .3. “双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件4. 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )A.B.C.1 D.5.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为()(A)150种(B )180 种(C)240 种(D)540 种6.设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B∪(∁U A)=()A.{5} B.{1,2,5} C.{1,2,3,4,5} D.∅7.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为()A.30 B.50 C.75 D.1508.圆心为(1,1)且过原点的圆的方程是()A.2=1 B.2=1 C.2=2 D.2=29.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是()A.10个B.15个C.16个D.18个10.函数f(x)=3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2.3)D.(3,4)11.函数y=+的定义域是()A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3}12.已知向量=(1,),=(,x )共线,则实数x 的值为( )A .1B .C .tan35°D .tan35°二、填空题13.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .14.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .15x 和所支出的维修费用y (万元)的统计资料如表:根据上表数据可得y 与x 之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元.16.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 17.双曲线x 2﹣my 2=1(m >0)的实轴长是虚轴长的2倍,则m 的值为 .18.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.三、解答题19.若{a n }的前n 项和为S n ,点(n ,S n )均在函数y=的图象上.(1)求数列{a n }的通项公式;(2)设,T n 是数列{b n }的前n 项和,求:使得对所有n ∈N *都成立的最大正整数m .20.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,计算得x i=80,y i=20,x i y i=184,x i2=720.(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.21.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?22.将射线y=x(x≥0)绕着原点逆时针旋转后所得的射线经过点A=(cosθ,sinθ).(Ⅰ)求点A的坐标;(Ⅱ)若向量=(sin2x,2cosθ),=(3sinθ,2cos2x),求函数f(x)=•,x∈[0,]的值域.23.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧的中点;(Ⅱ)求证:BF=FG.24.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.(I)求证:EF⊥平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小.武平县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】由||)(x a x f =始终满足1)(≥x f 可知1>a .由函数3||log x x y a =是奇函数,排除B ;当)1,0(∈x 时,0||log <x a ,此时0||log 3<=xx y a ,排除A ;当+∞→x 时,0→y ,排除D ,因此选C . 2. 【答案】A【解析】解:因为底面半径为R 的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R ,长半轴为:=,∵a 2=b 2+c 2,∴c=,∴椭圆的离心率为:e==. 故选:A .【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.3. 【答案】C【解析】解:若双曲线C 的方程为﹣=1,则双曲线的方程为,y=±x ,则必要性成立,若双曲线C 的方程为﹣=2,满足渐近线方程为y=±x ,但双曲线C 的方程为﹣=1不成立,即充分性不成立,故“双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣=1”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.4. 【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,∴半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B .【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.5. 【答案】A【解析】5人可以分为1,1,3和1,2,2两种结果,所以每所大学至少保送一人的不同保送的方法数为223335353322150C C C A A A ⋅⋅+⋅=种,故选A . 6. 【答案】B【解析】解:∵C U A={1,5}∴B ∪(∁U A )={2,5}∪{1,5}={1,2,5}. 故选B .7. 【答案】B【解析】解:该几何体是四棱锥, 其底面面积S=5×6=30, 高h=5,则其体积V=S ×h=30×5=50.故选B .8. 【答案】D【解析】解:由题意知圆半径r=,∴圆的方程为2=2.故选:D .【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.9. 【答案】B【解析】解:a ※b=12,a 、b ∈N *,若a 和b 一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a ,b )有4个;若a 和b 同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a ,b )有2×6﹣1=11个,所以满足条件的个数为4+11=15个.故选B10.【答案】A【解析】解:∵f(0)=﹣2<0,f(1)=1>0,∴由零点存在性定理可知函数f(x)=3x+x﹣3的零点所在的区间是(0,1).故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.11.【答案】D【解析】解:由题意得:,解得:x≥﹣1或x≠3,故选:D.【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.12.【答案】B【解析】解:∵向量=(1,),=(,x)共线,∴x====,故选:B.【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.二、填空题13.【答案】.【解析】解:由题意图形折叠为三棱锥,底面为△EFC,高为AC,所以三棱柱的体积:××1×1×2=,故答案为:.【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.14.【答案】4或.【解析】解:设AB=2x,则AE=x,BC=,∴AC=,由余弦定理可得x2=9+3x2+9﹣2×3××,∴x=1或,∴AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=.故答案为:4或.15.【答案】7.5【解析】解:∵由表格可知=9,=4,∴这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,∴4=0.7×9+,∴=﹣2.3,∴这组数据对应的线性回归方程是=0.7x﹣2.3,∵x=14,∴=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.16.【答案】D【解析】17.【答案】 4 .【解析】解:双曲线x 2﹣my 2=1化为x 2﹣=1,∴a 2=1,b 2=,∵实轴长是虚轴长的2倍,∴2a=2×2b ,化为a 2=4b 2,即1=,解得m=4. 故答案为:4.【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键.18.【答案】()2245f x x x =-+ 【解析】试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2245f x x x =-+.考点:函数的解析式.三、解答题19.【答案】【解析】解:(1)由题意知:S n =n 2﹣n ,当n ≥2时,a n =S n ﹣S n ﹣1=3n ﹣2, 当n=1时,a 1=1,适合上式, 则a n =3n ﹣2;(2)根据题意得:b n ===﹣,T n =b 1+b 2+…+b n =1﹣+﹣+…+﹣=1﹣,∴{T n }在n ∈N *上是增函数,∴(T n )min =T 1=,要使T n>对所有n∈N*都成立,只需<,即m<15,则最大的正整数m为14.20.【答案】【解析】解:(1)由题意,n=10,=x=8,=y i=2,i∴b==0.3,a=2﹣0.3×8=﹣0.4,∴y=0.3x﹣0.4;(2)∵b=0.3>0,∴y与x之间是正相关;(3)x=7时,y=0.3×7﹣0.4=1.7(千元).21.【答案】【解析】(1)∵f(t)=10﹣=10﹣2sin(t+),t∈[0,24),∴≤t+<,故当t+=时,函数取得最大值为10+2=12,当t+=时,函数取得最小值为10﹣2=8,故实验室这一天的最大温差为12﹣8=4℃。
武平县第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(﹣1,0)∪(2,+∞) C .(2,+∞)D .(﹣1,0)2. 把函数y=sin (2x ﹣)的图象向右平移个单位得到的函数解析式为( )A .y=sin (2x ﹣) B .y=sin (2x+)C .y=cos2xD .y=﹣sin2x3. 利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )A .B .C .D .4. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 5. 已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15- B .119 C .11 D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力. 6. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥17. 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )A .B .C .1D .8. 已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)9. 抛物线y=﹣8x 2的准线方程是( )A .y=B .y=2C .x=D .y=﹣210.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P的坐标满足不等式x 2+y 2≤2的概率为( )A .B .C .D .11.设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A .B .3C .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 12.“3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.二、填空题13.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .14.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 .15.已知直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),则ab的最大值是.16.已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当△ABC的面积最小时,点C的坐标为.17.的展开式中的系数为(用数字作答).18.已知数列{a n}中,a1=1,a n+1=a n+2n,则数列的通项a n=.三、解答题19.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;(Ⅱ)判断▱ABCD能否为菱形,并说明理由.(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.20.已知函数f(x)=(a>0)的导函数y=f′(x)的两个零点为0和3.(1)求函数f(x)的单调递增区间;(2)若函数f(x)的极大值为,求函数f(x)在区间[0,5]上的最小值.21.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.(1)求实数b 和c 的值;(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.22.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.23.已知p:﹣x2+2x﹣m<0对x∈R恒成立;q:x2+mx+1=0有两个正根.若p∧q为假命题,p∨q为真命题,求m的取值范围.24.已知,其中e是自然常数,a∈R(Ⅰ)讨论a=1时,函数f(x)的单调性、极值;(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+.武平县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.2.【答案】D【解析】解:把函数y=sin(2x﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.故选D.【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x加与减,上下平移,y的另一侧加与减.3.【答案】C【解析】解:由ln(3a﹣1)<0得<a<,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a﹣1)<0成立的概率是P=,故选:C.4.【答案】C5.【答案】A6.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.7.【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,∴半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.8.【答案】B【解析】解:∵α,β为锐角△ABC的两个内角,可得α+β>90°,cosβ=sin(90°﹣β)<sinα,同理cosα<sinβ,∴f(x)=()|x﹣2|+()|x﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.9.【答案】A【解析】解:整理抛物线方程得x2=﹣y,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A.【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.10.【答案】D【解析】解:作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据几何概型的概率公式进行求解.11.【答案】B【解析】12.【答案】A【解析】二、填空题13.【答案】异面.【解析】解:把展开图还原原正方体如图,在原正方体中直线AB与CD的位置关系是异面.故答案为:异面.14.【答案】2【解析】解:∵x2+y2=4的圆心O(0,0),半径r=2,∴点(0,1)到圆心O(0,0)的距离d=1,∴点(0,1)在圆内.如图,|AB|最小时,弦心距最大为1,∴|AB|min=2=2.故答案为:2.15.【答案】.【解析】解:∵直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),∴a+b﹣1=0,即a+b=1,∴ab≤=当且仅当a=b=时取等号,故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.16.【答案】(,).【解析】解:设C(a,b).则a2+b2=1,①∵点A(2,0),点B(0,3),∴直线AB的解析式为:3x+2y﹣6=0.如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.则CF=≥,当且仅当2a=3b时,取“=”,∴a=,②联立①②求得:a=,b=,故点C的坐标为(,).故答案是:(,).【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.17.【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:18.【答案】2n﹣1.【解析】解:∵a1=1,a n+1=a n+2n,∴a2﹣a1=2,a3﹣a2=22,…a n﹣a n﹣1=2n﹣1,相加得:a n﹣a1=2+22+23+2…+2n﹣1,a n=2n﹣1,故答案为:2n﹣1,三、解答题19.【答案】【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.∴椭圆E的方程为=1.(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.∴k OA•k OB=====,假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.综上可得:平行四边形ABCD不可能是菱形.(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.|AB|==.点O到直线AB的距离d=.∴S平行四边形ABCD=4×S△OAB==2××=.则S2==<36,∴S<6.因此当平行四边形ABCD为矩形面积取得最大值6.20.【答案】【解析】解:f′(x)=令g(x)=﹣ax2+(2a﹣b)x+b﹣c函数y=f′(x)的零点即g(x)=﹣ax2+(2a﹣b)x+b﹣c的零点即:﹣ax2+(2a﹣b)x+b﹣c=0的两根为0,3则解得:b=c=﹣a,令f′(x)>0得0<x<3所以函数的f(x)的单调递增区间为(0,3),(2)由(1)得:函数在区间(0,3)单调递增,在(3,+∞)单调递减,∴,∴a=2,∴;,∴函数f(x)在区间[0,4]上的最小值为﹣2.21.【答案】(1)1,14b c ==;(2)答案见解析;(3)当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点. 【解析】试题分析:(1)由题意得到关于实数b ,c 的方程组,求解方程组可得1,14b c ==;(3)函数()g x 的导函数()()2132444g x x a x a ⎛⎫=+--+ ⎪⎝⎭',结合导函数的性质可得当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点.试题解析:(1)由题意()()01{ 440f c f b c =+=-+=,解得1{ 41b c ==;(2)由(1)可知()()324f x x a x =+--1414a x ⎛⎫++ ⎪⎝⎭, ∴()()2132444f x x a x a ⎛⎫=+--+⎪⎝⎭'; 假设存在0x 满足题意,则()()2000132444f x x a x a ⎛⎫=+--+⎪⎝⎭'是一个与a 无关的定值, 即()2000124384x a x x -+--是一个与a 无关的定值, 则0240x -=,即02x =,平行直线的斜率为()1724k f ==-'; (3)()()()324g x f x a x a x =+=+-1414a x a ⎛⎫-+++ ⎪⎝⎭, ∴()()2132444g x x a x a ⎛⎫=+--+⎪⎝⎭', 其中()21441244a a ⎛⎫∆=-++= ⎪⎝⎭()224166742510a a a ++=++>,设()0g x '=两根为1x 和()212x x x <,考察()g x 在R 上的单调性,如下表1°当0a >时,()010g a =+>,()40g a =>,而()152302g a =--<, ∴()g x 在()0,2和()2,4上各有一个零点,即()g x 在()0,4有两个零点; 2°当0a =时,()010g =>,()40g a ==,而()15202g =-<, ∴()g x 仅在()0,2上有一个零点,即()g x 在()0,4有一个零点;3°当0a <时,()40g a =<,且13024g a ⎛⎫=->⎪⎝⎭, ①当1a <-时,()010g a =+<,则()g x 在10,2⎛⎫ ⎪⎝⎭和1,42⎛⎫⎪⎝⎭上各有一个零点,即()g x 在()0,4有两个零点;②当10a -≤<时,()010g a =+≥,则()g x 仅在1,42⎛⎫⎪⎝⎭上有一个零点, 即()g x 在()0,4有一个零点;综上:当1a <-或0a >时,()g x 在()0,4有两个零点; 当10a -≤≤时,()g x 在()0,4有一个零点.点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得. 22.【答案】 【解析】∵BG ⊥平面PAD ,∴)0,3,0(=GB 是平面PAF 的一个法向量,23.【答案】【解析】解:若p为真,则△=4﹣4m<0,即m>1 …若q为真,则,即m≤﹣2 …∵p∧q为假命题,p∨q为真命题,则p,q一真一假若p真q假,则,解得:m>1 …若p假q真,则,解得:m≤﹣2 …综上所述:m≤﹣2,或m>1 …24.【答案】【解析】解:(1)a=1时,因为f(x)=x﹣lnx,f′(x)=1﹣,∴当0<x<1时,f′(x)<0,此时函数f(x)单调递减.当1<x≤e时,f′(x)>0,此时函数f(x)单调递增.所以函数f(x)的极小值为f(1)=1.(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.又g′(x)=,所以当0<x<e时,g′(x)>0,此时g(x)单调递增.所以g(x)的最大值为g(e)=,所以f(x)min﹣g(x)max>,所以在(1)的条件下,f(x)>g(x)+.【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题..。
武平县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则=( )A .﹣1B .2C .﹣5D .﹣32. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( )A .1B .2C .3D .43. “双曲线C 的渐近线方程为y=±x ”是“双曲线C 的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件4. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C .D .5. 若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(﹣∞,)B .(﹣,+∞)C .(0,+∞)D .(﹣∞,﹣)6. 是z 的共轭复数,若z+=2,(z ﹣)i=2(i 为虚数单位),则z=( ) A .1+i B .﹣1﹣iC .﹣1+iD .1﹣i7. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.8. 已知双曲线kx 2﹣y 2=1(k >0)的一条渐近线与直线2x+y ﹣3=0垂直,则双曲线的离心率是( )A .B .C .4D .9. 已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 3010.某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( ) A .4320 B .2400 C .2160 D .132011.已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)12.如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA B A.直线 B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.二、填空题13.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 .14.设平面向量()1,2,3,i a i =,满足1ia =且120a a ⋅=,则12a a += ,123a a a ++的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力. 15.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________16.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.17.(x﹣)6的展开式的常数项是(应用数字作答).18.若函数y=f(x)的定义域是[,2],则函数y=f(log2x)的定义域为.三、解答题19.已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于θ=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合).(Ⅰ)写出曲线C的普通方程;(Ⅱ)求B、C两点间的距离.20.已知函数f(x)=sin2x•sinφ+cos2x•cosφ+sin(π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;(Ⅱ)若x0∈(,π),sinx0=,求f(x0)的值.21.已知函数f(x)=|x﹣10|+|x﹣20|,且满足f(x)<10a+10(a∈R)的解集不是空集.(Ⅰ)求实数a的取值集合A(Ⅱ)若b∈A,a≠b,求证a a b b>a b b a.22.已知函数f(x)=x2﹣mx在[1,+∞)上是单调函数.(1)求实数m的取值范围;(2)设向量,求满足不等式的α的取值范围.23.已知a>0,b>0,a+b=1,求证:(Ⅰ)++≥8;(Ⅱ)(1+)(1+)≥9.24.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.武平县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f′(x)=0的两个根,∵f(x)=ax3+bx2+cx+d,∴f′(x)=3ax2+2bx+c,由f′(x)=3ax2+2bx+c=0,得2+(﹣1)==1,﹣1×2==﹣2,即c=﹣6a,2b=﹣3a,即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),则===﹣5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.2.【答案】C【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,因为P(x1<3)=P(x2≥a),所以3﹣2=4﹣a,所以a=3,故选:C.【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.3.【答案】C【解析】解:若双曲线C的方程为﹣=1,则双曲线的方程为,y=±x,则必要性成立,若双曲线C的方程为﹣=2,满足渐近线方程为y=±x,但双曲线C的方程为﹣=1不成立,即充分性不成立,故“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.4. 【答案】C 【解析】解:不等式(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立,即(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立若m+1=0,显然不成立若m+1≠0,则解得a .故选C .【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.5. 【答案】D【解析】解:当x ∈(0,)时,2x 2+x ∈(0,1),∴0<a <1,∵函数f (x )=log a (2x 2+x )(a >0,a ≠1)由f (x )=log a t 和t=2x 2+x 复合而成,0<a <1时,f (x )=log a t 在(0,+∞)上是减函数,所以只要求t=2x 2+x >0的单调递减区间.t=2x 2+x >0的单调递减区间为(﹣∞,﹣),∴f (x )的单调增区间为(﹣∞,﹣),故选:D . 【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.6. 【答案】D 【解析】解:由于,(z ﹣)i=2,可得z ﹣=﹣2i ①又z+=2 ②由①②解得z=1﹣i 故选D .7. 【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以AB ={1,1}-,故选C .8.【答案】A【解析】解:由题意双曲线kx2﹣y2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=±x故=,∴k=,∴可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A.【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k,熟练掌握双曲线的性质是求解本题的知识保证.9.【答案】C【解析】解:a==1+,该函数在(0,)和(,+∞)上都是递减的,n图象如图,∵9<<10.∴这个数列的前30项中的最大项和最小项分别是a10,a9.故选:C.【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.10.【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•=388,第二组(1,1,2,2),利用间接法,有(﹣)•=932根据分类计数原理,可得388+932=1320种,故选D.【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.11.【答案】C【解析】解:∵f(x)=﹣log2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C12.【答案】D.第Ⅱ卷(共110分)二、填空题13.【答案】6.【解析】解:∵=(2x﹣y,m),=(﹣1,1).若∥,∴2x﹣y+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大.由,解得,代入2x﹣y+m=0得m=6.即m的最大值为6.故答案为:6【点评】本题主要考查线性规划的应用,利用m 的几何意义结合数形结合,即可求出m 的最大值.根据向量平行的坐标公式是解决本题的关键.14.【答案】2,21+. 【解析】∵22212112221012a a a a a a +=+⋅+=++=,∴122a a +=,而222123121233123()2()2221cos ,13a a a a a a a a a a a a ++=+++⋅+=+⋅⋅<+>+≤+,∴12321a a a ++≤,当且仅当12a a +与3a 1.15.【答案】【解析】【知识点】抛物线双曲线 【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:16.【答案】(02x #,02y #)上的点(,)x y 到定点(2,2)2,故MN 的取值范围为.22yxB17.【答案】 ﹣160【解析】解:由于(x﹣)6展开式的通项公式为 T r+1=•(﹣2)r •x 6﹣2r ,令6﹣2r=0,求得r=3,可得(x ﹣)6展开式的常数项为﹣8=﹣160,故答案为:﹣160.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.18.【答案】 [,4] .【解析】解:由题意知≤log2x ≤2,即log 2≤log 2x ≤log 24,∴≤x ≤4.故答案为:[,4].【点评】本题考查函数的定义域及其求法,正确理解“函数y=f(x )的定义域是[,2],得到≤log 2x ≤2”是关键,考查理解与运算能力,属于中档题.三、解答题19.【答案】【解析】解:(Ⅰ)由曲线C 的参数方程为(y 为参数),消去参数t 得,y 2=4x .(Ⅱ)依题意,直线l的参数方程为(t为参数),代入抛物线方程得可得,∴,t1t2=14.∴|BC|=|t1﹣t2|===8.【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题.20.【答案】【解析】(本小题满分12分)φ解:(Ⅰ)f(x)=+﹣=+=)由f(x)图象过点()知:所以:φ=所以f(x)=令(k∈Z)即:所以:函数f(x)在[0,π]上的单调区间为:(Ⅱ)因为x0∈(π,2π),则:2x0∈(π,2π)则:=sin所以=)=【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.21.【答案】【解析】解(1)要使不等式|x﹣10|+|x﹣20|<10a+10的解集不是空集,则(|x﹣10|+|x﹣20|)min<10a+10,根据绝对值三角不等式得:|x﹣10|+|x﹣20|≥|(x﹣10)﹣(x﹣20)|=10,即(|x﹣10|+|x﹣20|)min=10,所以,10<10a+10,解得a>0,所以,实数a的取值集合为A=(0,+∞);(2)∵a,b∈(0,+∞)且a≠b,∴不妨设a>b>0,则a﹣b>0且>1,则>1恒成立,即>1,所以,a a﹣b>b a﹣b,将该不等式两边同时乘以a b b b得,a ab b>a b b a,即证.【点评】本题主要考查了绝对值三角不等式的应用和不等式的证明,涉及指数函数的性质,属于中档题.22.【答案】【解析】解:(1)∵函数f(x)=x2﹣mx在[1,+∞)上是单调函数∴x=≤1∴m≤2∴实数m的取值范围为(﹣∞,2];(2)由(1)知,函数f(x)=x2﹣mx在[1,+∞)上是单调增函数∵,∵∴2﹣cos2α>cos2α+3∴cos2α<∴∴α的取值范围为.【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式.23.【答案】【解析】证明:(Ⅰ)∵a+b=1,a>0,b>0,∴++==2()=2()=2()+4≥4+4=8,(当且仅当a=b时,取等号),∴++≥8;(Ⅱ)∵(1+)(1+)=1+++,由(Ⅰ)知,++≥8,∴1+++≥9,∴(1+)(1+)≥9.24.【答案】【解析】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,所以A=;(2)S△ABC=bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.。
福建省武平县第一高二上学期第二次月考数学试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确的序号填在答案卷上,否则不给分.) 1.双曲线2224x y -=的虚轴长是( )A .2 B.4 D .2.在△ABC 中,内角A,B,C 所对的边分别是a,b,c,已知a c b 41=-,C B sin 3sin 2=, 则cos (B+C )=( )A .41-B .41C .87D .16113.在△ABC 中,内角C B A ,,的对边分别为c b a ,,,若18a =,24b =,45A =︒,则这样的三角形有( )A. 一个B. 两个C. 至多一个D. 0个 4.设等比数列{}n a 的公比2=q , 前n 项和为n S ,则=45a S ( ) A .2 B .4 C .431 D .831 5.已知a>0,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若z=2x+y 的最小值为1,则a 的值是( )A .1B .2C .14 D .126.已知()()()2,5,1,2,2,4,1,4,1A B C ---,则向量AB CA 与所在直线的夹角为 ( )A. 45°B. 60° C . 90° D . 120°7.已知向量(1,1,0)a =,(1,0,2)b =-,且ka b +与2a b -互相垂直,则k 的值是( )A .1B .15C .35D .758.过点(1,1)与双曲线221x y -=仅有一个公共点的直线共有( ) A.1条 B. 2条 C.3条 D.4条9.在△ABC 中,“△ABC 是锐角三角形”是“sin cos A B >”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分又不必要条件10.已知命题p :“∀x∈[1,2],2x 2-a≥0”,命题q :“∃x∈R,x 2+2ax +2-a =0”,若命题“p 且q”是真命题,则实数a 的取值范围是( )A. 2a ≤-或12a ≤≤B. 2a <-或12a <≤)C. 2a ≤-或12a ≤<D. 2a <-或12a <<11.已知等差数列{}n a 满足32=a ,171=-n a ,)2(≥n ,100=n S ,则n 的值为( )A .8B .9C .10D .1112.给出下列命题:(1)设A 、B 为两个定点,k 为非零常数,||||k PA PB -=,则动点P 的轨迹为双曲线的一条分支;(2)若等比数列的前n 项和k s n n +=2,则必有1-=k ;(3)若0,x >则22x x-+的最小值为2;(4)双曲线13519252222=+=-y x y x 与椭圆有相同的焦点;(5)平面内到定点(3,-1)的距离等于到定直线012=-+y x 的距离的点的轨迹是一条直线.其中正确命题的个数是( ) A.1 个 B. 2个 C.3个 D.4个二、填空题(本大题共4个小题,每小题4分,共16分,把正确的答案填在答案卷上,否则不给分.)13.若抛物线22y px =的焦点与双曲线22163x y -=的右焦点重合,则p 的值为 . 14.已知(1,1,),(2,,1)a t t t b t t =--=+,则||a b -的最小值是____________.15.若a ,b ,c>0,且a 2+ab +ac +bc =4,则2a +b +c 的最小值为________.16.一种计算装置,有一个数据入口A 和一个运算出口B ,执行某种运算程序.(1)当从A 口输入自然数1时,从B 口得到实数31,记为=)1(f 31;(2)当从A 口输入自然数)2(≥n n 时,在B 口得到的结果)(n f 是前一结果3)1(21)1(2)1(+----n n n f 的倍.要想从B 口得到11443,则应从A 口输入自然数 .三、解答题(本大题共6个小题,共74分. 解答应写出文字说明,证明过程或演算步骤,把解答过程写在答案卷的对应区域内,否则不给分.)17.(本小题满分12分)设△ABC 的内角,,A B C 的对边分别为a bc ,, 且32ABC b c S ∆===,, (Ⅰ)求角A 的值;(Ⅱ)当角A 为钝角时,求BC 边上的高.18.(本小题满分12分)如图,在平行六面体错误!未找到引用源。
武平县民族中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25 2. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 3. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A. B. C.D.4. 设i是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i5. 曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( )A .30°B .45°C .60°D .120°6. 已知直线 a 平面α,直线b ⊆平面α,则( )A .a bB .与异面C .与相交D .与无公共点 7. 若偶函数f (x )在(﹣∞,0)内单调递减,则不等式f (﹣1)<f (lg x )的解集是( ) A .(0,10)B.(,10)C.(,+∞)D .(0,)∪(10,+∞)8. 如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,),则f (x )的图象的一个对称中心是( )A .(﹣,0)B .(﹣,0)C .(,0)D .(,0)9. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >>10.已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )A .B .C .D .11.函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}12.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为( )A .(﹣1,0)∪(1,+∞)B .(﹣∞,﹣1)∪(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣1,0)∪(0,1)二、填空题13.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= . 14.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 .15.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范围是 .16.已知f (x )=,则f[f (0)]= .17.阅读右侧程序框图,输出的结果i 的值为 .18.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________.三、解答题19.已知函数上为增函数,且θ∈(0,π),,m ∈R .(1)求θ的值;(2)当m=0时,求函数f (x )的单调区间和极值;(3)若在上至少存在一个x 0,使得f (x 0)>g (x 0)成立,求m 的取值范围.20.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余弦值.【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.21.已知函数f(x)=e x﹣ax﹣1(a>0,e为自然对数的底数).(1)求函数f(x)的最小值;(2)若f(x)≥0对任意的x∈R恒成立,求实数a的值.22.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.(I)求AM的长;(Ⅱ)求面DCE与面BCE夹角的余弦值.23.如图,已知椭圆C,点B坐标为(0,﹣1),过点B的直线与椭圆C的另外一个交点为A,且线段AB的中点E在直线y=x上.(1)求直线AB的方程;(2)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,直线BM交椭圆C于另外一点Q.①证明:OM•ON为定值;②证明:A、Q、N三点共线.24.设F是抛物线G:x2=4y的焦点.(1)过点P(0,﹣4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FA⊥FB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.武平县民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P=310.2.【答案】B【解析】3.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.4.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.5.【答案】B【解析】解:y/=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选B.【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.6.【答案】D【解析】试题分析:因为直线a平面α,直线b⊆平面α,所以//a b或与异面,故选D.考点:平面的基本性质及推论.7.【答案】D【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),因为f(x)在(﹣∞,0)内单调递减,所以f(x)在(0,+∞)内单调递增,由f(﹣1)<f(lg x),得|lg x|>1,即lg x>1或lg x<﹣1,解得x>10或0<x<.故选:D.【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题.8.【答案】B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sinφ=,即sinφ=,由于|φ|<,解得:φ=,即有:f(x)=2sin(2x+).由2x+=kπ,k∈Z可解得:x=,k∈Z,故f(x)的图象的对称中心是:(,0),k∈Z当k=0时,f(x)的图象的对称中心是:(,0),故选:B.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,正弦函数的对称性,属于中档题.9.【答案】A【解析】考点:棱锥的结构特征.10.【答案】B【解析】解:由于α是△ABC的一个内角,tanα=,则=,又sin2α+cos2α=1,解得sinα=,cosα=(负值舍去).则cos(α+)=cos cosα﹣sin sinα=×(﹣)=.故选B.【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.11.【答案】B【解析】解:要使函数有意义,只须,即,解得1<x≤4且x≠2,∴函数f(x)的定义域为{x|1<x≤4且x≠2}.故选B12.【答案】D【解析】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选D.【点评】本题综合考查奇函数定义与它的单调性.二、填空题13.【答案】2.【解析】解:由a6=a5+2a4得,a4q2=a4q+2a4,即q2﹣q﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2,故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.14.【答案】.【解析】解:∵f(x)=cos2x+sinx=1﹣sin2x+sinx=﹣+,故当sinx=时,函数f(x)取得最大值为,故答案为:.【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题.15.【答案】.【解析】解:作出不等式组对应的平面区域,直线y=k(x+2)过定点D(﹣2,0),由图象可知当直线l经过点A时,直线斜率最大,当经过点B时,直线斜率最小,由,解得,即A(1,3),此时k==,由,解得,即B(1,1),此时k==,故k的取值范围是,故答案为:【点评】本题主要考查线性规划的应用以及直线斜率的公式的计算,利用数形结合是解决此类问题的基本方法.16.【答案】1.【解析】解:f(0)=0﹣1=﹣1,f[f(0)]=f(﹣1)=2﹣1=1,故答案为:1.【点评】本题考查了分段函数的简单应用.17.【答案】7.【解析】解:模拟执行程序框图,可得 S=1,i=3不满足条件S ≥100,S=8,i=5 不满足条件S ≥100,S=256,i=7满足条件S ≥100,退出循环,输出i 的值为7. 故答案为:7.【点评】本题主要考查了程序框图和算法,正确得到每次循环S ,i 的值是解题的关键,属于基础题.18.【答案】⎛ ⎝⎭【解析】三、解答题19.【答案】【解析】解:(1)∵函数上为增函数,∴g ′(x )=﹣+≥0在,mx ﹣≤0,﹣2lnx ﹣<0,∴在上不存在一个x 0,使得f (x 0)>g (x 0)成立.②当m >0时,F ′(x )=m+﹣=,∵x ∈,∴2e ﹣2x ≥0,mx 2+m >0,∴F ′(x )>0在恒成立. 故F (x )在上单调递增,F (x ) max=F (e )=me ﹣﹣4,只要me ﹣﹣4>0,解得m >.故m 的取值范围是(,+∞)【点评】本题考查利用导数求闭区间上函数的最值,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.20.【答案】 【解析】∵BG ⊥平面PAD ,∴)0,3,0(=GB 是平面PAF 的一个法向量,21.【答案】【解析】解:(1)∵f(x)=e x﹣ax﹣1(a>0),∴f'(x)=e x﹣a,由f'(x)=e x﹣a=0得x=lna,由f'(x)>0得,x>lna,此时函数单调递增,由f'(x)<0得,x<lna,此时函数单调递减,即f(x)在x=lna处取得极小值且为最小值,最小值为f(lna)=e lna﹣alna﹣1=a﹣alna﹣1.(2)若f(x)≥0对任意的x∈R恒成立,等价为f(x)min≥0,由(1)知,f(x)min=a﹣alna﹣1,设g(a)=a﹣alna﹣1,则g'(a)=1﹣lna﹣1=﹣lna,由g'(a)=0得a=1,由g'(x)>0得,0<x<1,此时函数单调递增,由g'(x)<0得,x>1,此时函数单调递减,∴g(a)在a=1处取得最大值,即g(1)=0,因此g(a)≥0的解为a=1,∴a=1.22.【答案】解:(I)由已知可得AM⊥CD,又M为CD的中点,∴;3分(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,以OA为x轴,OF为y轴,OC为z轴建立坐标系,可得,∴,,5分设为面BCE的法向量,由可得=(1,2,﹣),∴cos<,>==,∴面DCE与面BCE夹角的余弦值为4分23.【答案】【解析】(1)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(2)证明:设P(x0,y0),则,①直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.②设直线MB的方程为:y=kx﹣1(其中k==),联立,整理得:(1+2k2)x2﹣4kx=0,∴x Q=,y Q=,∴k AN===1﹣,k AQ==1﹣,要证A、Q、N三点共线,只需证k AN=k AQ,即3x N+4=2k+2,将k=代入,即证:x M•x N=,由①的证明过程可知:|x M|•|x N|=,而x M与x N同号,∴x M•x N=,即A、Q、N三点共线.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值、三点共线等问题,考查运算求解能力,注意解题方法的积累,属于中档题.24.【答案】【解析】解:(1)设切点.由,知抛物线在Q点处的切线斜率为,故所求切线方程为.即y=x0x﹣x02.因为点P(0,﹣4)在切线上.所以,,解得x0=±4.所求切线方程为y=±2x﹣4.(2)设A(x1,y1),C(x2,y2).由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.点A,C的坐标满足方程组,得x2﹣4kx﹣4=0,由根与系数的关系知,|AC|==4(1+k2),因为AC⊥BD,所以BD的斜率为﹣,从而BD的方程为y=﹣x+1.同理可求得|BD|=4(1+),S ABCD=|AC||BD|==8(2+k2+)≥32.当k=1时,等号成立.所以,四边形ABCD面积的最小值为32.【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.。
武平县高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数f (x )=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称 C .坐标原点对称 D .直线y=x 对称2. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B .C .D .3. 函数y=x+xlnx 的单调递增区间是( ) A .(0,e ﹣2)B .(e ﹣2,+∞)C .(﹣∞,e ﹣2)D .(e ﹣2,+∞)4. 下列说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .命题“∃x 0∈R ,x+x 0﹣1<0”的否定是“∀x ∈R ,x 2+x ﹣1>0”C .命题“若x=y ,则sin x=sin y ”的逆否命题为假命题D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题5. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >> 6. 已知集合A={x|x 2﹣x ﹣2<0},B={x|﹣1<x <1},则( ) A .A ⊊B B .B ⊊A C .A=B D .A ∩B=∅7. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .9 8. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形9. 设集合A={x|x <a},B={x|x <3},则“a <3”是“A ⊆B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.sin45°sin105°+sin45°sin15°=( )A .0 B. C. D .111.已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X (单位:mm )对工期延误天数YPA .0.1B .0.3C .0.42D .0.5 12.有以下四个命题: ①若=,则x=y . ②若lgx 有意义,则x >0. ③若x=y ,则=.④若x >y ,则 x 2<y 2. 则是真命题的序号为( ) A .①②B .①③C .②③D .③④二、填空题13.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .14.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= . 15.阅读下图所示的程序框图,运行相应的程序,输出的n 的值等于_________.16.如果实数,x y 满足等式()22x -+17.将一个半径为3和两个半径为1小值为 .18.由曲线y=2x 2,直线y=﹣4x ﹣2三、解答题19.已知函数f (x )=x 2﹣(2a+1)(1)当a=1,求f (x (2)a >1时,求f (x )在区间[1,e](3)g (x )=(1﹣a )x ,若20.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.(2)求使f(x)﹣g(x)<0成立x的集合.21.已知f(x)=x2﹣3ax+2a2.(1)若实数a=1时,求不等式f(x)≤0的解集;(2)求不等式f(x)<0的解集.22.如图,在三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,E,F,G分别是AC,AD,BC的中点.求证:(I)AB∥平面EFG;(II)平面EFG⊥平面ABC.23.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,求直线l的方程.24.已知函数f(x)=log2(x﹣3),(1)求f(51)﹣f(6)的值;(2)若f(x)≤0,求x的取值范围.武平县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选C.2.【答案】B【解析】解:依题设P在抛物线准线的投影为P′,抛物线的焦点为F,则F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M,P,F三点共线时,取得最小值,为.故选:B.【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.3.【答案】B【解析】解:函数的定义域为(0,+∞)求导函数可得f′(x)=lnx+2,令f′(x)>0,可得x>e﹣2,∴函数f(x)的单调增区间是(e﹣2,+∞)故选B.4.【答案】D【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,因此不正确;B.命题“∃x0∈R,x+x0﹣1<0”的否定是“∀x∈R,x2+x﹣1≥0”,因此不正确;C.命题“若x=y,则sin x=sin y”正确,其逆否命题为真命题,因此不正确;D.命题“p或q”为真命题,则p,q中至少有一个为真命题,正确.故选:D.5.【答案】A【解析】考点:棱锥的结构特征.6.【答案】B【解析】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B⊊A.故选B.7.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.8.【答案】D【解析】解:∵sinC+sin(B﹣A)=sin2A,∴sin(A+B)+sin(B﹣A)=sin2A,∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,∴2cosAsinB=sin2A=2sinAcosA,∴2cosA(sinA﹣sinB)=0,∴cosA=0,或sinA=sinB,∴A=,或a=b,∴△ABC为等腰三角形或直角三角形故选:D.【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.9.【答案】A【解析】解:若A⊆B,则a≤3,则“a<3”是“A⊆B”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据集合关系是解决本题的关键.10.【答案】C【解析】解:sin45°sin105°+sin45°sin15°=cos45°cos15°+sin45°sin15°=cos(45°﹣15°)=cos30°=.故选:C.【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.11.【答案】D【解析】解:降水量X至少是100的条件下,工期延误不超过15天的概率P,设:降水量X至少是100为事件A,工期延误不超过15天的事件B,P(A)=0.6,P(AB)=0.3,P=P(B丨A)==0.5,故答案选:D.12.【答案】A【解析】解:①若=,则,则x=y,即①对;②若lgx有意义,则x>0,即②对;③若x=y>0,则=,若x=y<0,则不成立,即③错;④若x >y >0,则 x 2>y 2,即④错. 故真命题的序号为①② 故选:A .二、填空题13.【答案】 2 .【解析】解:整理函数解析式得f (x )﹣1=log a (x ﹣1),故可知函数f (x )的图象恒过(2,1)即A (2,1),故2m+n=1.∴4m+2n ≥2=2=2.当且仅当4m =2n,即2m=n ,即n=,m=时取等号.∴4m+2n的最小值为2.故答案为:214.【答案】 2 .【解析】解:由a 6=a 5+2a 4得,a 4q 2=a 4q+2a 4, 即q 2﹣q ﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2, 故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.15.【答案】6【解析】解析:本题考查程序框图中的循环结构.第1次运行后,9,2,2,S T n S T ===>;第2次运行后,13,4,3,S T n S T ===>;第3次运行后,17,8,4,S T n S T ===>;第4次运行后,21,16,5,S T n S T ===>;第5次运行后,25,32,6,S T n S T ===<,此时跳出循环,输出结果6n =程序结束.16.【解析】考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方的最值转化为直线与圆相切是解答的关键,属于中档试题.法,本题的解答中把yx17.【答案】4+.【解析】解:作出正四棱柱的对角面如图,∵底面边长为6,∴BC=,球O的半径为3,球O1的半径为1,则,在Rt△OMO1中,OO1=4,,∴=,∴正四棱柱容器的高的最小值为4+.故答案为:4+.【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.18.【答案】.【解析】解:由方程组解得,x=﹣1,y=2故A(﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x2)dx﹣∫﹣11(﹣4x﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.三、解答题19.【答案】解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),∴…(2分),解得x=1或x=,x∈,(1,+∞),f′(x)>0,f(x)是增函数,x∈(,1),函数是减函数.…(4分)(2)∴,∴,当1<a<e时,∴f(x)min=f(a)=a(lna﹣a﹣1)当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,∴综上…(9分)(3)由题意不等式f(x)≥g(x)在区间上有解即x2﹣2x+a(lnx﹣x)≥0在上有解,∵当时,lnx≤0<x,当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,∴在区间上有解.令…(10分)∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,x∈(1,e],h(x)是增函数,∴,∴时,,∴∴a的取值范围为…(14分)20.【答案】【解析】解:(1)设h(x)=f(x)﹣g(x)=lg(2016+x)﹣lg(2016﹣x),h(x)的定义域为(﹣2016,2016);h(﹣x)=lg(2016﹣x)﹣lg(2016+x)=﹣h(x);∴f(x)﹣g(x)为奇函数;(2)由f(x)﹣g(x)<0得,f(x)<g(x);即lg(2016+x)<lg(2016﹣x);∴;解得﹣2016<x<0;∴使f(x)﹣g(x)<0成立x的集合为(﹣2016,0).【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.21.【答案】【解析】解:(1)当a=1时,依题意得x2﹣3x+2≤0因式分解为:(x﹣2)(x﹣1)≤0,解得:x≥1或x≤2.∴1≤x≤2.不等式的解集为{x|1≤x≤2}.(2)依题意得x2﹣3ax+2a2<0∴(x﹣a)(x﹣2a)<0…对应方程(x﹣a)(x﹣2a)=0得x1=a,x2=2a当a=0时,x∈∅.当a>0时,a<2a,∴a<x<2a;当a<0时,a>2a,∴2a<x<a;综上所述,当a=0时,原不等式的解集为∅;当a>0时,原不等式的解集为{x|a<x<2a};当a<0时,原不等式的解集为{x|2a<x<a};22.【答案】【解析】证明:(I)在三棱锥A﹣BCD中,E,G分别是AC,BC的中点.所以AB∥EG…因为EG⊂平面EFG,AB⊄平面EFG所以AB∥平面EFG…(II)因为AB⊥平面BCD,CD⊂平面BCD所以AB⊥CD…又BC⊥CD且AB∩BC=B所以CD⊥平面ABC…又E,F分别是AC,AD,的中点所以CD∥EF所以EF⊥平面ABC…又EF⊂平面EFG,所以平面平面EFG⊥平面ABC.…【点评】本题考查线面平行,考查面面垂直,掌握线面平行,面面垂直的判定是关键.23.【答案】【解析】【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;【解答】解:(1)已知圆C:(x﹣1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为,即x+2y﹣6=0.24.【答案】【解析】解:(1)∵函数f(x)=log2(x﹣3),∴f(51)﹣f(6)=log248﹣log23=log216=4;(2)若f(x)≤0,则0<x﹣3≤1,解得:x∈(3,4]【点评】本题考查的知识点是对数函数的图象和性质,对数的运算性质,解答时要时时注意真数大于0,以免出错.。
武平县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )A . 1±B . 4±C .D .2. 已知是虚数单位,若复数22aiZ i+=+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .3 3. 在△ABC 中,b=,c=3,B=30°,则a=( )A .B .2C .或2D .24. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件5. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A .2+B .1+C .D .6. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l 7. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.8. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( )A .B .C .D .9.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是()A.①②B.①C.③④D.①②③④10.已知点A(1,1),B(3,3),则线段AB的垂直平分线的方程是()A.y=﹣x+4 B.y=x C.y=x+4 D.y=﹣x11.如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.12.如果随机变量ξ~N (﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,则P(ξ≥1)等于()A.0.1 B.0.2 C.0.3 D.0.4二、填空题13.若函数63e()()32exxbf x xa=-∈R为奇函数,则ab=___________.【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.14.下列命题:①终边在y轴上的角的集合是{a|a=,k∈Z};②在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;③把函数y=3sin(2x+)的图象向右平移个单位长度得到y=3sin2x的图象;④函数y=sin(x﹣)在[0,π]上是减函数其中真命题的序号是.15.已知一个算法,其流程图如图,则输出结果是.16.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填A B方格的数字,则不同的填法共有种(用数字作答).17.在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为.18.若直线x﹣y=1与直线(m+3)x+my﹣8=0平行,则m=.三、解答题19.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.(1)证明:EF∥平面PAC;(2)证明:AF⊥EF.20.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO图案是多边形ABEFMN,其设计创意如下:在长4cm、宽1c m的长方形ABCD中,将四边形DFEC沿直线EF翻折到MFEN(点F是线段AD上异于D的一点、点E是线段BC上的一点),使得点N落在线段AD上.∆面积;(1)当点N与点A重合时,求NMF-最小时,LOGO最美观,试求此时LOGO图案的面积.(2)经观察测量,发现当2NF MF21.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和S n.22.已知函数f(x)=|2x+1|,g(x)=|x|+a(Ⅰ)当a=0时,解不等式f(x)≥g(x);(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.23.已知函数f(x)=aln(x+1)+x2﹣x,其中a为非零实数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若y=f(x)有两个极值点α,β,且α<β,求证:<.(参考数据:ln2≈0.693)24.设函数f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=﹣f(x),当x∈[0,2]时,f(x)=2x﹣x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)求f(0)+f(1)+f(2)+…+f(2015)的值.武平县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B 【解析】试题分析:由圆226260x y x y +--+=,可得22(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于12r,即1=,解得4a =±,故选B. 1 考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于12r 是解答的关键.2. 【答案】A 【解析】 试题分析:()()()()2224(22)2225ai i ai a a ii i i +-+++-==++-,对应点在第四象限,故40220a a +>⎧⎨-<⎩,A 选项正确. 考点:复数运算. 3. 【答案】C 【解析】解:∵b=,c=3,B=30°,∴由余弦定理b 2=a 2+c 2﹣2accosB ,可得:3=9+a 2﹣3,整理可得:a 2﹣3a+6=0,∴解得:a=或2.故选:C .4. 【答案】B【解析】解:∵b ⊥m ,∴当α⊥β,则由面面垂直的性质可得a ⊥b 成立, 若a ⊥b ,则α⊥β不一定成立, 故“α⊥β”是“a ⊥b ”的充分不必要条件, 故选:B .【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.5. 【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD的面积为,故选:A.6.【答案】C111]【解析】考点:线线,线面,面面的位置关系7.【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.8.【答案】D【解析】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,即x±y=0.根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,可得,1=,∴=,,可得e=.故此双曲线的离心率为:.故选D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.9.【答案】A【解析】考点:斜二测画法.10.【答案】A【解析】解:∵点A(1,1),B(3,3),∴AB的中点C(2,2),k AB==1,∴线段AB的垂直平分线的斜率k=﹣1,∴线段AB的垂直平分线的方程为:y﹣2=﹣(x﹣2),整理,得:y=﹣x+4.故选:A.11.【答案】D【解析】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x 2+y 2=(2c )2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m ,焦距为2n ,则2m=|AF2|﹣|AF 1|=y ﹣x=2,2n=2c=2,∴双曲线C 2的离心率e===.故选D .【点评】本题考查椭圆与双曲线的简单性质,求得|AF 1|与|AF 2|是关键,考查分析与运算能力,属于中档题.12.【答案】A【解析】解:如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,∵P (﹣3≤ξ≤﹣1)=∴∴P (ξ≥1)=.【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.二、填空题13.【答案】2016【解析】因为函数()f x 为奇函数且x ∈R ,则由(0)0f =,得0063e 032e ba -=,整理,得2016ab =. 14.【答案】 ③ .【解析】解:①、终边在y 轴上的角的集合是{a|a=,k ∈Z},故①错误;②、设f (x )=sinx ﹣x ,其导函数y ′=cosx ﹣1≤0,∴f (x )在R 上单调递减,且f (0)=0, ∴f (x )=sinx ﹣x 图象与轴只有一个交点.∴f (x )=sinx 与y=x 图象只有一个交点,故②错误;③、由题意得,y=3sin[2(x ﹣)+]=3sin2x ,故③正确;④、由y=sin(x﹣)=﹣cosx得,在[0,π]上是增函数,故④错误.故答案为:③.【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关键.15.【答案】5.【解析】解:模拟执行程序框图,可得a=1,a=2不满足条件a2>4a+1,a=3不满足条件a2>4a+1,a=4不满足条件a2>4a+1,a=5满足条件a2>4a+1,退出循环,输出a的值为5.故答案为:5.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.16.【答案】27【解析】解:若A方格填3,则排法有2×32=18种,若A方格填2,则排法有1×32=9种,根据分类计数原理,所以不同的填法有18+9=27种.故答案为:27.【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.17.【答案】.【解析】解:过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有V=×2×h××2,当球的直径通过AB与CD的中点时,h最大为2,则四面体ABCD的体积的最大值为.故答案为:.【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.18.【答案】 .【解析】解:直线x ﹣y=1的斜率为1,(m+3)x+my ﹣8=0斜率为两直线平行,则=1解得m=﹣.故应填﹣.三、解答题19.【答案】【解析】(1)证明:如图, ∵点E ,F 分别为CD ,PD 的中点, ∴EF ∥PC .∵PC ⊂平面PAC ,EF ⊄平面PAC ,∴EF ∥平面PAC .(2)证明:∵PA ⊥平面ABCD ,CD ⊂平面ABCD , 又ABCD 是矩形,∴CD ⊥AD , ∵PA ∩AD=A ,∴CD ⊥平面PAD . ∵AF ⊂平面PAD ,∴AF ⊥CD .∵PA=AD ,点F 是PD 的中点,∴AF ⊥PD . 又CD ∩PD=D ,∴AF ⊥平面PDC . ∵EF ⊂平面PDC , ∴AF ⊥EF .【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.20.【答案】(1)215cm 16;(2)24. 【解析】试题分析:(1)设MF x =4x =,则158x =, 据此可得NMF ∆的面积是2115151cm 2816⨯⨯=;试题解析:(1)设MF x =,则FD MF x ==,NF =∵4NF MF +=,4x =,解之得158x =, ∴NMF ∆的面积是2115151cm 2816⨯⨯=; (2)设NEC θ∠=,则2NEF θ∠=,NEB FNE πθ∠=∠=-,∴()22MNF πππθθ∠=--=-,∴112MNNF cos MNFsin cos πθθ===∠⎛⎫- ⎪⎝⎭, MF FD MN tan MNF ==⋅∠=2cos tan sin πθθθ⎛⎫-=- ⎪⎝⎭,∴22cos NF MF sin θθ+-=.∵14NF FD <+≤,∴114cos sin θθ-<≤,即142tan θ<≤,∴42πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), ∴22πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), 设()2cos f sin θθθ+=,则()212cos f sin θθθ--=',令()0f θ'=得23πθ=, 列表得∴当23πθ=时,2NF MF -取到最小值, 此时,NEF CEF NEB ∠=∠=∠3FNE NFE NFM π=∠=∠=∠=,6MNF π∠=,在Rt MNF ∆中,1MN =,MF =,NF =,在正NFE ∆中,NF EF NE ===,在梯形ANEB 中,1AB =,4AN =4BE =,∴MNF EFN ABEFMN ABEN S S S S ∆∆=++=六边形梯形144142⎛⨯⨯= ⎝⎭.答:当2NF MF -最小时,LOGO 图案面积为24. 点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点. 21.【答案】【解析】解:(1)由a 2+2,a 3,a 4﹣2成等比数列,∴=(a 2+2)(a 4﹣2),(1+2d )2=(3+d )(﹣1+3d ),d 2﹣4d+4=0,解得:d=2,∴a n=1+2(n﹣1)=2n﹣1,数列{a n}的通项公式a n=2n﹣1;(2)b n===(﹣),S n=[(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n}的前n项和S n,S n=.22.【答案】【解析】解:(Ⅰ)当a=0时,由f(x)≥g(x)得|2x+1|≥x,两边平方整理得3x2+4x+1≥0,解得x≤﹣1 或x≥﹣∴原不等式的解集为(﹣∞,﹣1]∪[﹣,+∞)(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令h(x)=|2x+1|﹣|x|,即h(x)=,故h(x)min=h(﹣)=﹣,故可得到所求实数a的范围为[﹣,+∞).【点评】本题主要考查带有绝对值的函数,绝对值不等式的解法,求函数的最值,属于中档题.23.【答案】【解析】解:(Ⅰ).当a﹣1≥0时,即a≥1时,f'(x)≥0,f(x)在(﹣1,+∞)上单调递增;当0<a<1时,由f'(x)=0得,,故f(x)在上单调递增,在上单调递减,在上单调递增;当a<0时,由f'(x)=0得,,f(x)在上单调递减,在上单调递增.证明:(Ⅱ)由(I)知,0<a<1,且,所以α+β=0,αβ=a﹣1..由0<a<1得,0<β<1.构造函数.,设h(x)=2(x2+1)ln(x+1)﹣2x+x2,x∈(0,1),则,因为0<x<1,所以,h'(x)>0,故h(x)在(0,1)上单调递增,所以h(x)>h(0)=0,即g'(x)>0,所以g(x)在(0,1)上单调递增,所以,故.24.【答案】【解析】(1)证明:∵f(x+2)=﹣f(x),∴f(x+4)=f[(x+2)+2]=﹣f(x+2)=f(x),∴y=f(x)是周期函数,且T=4是其一个周期.(2)令x∈[﹣2,0],则﹣x∈[0,2],∴f(﹣x)=﹣2x﹣x2,又f(﹣x)=﹣f(x),∴在x∈[﹣2,0],f(x)=2x+x2,∴x∈[2,4],那么x﹣4∈[﹣2,0],那么f(x﹣4)=2(x﹣4)+(x﹣4)2=x2﹣6x+8,由于f(x)的周期是4,所以f(x)=f(x﹣4)=x2﹣6x+8,∴当x∈[2,4]时,f(x)=x2﹣6x+8.(3)当x∈[0,2]时,f(x)=2x﹣x2.∴f(0)=0,f(1)=1,当x∈[2,4]时,f(x)=x2﹣6x+8,∴f(2)=0,f(3)=﹣1,f(4)=0∴f(1)+f(2)+f(3)+f(4)=1+0﹣1+0=0,∵y=f(x)是周期函数,且T=4是其一个周期.∴2016=4×504∴f(0)+f(1)+f(2)+…+f(2015)=504×[f(0)+f(1)+f(2)+f(3)]=504×0=0,即求f(0)+f(1)+f(2)+…+f(2015)=0.【点评】本题主要考查函数周期性的判断,函数奇偶性的应用,综合考查函数性质的应用.。
武平县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ( )A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2] 2. 复数的虚部为( )A .﹣2B .﹣2iC .2D .2i3. 复数的值是( )i i -+3)1(2A .B .C .D .i 4341+-i 4341-i 5351+-i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.4. 已知{}n a 是等比数列,25124a a ==,,则公比q =( )A .12-B .-2C .2D .125. 设是奇函数,且在内是增函数,又,则的解集是( )()f x (0,)+∞(3)0f -=()0x f x ⋅<A . B . {}|303x x x -<<>或{}|3003x x x -<<<<或 C .D . {}|33x x x <->或{}|303x x x <-<<或6. 已知=(2,﹣3,1),=(4,2,x ),且⊥,则实数x 的值是( )A .﹣2B .2C .﹣D .7. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .8. 设a ,b ∈R ,i 为虚数单位,若=3+b i ,则a -b 为()2+a i1+iA .3B .2C .1D .09. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( )A .B .C .D .10.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()A .2160B .2880C .4320D .864011.若实数x ,y 满足不等式组则2x+4y 的最小值是()A .6B .﹣6C .4D .212.设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)二、填空题13.在等差数列中,,其前项和为,若,则的值等}{n a 20161-=a n n S 2810810=-S S 2016S 于.【命题意图】本题考查等差数列的通项公式、前项和公式,对等差数列性质也有较高要求,属于中等难度.n14.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .15.在中,已知角的对边分别为,且,则角ABC ∆C B A ,,c b a ,,B c C b a sin cos +=B 为.16.已知△的面积为,三内角,,的对边分别为,,.若,ABC S A B C 2224S a b c +=+则取最大值时.sin cos(4C B π-+C =17.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 . 18.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 . 三、解答题19.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当0≤x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x •v (x )可以达到最大,并求出最大值.(精确到1辆/小时). 20.若点(p ,q ),在|p|≤3,|q|≤3中按均匀分布出现.(1)点M (x ,y )横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M (x ,y )落在上述区域的概率?(2)试求方程x 2+2px ﹣q 2+1=0有两个实数根的概率.21.已知f (x )是定义在[﹣1,1]上的奇函数,f (1)=1,且若∀a 、b ∈[﹣1,1],a+b ≠0,恒有>0,(1)证明:函数f (x )在[﹣1,1]上是增函数;(2)解不等式;(3)若对∀x ∈[﹣1,1]及∀a ∈[﹣1,1],不等式f (x )≤m 2﹣2am+1恒成立,求实数m 的取值范围.22.【常州市2018届高三上武进区高中数学期中】已知函数,.()()221ln f x ax a x x =+--R a ∈⑴若曲线在点处的切线经过点,求实数的值;()y f x =()()1,1f ()2,11a ⑵若函数在区间上单调,求实数的取值范围;()f x ()2,3a ⑶设,若对,,使得成立,求整数的最小值.()1sin 8g x x =()10,x ∀∈+∞[]20,πx ∃∈()()122f x g x +≥a23.设函数f(x)=ax2+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x﹣6y﹣7=0垂直,导函数f′(x)的最小值为﹣12.(1)求a,b,c的值;(2)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小值.24.已知函数f(x)=log2(x﹣3),(1)求f(51)﹣f(6)的值;(2)若f(x)≤0,求x的取值范围.武平县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:由M 中y=2x ,x ≤1,得到0<y ≤2,即M=(0,2],由N 中不等式变形得:(x ﹣1)(x+1)≤0,且x+1≠0,解得:﹣1<x ≤1,即N=(﹣1,1],则M ∩N=(0,1],故选:B .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 2. 【答案】C【解析】解:复数===1+2i 的虚部为2.故选;C .【点评】本题考查了复数的运算法则、虚部的定义,属于基础题. 3. 【答案】C【解析】.i i i i i i i i i i 53511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+4. 【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a .考点:等比数列的性质.5. 【答案】B 【解析】试题分析:因为为奇函数且,所以,又因为在区间上为增函数且()f x ()30f -=()30f =()f x ()0,+∞,所以当时,,当时,,再根据奇函数图象关于原点对称()30f =()0,3x ∈()0f x <()3,x ∈+∞()0f x >可知:当时,,当时,,所以满足的的取值范围()3,0x ∈-()0f x >(),3x ∈-∞-()0f x <()0x f x ⋅<x 是:或。
武平县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.如图所示,已知四边形ABCD的直观图是一个边长为的正方形,则原图形的周长为()A.B. C. D.2.等比数列{a n}满足a1=3,a1+a3+a5=21,则a2a6=()A.6B.9C.36D.723.“互联网”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为()A.10 B.20 C.30 D.40 4.底面为矩形的四棱锥P-ABCD的顶点都在球O的表面上,且O在底面ABCD内,PO⊥平面ABCD,当四棱锥P-ABCD的体积的最大值为18时,球O的表面积为()A.36πB.48πC.60πD.72π5.已知m,n为不同的直线,α,β为不同的平面,则下列说法正确的是()A.m⊂α,n∥m⇒n∥αB.m⊂α,n⊥m⇒n⊥αC.m⊂α,n⊂β,m∥n⇒α∥βD.n⊂β,n⊥α⇒α⊥β6.若某算法框图如图所示,则输出的结果为()A .7B .15C .31D .637. 设函数F (x )=是定义在R 上的函数,其中f (x )的导函数为f ′(x ),满足f ′(x )<f (x )对于x∈R 恒成立,则()A .f (2)>e 2f (0),fB .f (2)<e 2f (0),fC .f (2)>e 2f (0),fD .f (2)<e 2f (0),f8. 在中,,,,则等于( )ABC ∆b =3c =30B =A B .C D .29. 如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm ),则此几何体的表面积是()A .8cm 2B . cm 2C .12 cm 2D . cm 210.执行如图的程序框图,则输出S 的值为()A .2016B .2C .D .﹣111.已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( )A .1B .2C .3D .412.以的焦点为顶点,顶点为焦点的椭圆方程为()A .B .C .D .二、填空题13.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 . 14.已知A (1,0),P ,Q 是单位圆上的两动点且满足,则+的最大值为 .15.已知、、分别是三内角的对应的三边,若,则a b c ABC ∆A B C 、、C a A c cos sin -=的取值范围是___________.3cos(4A B π-+【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.16.已知偶函数f (x )的图象关于直线x=3对称,且f (5)=1,则f (﹣1)= .17.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .18.定积分sintcostdt= .三、解答题19.【南师附中2017届高三模拟二】如下图扇形是一个观光区的平面示意图,其中为,半AOB AOB ∠23π径为,为了便于游客观光休闲,拟在观光区内铺设一条从入口到出口的观光道路,道路由圆弧OA 1km A B 、线段及线段组成.其中在线段上,且,设.AC CD BD D OB //CD AO AOC θ∠=(1)用表示的长度,并写出的取值范围;θCD θ(2)当为何值时,观光道路最长?θ20.数列中,,,且满足.{}n a 18a =42a =*2120()n n n a a a n N ++-+=∈(1)求数列的通项公式;{}n a (2)设,求.12||||||n n S a a a =++ n S21.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以m在1,2,3,4,5,6点中任选一个,并押上赌注元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收.(1)求掷3次骰子,至少出现1次为5点的概率;(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.22.已知f(α)=,(1)化简f(α);(2)若f(α)=﹣2,求sinαcosα+cos2α的值.23.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).(1)写出奖金y关于销售利润x的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?24.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.武平县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1. 【答案】C 【解析】考点:平面图形的直观图.2. 【答案】D【解析】解:设等比数列{a n }的公比为q ,∵a 1=3,a 1+a 3+a 5=21,∴3(1+q 2+q 4)=21,解得q 2=2.则a 2a 6=9×q 6=72.故选:D . 3. 【答案】B 【解析】试题分析:设从青年人抽取的人数为,故选B .800,,2050600600800x x x ∴=∴=++考点:分层抽样.4. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b ,则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =S 矩形ABCD ·PO13=abR ≤R 3.1323∴R 3=18,则R =3,23∴球O 的表面积为S =4πR 2=36π,选A.5. 【答案】D【解析】解:在A 选项中,可能有n ⊂α,故A 错误;在B 选项中,可能有n ⊂α,故B 错误;在C 选项中,两平面有可能相交,故C 错误;在D 选项中,由平面与平面垂直的判定定理得D 正确.故选:D .【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.6.【答案】D【解析】解:模拟执行算法框图,可得A=1,B=1满足条件A≤5,B=3,A=2满足条件A≤5,B=7,A=3满足条件A≤5,B=15,A=4满足条件A≤5,B=31,A=5满足条件A≤5,B=63,A=6不满足条件A≤5,退出循环,输出B的值为63.故选:D.【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题.7.【答案】B【解析】解:∵F(x)=,∴函数的导数F′(x)==,∵f′(x)<f(x),∴F′(x)<0,即函数F(x)是减函数,则F(0)>F(2),F(0)>F<e2f(0),f,故选:B8.【答案】C【解析】考点:余弦定理.9.【答案】C【解析】解:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,故此几何体的表面积S=2×2+4××2×2=12cm2,故选:C.【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键.10.【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件k<2016,s=﹣1,k=1满足条件k<2016,s=,k=2满足条件k<2016,s=2.k=3满足条件k<2016,s=﹣1,k=4满足条件k<2016,s=,k=5…观察规律可知,s的取值以3为周期,由2015=3*671+2,有满足条件k<2016,s=2,k=2016不满足条件k<2016,退出循环,输出s的值为2.故选:B.【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s,k的值,观察规律得到s的取值以3为周期是解题的关键,属于基本知识的考查.11.【答案】A【解析】解:∵向量与的夹角为60°,||=2,||=6,∴(2﹣)•=2﹣=2×22﹣6×2×cos60°=2,∴2﹣在方向上的投影为=.故选:A.【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.12.【答案】D【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D.【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.二、填空题13.【答案】﹣2≤a≤2【解析】解:原命题的否定为“∀x∈R,2x2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.故答案为:﹣2≤a≤2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.14.【答案】 .【解析】解:设=,则==,的方向任意.∴+==1××≤,因此最大值为.故答案为:.【点评】本题考查了数量积运算性质,考查了推理能力与计算能力,属于中档题.15.【答案】【解析】16.【答案】 1 .【解析】解:f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=f(5)=1,f (x )是偶函数,所以f (﹣1)=f (1)=1.故答案为:1.17.【答案】0【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与GF 所成的角的余弦值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,∵AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,∴A 1(1,0,2),E (0,0,1),G (0,2,1),F (1,1,0),=(﹣1,0,﹣1),=(1,﹣1,﹣1),=﹣1+0+1=0,∴A 1E ⊥GF ,∴异面直线A 1E 与GF 所成的角的余弦值为0.故答案为:0.18.【答案】 .【解析】解:0sintcostdt=0sin2td (2t )=(﹣cos2t )|=×(1+1)=.故答案为: 三、解答题19.【答案】(1);(2)设当时,取得最大值,即当cos ,0,3CD πθθθ⎛⎫=∈ ⎪⎝⎭∴6πθ=()L θ6πθ=时,观光道路最长.【解析】试题分析:(1)在中,由正弦定理得:OCD ∆sin sin sin CD OD CO COD DCO CDO==∠∠∠,2cos 3CD πθθθ⎛⎫∴=-=+ ⎪⎝⎭OD θ=1sin 03OD OB πθθθ<<∴<<<cos ,0,3CD πθθθ⎛⎫∴=+∈ ⎪⎝⎭(2)设观光道路长度为,()L θ则()L BD CD AC θ=++弧的长= = ,1cos θθθθ++cos 1θθθ++0,3πθ⎛⎫∈ ⎪⎝⎭∴()sin 1L θθθ=-+'由得:,又()0L θ'=sin 6πθ⎛⎫+= ⎪⎝⎭0,3πθ⎛⎫∈ ⎪⎝⎭6πθ∴=列表:θ0,6π⎛⎫ ⎪⎝⎭6π,63ππ⎛⎫ ⎪⎝⎭()L θ'+0-()L θ↗极大值↘当时,取得最大值,即当时,观光道路最长.∴6πθ=()L θ6πθ=考点:本题考查了三角函数的实际运用点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。
武平县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .2. 如图所示,阴影部分表示的集合是()A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B )3. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是()A .0B .1C .2D .34. 已知,,(,2)k =-c ,若,则( )(2,1)a =- (,3)b k =- (1,2)c = (2)a b c -⊥ ||b =A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.5. 设函数在上单调递增,则与的大小关系是( )()log |1|a f x x =-(,1)-∞(2)f a +(3)f A .B .C.D .不能确定(2)(3)f a f +>(2)(3)f a f +<(2)(3)f a f +=6. 抛物线y=﹣8x 2的准线方程是( )A .y=B .y=2C .x=D .y=﹣27. 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( )A .4B .5C .6D .78. 将函数f (x )=sin2x 的图象向右平移个单位,得到函数y=g (x )的图象,则它的一个对称中心是()A .B .C .D .9. 已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( )A .(1,5)B .(1,4)C .(0,4)D .(4,0)10.复数的值是( )i i -+3)1(2A .B .C .D .i 4341+-i 4341-i 5351+-i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.11.设,,a b c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b >D .33a b>12.已知命题p :∀x ∈(0,+∞),log 2x <log 3x .命题q :∃x ∈R ,x 3=1﹣x 2.则下列命题中为真命题的是( )A .p ∧qB .¬p ∧qC .p ∧¬qD .¬p ∧¬q二、填空题13.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .14.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线) 15.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ .16.= .17.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 . 18.已知函数f (x )=sinx ﹣cosx ,则= .三、解答题19.已知函数f (x )=lg (2016+x ),g (x )=lg (2016﹣x )(1)判断函数f (x )﹣g (x )的奇偶性,并予以证明.(2)求使f (x )﹣g (x )<0成立x 的集合. 20.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x 为一条渐近线.求双曲线C 的方程.(2)焦点在直线3x ﹣4y ﹣12=0 的抛物线的标准方程.21.设函数f(x)=mx2﹣mx﹣1.(1)若对一切实数x,f(x)<0恒成立,求m的取值范围;(2)对于x∈[1,3],f(x)<﹣m+5恒成立,求m的取值范围.22.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.23.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲 83 81 93 79 78 84 88 94乙 87 89 89 77 74 78 88 98(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(Ⅱ)本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.24.已知函数.(Ⅰ)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围;(Ⅱ)求函数f(x)在区间[1,e]上的最小值.武平县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】D【解析】解:∵正△ABC 的边长为a ,∴正△ABC 的高为,画到平面直观图△A ′B ′C ′后,“高”变成原来的一半,且与底面夹角45度,∴△A ′B ′C ′的高为=,∴△A ′B ′C ′的面积S==.故选D .【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化. 2. 【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A ,但不属于集合B 的元素构成,∴对应的集合表示为A ∩∁U B .故选:A . 3. 【答案】C【解析】解:命题“若x 2>0,则x >0”的逆命题是“若x >0,则x 2>0”,是真命题;否命题是“若x 2≤0,则x ≤0”,是真命题;逆否命题是“若x ≤0,则x 2≤0”,是假命题;综上,以上3个命题中真命题的个数是2.故选:C 4. 【答案】A 【解析】5. 【答案】A 【解析】试题分析:由且在上单调递增,易得()()()()()log 1,,1log 1,1,a a x x f x x x -∈-∞⎧⎪=⎨-∈+∞⎪⎩()f x (),1-∞.在上单调递减,,故选A.01,112a a <<∴<+<()f x ∴()1,+∞()()23f a f ∴+>考点:1、分段函数的解析式;2、对数函数的单调性.6. 【答案】A【解析】解:整理抛物线方程得x 2=﹣y ,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A .【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置. 7. 【答案】A解析:模拟执行程序框图,可得S=0,n=0满足条,0≤k ,S=3,n=1满足条件1≤k ,S=7,n=2满足条件2≤k ,S=13,n=3满足条件3≤k ,S=23,n=4满足条件4≤k ,S=41,n=5满足条件5≤k ,S=75,n=6…若使输出的结果S 不大于50,则输入的整数k 不满足条件5≤k ,即k <5,则输入的整数k 的最大值为4.故选:8. 【答案】D【解析】解:函数y=sin2x 的图象向右平移个单位,则函数变为y=sin[2(x ﹣)]=sin (2x ﹣);考察选项不难发现:当x=时,sin (2×﹣)=0;∴(,0)就是函数的一个对称中心坐标.故选:D .【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型. 9. 【答案】A【解析】解:令x ﹣1=0,解得x=1,代入f (x )=4+a x ﹣1得,f (1)=5,则函数f (x )过定点(1,5).故选A . 10.【答案】C【解析】.i i i i i i i i i i 53511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+11.【答案】D 【解析】考点:不等式的恒等变换.12.【答案】 B【解析】解:命题p :取x ∈[1,+∞),log 2x ≥log 3x ,因此p 是假命题.命题q :令f (x )=x 3﹣(1﹣x 2),则f (0)=﹣1<0,f (1)=1>0,∴f (0)f (1)<0,∴∃x 0∈(0,1),使得f (x 0)=0,即∃x ∈R ,x 3=1﹣x 2.因此q 是真命题.可得¬p ∧q 是真命题.故选:B .【点评】本题考查了对数函数的单调性、函数零点存在定理、复合命题的判定方法,考查了推理能力,属于基础题.二、填空题13.【答案】 .【解析】解:∵ =2,由正弦定理可得:,即c=2a .b=2a ,∴==.∴cosB=.故答案为:.【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.14.【答案】 3.3 【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.设BC=x,则根据题意=,AB=x,在AE=AB﹣BE=x﹣1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3.【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.15.【答案】1 2考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.16.【答案】 2 .【解析】解:=2+lg100﹣2=2+2﹣2=2,故答案为:2.【点评】本题考查了对数的运算性质,属于基础题.17.【答案】 (﹣∞,]∪[,+∞) .【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,∴数列{a n}是以1为首项,以为公比的等比数列,S n==2﹣()n﹣1,对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,∴x2+tx+1≥2,x2+tx﹣1≥0,令f(t)=tx+x2﹣1,∴,解得:x≥或x≤,∴实数x的取值范围(﹣∞,]∪[,+∞).18.【答案】 .【解析】解:∵函数f(x)=sinx﹣cosx=sin(x﹣),则=sin(﹣)=﹣=﹣,故答案为:﹣.【点评】本题主要考查两角差的正弦公式,属于基础题.三、解答题19.【答案】【解析】解:(1)设h(x)=f(x)﹣g(x)=lg(2016+x)﹣lg(2016﹣x),h(x)的定义域为(﹣2016,2016);h(﹣x)=lg(2016﹣x)﹣lg(2016+x)=﹣h(x);∴f(x)﹣g(x)为奇函数;(2)由f(x)﹣g(x)<0得,f(x)<g(x);即lg(2016+x)<lg(2016﹣x);∴;解得﹣2016<x<0;∴使f(x)﹣g(x)<0成立x的集合为(﹣2016,0).【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.20.【答案】【解析】解:(1)由椭圆+=1,得a2=8,b2=4,∴c2=a2﹣b2=4,则焦点坐标为F(2,0),∵直线y=x为双曲线的一条渐近线,∴设双曲线方程为(λ>0),即,则λ+3λ=4,λ=1.∴双曲线方程为:;(2)由3x﹣4y﹣12=0,得,∴直线在两坐标轴上的截距分别为(4,0),(0,﹣3),∴分别以(4,0),(0,﹣3)为焦点的抛物线方程为:y2=16x或x2=﹣12y.【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双曲线方程是关键,是中档题.21.【答案】【解析】解:(1)当m=0时,f(x)=﹣1<0恒成立,当m≠0时,若f(x)<0恒成立,则解得﹣4<m<0综上所述m的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要x∈[1,3],f(x)<﹣m+5恒成立,即恒成立.令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当m>0时,g(x)是增函数,所以g(x)max=g(3)=7m﹣6<0,解得.所以当m=0时,﹣6<0恒成立.当m<0时,g(x)是减函数.所以g(x)max=g(1)=m﹣6<0,解得m<6.所以m<0.综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.22.【答案】【解析】【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE ⊥平面A1DC,再利用面面垂直的判定定理即可证明.(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=(0<x<6),即可得出.【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,∴在图2中,DE⊥A1D,DE⊥DC,又∵A1D∩DC=D,∴DE⊥平面A1DC,∵DE∥BC,∴BC⊥平面A1DC,∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),E(2,0,0).则,,设平面A1BC的法向量为则,解得,即则BE与平面所成角的正弦值为(Ⅲ)解:设CD=x(0<x<6),则A1D=6﹣x,在(2)的坐标系下有:A1(0,0,6﹣x),B(3,x,0),∴==(0<x<6),即当x=3时,A1B长度达到最小值,最小值为.23.【答案】【解析】解:(I)记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、.,.…,.…因为,,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加.…(II)记事件C表示为“甲回答问题A成功”,事件D表示为“甲回答问题B成功”,则P(C)=,P(D)=,且事件C与事件D相互独立.…记甲按AB顺序获得奖品价值为ξ,则ξ的可能取值为0,100,400.P(ξ=0)=P()=,P(ξ=100)=P()=,P(ξ=400)=P(CD)=.即ξ的分布列为:ξ0100400P所以甲按AB顺序获得奖品价值的数学期望.…记甲按BA顺序获得奖品价值为η,则η的可能取值为0,300,400.P(η=0)=P()=,P(η=300)=P()=,P(η=400)=P(DC)=,即η的分布列为:η0300400P所以甲按BA 顺序获得奖品价值的数学期望.…因为E ξ>E η,所以甲应选择AB 的答题顺序,获得的奖品价值更高.…【点评】本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想. 24.【答案】【解析】解:(1)由已知得:f ′(x )=.要使函数f (x )在区间[1,+∞)内单调递增,只需≥0在[1,+∞)上恒成立.结合a >0可知,只需a ,x ∈[1,+∞)即可.易知,此时=1,所以只需a ≥1即可.(2)结合(1),令f ′(x )==0得.当a ≥1时,由(1)知,函数f (x )在[1,e]上递增,所以f (x )min =f (1)=0;当时,,此时在[1,)上f ′(x )<0,在上f ′(x )>0,所以此时f (x )在上递减,在上递增,所以f (x )min =f ()=1﹣lna ﹣;当时,,故此时f ′(x )<0在[1,e]上恒成立,所以f (x )在[1,e]上递减,所以f (x )min =f (e )=.【点评】本题考查了利用导数研究函数的单调性的基本思路,以及已知函数单调性求参数范围时转化为导函数在指定区间上大于零或小于零恒成立的问题的思想方法. 。
福建省龙岩市武平一中2018-2019学年高三(上)第二次月考数学试卷(文科)一、选择题(本大题共12小题)1.在复平面内,复数z的对应点为,复数z的共轭复数,则A. B. C. D.【答案】B【解析】解:复数z的对应点为,复数的共轭复数,则.故选:B.利用复数的运算法则、共轭复数的定义、几何意义即可得出.本题考查了复数的运算法则、共轭复数的定义、几何意义,考查了推理能力与计算能力,属于基础题.2.设p:,q:,则p是q成立的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】解:由,可以得到,即;但是由,并不能得到,比如,,满足条件,但并不能得到,即q不能推出p,故p是q成立的充分不必要条件,故选:A.利用倒数法则,判断命题的充分必要性.充分理解倒数法则,就能快速解决本题目,倒数法则其实是依托函数得到的.3.设集合,,则下列结论正确的是A. B.C. D.【答案】B【解析】解:,或;,A错误;,B正确;;,C错误;,D错误.故选:B.进行交集、补集及并集的运算即可.考查交集、并集以及补集的运算,描述法表示集合的概念.4.函数的零点所在的大致区间为A. B. C. D.【答案】B【解析】解:根据题意,对于函数函数,其定义域为,不存在,,,,,由零点存在定理可得,函数的零点所在的大致区间为;故选:B.根据题意,由函数的解析式计算、、、的值,结合零点存在定理,即可得到所求区间.本题考查二分法的运用,本题解题的关键是求出区间的两个端点的函数值,进行比较.5.已知是R上的单调递增函数,则实数a的取值范围为A. B. C. D.【答案】B【解析】解:逐段考查所给的函数:指数函数的单调递增,则:,一次函数单调递增,则:,且当时应有:,解得:,综上可得,实数a的取值范围是.故选:B.由题意逐段考查函数的单调性,结合函数在处的性质即可求得最终结果.本题考查函数的单调性及其应用,重点考查学生对基础概念的理解和计算能力,属于中等题.6.已知直线m和不同的平面,,下列命题中正确的是A. B. C. D.【答案】D【解析】解:对于A,若或,故错,对于B,若,则m与不一定垂直如下图所示,故错对于C,若,则、不一定平行如下图所示,故错.对于D,若,根据面面平行的性质,可判定D正确;故选:D.利用平面与平面平行、垂直的性质,线面垂直的性质及面面平行和线面垂直的判定定理,我们对题目中的四个答案逐一进行分析,即可得到正确的结论.本题考查的知识点是空间中直线与平面之间的位置关系,熟练掌握空间线面之间关系的判定方法和性质定理,是解答此类问题的关键.7.函数的图象大致为A. B.C. D.【解析】解:由题意,,函数是奇函数,,,故选:B.确定函数是奇函数,利用,,即可得出结论.本题考查函数的奇偶性,考查函数的图象,比较基础.8.执行如图所示的程序框图,输出S的值为A. 14B. 15C. 24D. 30【答案】C【解析】解:根据程序框图:执行循环前:,执行第一次循环时,,,执行第二次循环时,,,执行第三次循环时,,,执行第四次循环时,,,由于不成立.故输出,故选:C.直接利用程序框图中的循环结构和i是不是奇数进行分类,利用循环体的不同求出结果.本题考查的知识要点程序框图的循环结构和分类讨论思想的应用,主要考查学生的运算能力和转化能力,属于基础题型.9.若,A. B. C. D.【解析】解:,,,故选:D.通过诱导公式化简所求的表达式,然后通过二倍角公式求解表达式的值即可.本题考查诱导公式的应用,二倍角公式的应用,考查计算能力.10.在中,角A、B、C所对的边分别为a、b、c,且若,则的形状是A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形【答案】C【解析】解:在中,,,,.,,代入,,解得.的形状是等边三角形.故选:C.,利用余弦定理可得,可得由,利正弦定理可得:,代入,可得.本题考查了正弦定理余弦定理、等边三角形的判定方法,考查了推理能力与计算能力,属于中档题.11.定义在R上的偶函数满足:对任意的实数x都有,且,则的值为A. 2017B. 1010C. 1008D. 2【答案】B【解析】解:由题意可得,,又,可得,得,因此是周期为2的周期函数,,又,于是,.故选:B.由已知可得是周期为2的周期函数,得,又,于是,由此可得的值.本题考查函数的周期性与奇偶性的应用,是中档题.12.设函数的两个极值点分别为,,若,,若恒成立,则实数k的取值范围为A. B. C. D.【答案】C【解析】解:由题意,.的两个极值点分别是,,,,,对应的平面区域如图所示:三个顶点坐标为,,,则在处,,在处,,的取值范围是.故,故选:C.求导函数,利用的两个极值点分别是,,,,建立不等式,利用平面区域,即可求的取值范围.本题考查导数知识的运用,考查平面区域的运用,考查学生的计算能力,属于中档题.二、填空题(本大题共4小题,共12.0分)13.若,则的值为______.【答案】【解析】解:由,得,解得..故答案为:.展开两角和的正切求得,再化弦为切求的值.本题考查三角函数的化简求值,考查两角和的正切及同角三角函数基本关系式的应用,是基础题.14.已知正四棱锥的所有棱长都为2,则此四棱锥体积为______.【答案】【解析】解:棱锥的棱长都为2,四棱锥为正四棱锥,则,在中,可得,棱锥体积.故答案为:.画出图形,直接由已知结合棱锥体积公式求解.本题考查四棱锥的体积的求法,考查空间想象能力与思维能力,是中档题.15.已知函数若命题“,”是假命题,则实数a的取值范围是______.【答案】【解析】解:函数,命题“,”是假命题,原命题的否定是:“存在实数,使”是真命题,,即;,解得,且;实数a的取值范围是.故答案为:.利用全称命题的否定是特称命题,通过特称命题是真命题,求出a的范围.本题考查了命题的否定的应用问题,解题的关键是写出正确的全称命题,并且根据这个命题是一个假命题,得到正确的结论,是基础题.16.已知函数,给出下列命题:若,则;若,则;若,则;若,则.其中,所有正确命题的序号是______.【答案】【解析】解:由于,则,故正确;若令,,满足,但,故错;若令,,满足,但,故错;函数图象如图中所示,对于,则A、B两点的纵坐标分别为、.显然,故正确.故答案为.已知函数解析式,结合函数的图象与性质,即可得到正确结论.本题考查的知识点是,判断命题真假,我们可以根据函数的图象与性质对四个结论逐一进行判断,可以得到正确的结论.三、解答题(本大题共7小题,共84.0分)17.己知a,b,c分别为三个内角A,B,C的对边,且.Ⅰ求角A的大小;Ⅱ若,且的面积为,求a的值.【答案】本题满分为10分解:Ⅰ,由正弦定理得,,,,即.,,,.Ⅱ由:,,,由余弦定理得:,.【解析】Ⅰ由正弦定理化简已知,结合,利用两角差的正弦函数公式可得可求范围,进而可求A的值.Ⅱ由已知利用三角形面积公式可得,结合,由余弦定理可得a的值.本题主要考查了正弦定理,两角差的正弦函数公式,三角形面积公式,余弦定理在解三角形中的综合应用,考查了运算求解能力和转化思想,属于基础题.18.已知公差不为0的等差数列的首项,且,,成等比数列.Ⅰ求数列的通项公式;Ⅱ记,求数列的前n项和.【答案】解:Ⅰ设等差数列的公差为,首项,且,,成等比数列,,可得,可得,即舍去,可得;Ⅱ由Ⅰ知,,数列的前n项和.【解析】Ⅰ设等差数列的公差为,由等比数列中项性质和等差数列通项公式,解方程可得所求公差,进而得到所求通项;Ⅱ由Ⅰ知,可得,由数列的求和方法:裂项相消求和,化简即可得到所求和.本题考查等差数列的通项公式和等比数列中项性质的运用,以及数列的求和方法:裂项相消求和,考查方程思想和运算能力,属于中档题.19.已知函数.求函数的单调递减区间.将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象求在上的值域.【答案】解:根据二倍角的三角函数公式,化简可得,令,可得,函数的单调递减区间为:;将的图象向左平移个单位,得到的图象,再将横坐标缩短为原来的,得到的图象,,可得,,得.因此在上的值域为.【解析】利用二倍角的三角函数公式化简得,再由正弦函数单调区间的公式解关于x的不等式,即可得出的单调递减区间.根据函数图象平移的公式,算出,再由利用正弦函数的图象与性质,即可算出在上的值域.本题给出三角函数的表达式,求它的单调递减区间与函数在闭区间上的值域着重考查了三角恒等变换、三角函数的图象与性质、函数值域的求法等知识,属于中档题.20.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:请根据上表提供的数据,用相关系数r说明y与x的线性相关程度;结果保留小数点后两位,参考数据:请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;试根据求出的线性回归方程,预测记忆力为9的同学的判断力.参考公式:,;相关系数;【答案】解:,,,,,可得,,线性相关性非常强;,,,,,,故线性回归方程为.由中线性回归方程知,当时,,故预测记忆力为9的同学的判断力约为4.【解析】由线性相关系数r的公式,计算可得所求结论;由线性回归直线方程,分别计算,,可得所求方程;将线性回归方程中的x换为9,计算可得所求值.本题考查线性回归直线方程和运用,线性相关程度的判断,考查运算能力,属于基础题.21.已知函数.Ⅰ讨论函数在上的单调性;Ⅱ证明:恒成立.【答案】Ⅰ解:求导函数,可得当时,,在上是增函数;当时,由可得,由可得,当时,函数的单调增区间是;当时,函数的单调增区间是,单调减区间是;Ⅱ由Ⅰ可知,当时,,特别地,取,有,即,所以当且仅当时等号成立,因此,要证恒成立,只要证明在上恒成立即可,设,则,当时,,单调递减,当时,,单调递增.所以,当时,,即在上恒成立.因此,有,又因为两个等号不能同时成立,所以有恒成立.【解析】Ⅰ求导函数,分类讨论,利用导数的正负,可得函数的单调区间;Ⅱ要证恒成立,只要证明在上恒成立即可,设,根据函数的单调性证明即可.本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.22.已知平面直角坐标系xOy中,过点的直线l的参数方程为为参数,以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线l与曲线C相交于不同的两点M、N.求曲线C的直角坐标方程和直线l的普通方程;若,求实数a的值.【答案】解:直线l的参数方程为为参数,直线l的普通方程:,曲线C的极坐标方程为,,曲线C的普通方程:;;,设直线l上点M、N对应的参数分别为,,,则,,,,,将为参数,代入得,,,,.【解析】利用同角的平方关系以及极坐标方程和直角坐标的互化公式求解;结合直线的参数方程中参数的几何意义和二次方程的韦达定理,求解即可.本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识.23.已知函数.Ⅰ若,求不等式的解集;Ⅱ若,证明.【答案】解:Ⅰ若,.当时,,不合题意;当时,,由可解得,所以;当时,,恒成立,所以.所以不等式的解集为.Ⅱ证明:若,则所以.【解析】Ⅰ把用分段函数来表示,分段解不等式即可.Ⅱ把用分段函数来表示,求的值域即可.本题主要考查绝对值不等式的解法,分段函数值域,属于中档题.。
武平县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=x 2﹣,则函数y=f (x )的大致图象是( )A .B .C .D .2. 若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016B .[]0,2015C .(]1,2016D .[]1,2017 3. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .124. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥n D .m ∥α,α∩β=n ,则m ∥n5. 图1是由哪个平面图形旋转得到的( )A .B .C .D .6. 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A .30B .50C .75D .1507. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④8. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.9. 已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .¬p ∧¬qC .¬p ∧qD .p ∧¬q10.已知命题p :存在x 0>0,使2<1,则¬p 是( )A .对任意x >0,都有2x ≥1B .对任意x ≤0,都有2x <1C .存在x 0>0,使2≥1 D .存在x 0≤0,使2<111.若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( )①f (x )=,②f (x )=,③f (x )=,④f (x )=.A .4B .3C .2D .112.下列函数中哪个与函数y=x 相等( )A .y=()2B .y=C .y=D .y=二、填空题13.已知一个算法,其流程图如图,则输出结果是 .14.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________.15.-23311+log 6-log 242()= . 16.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.17.运行如图所示的程序框图后,输出的结果是18.定积分sintcostdt= .三、解答题19.(本小题满分13分)设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n na a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)20.已知函数2(x)1ax f x =+是定义在(-1,1)上的函数, 12()25f = (1)求a 的值并判断函数(x)f 的奇偶性(2)用定义法证明函数(x)f 在(-1,1)上是增函数;21.在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点P (x ,y )变换为点P (2x+y ,3x ).(Ⅰ)求矩阵M 的逆矩阵M ﹣1;(Ⅱ)求曲线4x+y ﹣1=0在矩阵M 的变换作用后得到的曲线C ′的方程.22.已知函数f (x )=|2x ﹣1|+|2x+a|,g (x )=x+3. (1)当a=2时,求不等式f (x )<g (x )的解集;(2)设a >,且当x ∈[,a]时,f (x )≤g (x ),求a 的取值范围.23.本小题满分12分已知椭圆C 2. Ⅰ求椭圆C 的长轴长;Ⅱ过椭圆C 中心O 的直线与椭圆C 交于A 、B 两点A 、B 不是椭圆C 的顶点,点M 在长轴所在直线上,且22OMOA OM =⋅,直线BM 与椭圆交于点D ,求证:AD ⊥AB 。
武平一中2018-2019学年第二学期半期考高二数学(理科)试题(考试时间:120分钟 总分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.注意事项:1. 答题前,考生务必用黑色铅字笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并请认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选择其它答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试卷上作答,答案无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1.若复数为虚数单位)是纯虚数,则实数的值为( )3i (,i 12iR a a +∈-a A .-2B .4C .-6D .62.函数在点处的切线方程为( )1)(+=xe xf ))0(,0(f A . B . C . D . 1-=x y 2+=x y 12-=x y 22+=x y 3.函数2()2ln f x x x =-的递增区间是( )A.1(0,2B.C.1(,)2+∞ D.),21()0,21(+∞-和)21,0()21,(和--∞4.函数的图象如右图所示,则导函数的)(x f y =)('x f y =图象的大致形状是 ( )5.计算为( )dx e x x ⎰+20)(cos πA .B .C . D.2πe 2-2πe 12+πe 1-2πe6.用数学归纳法证明不等式的过程中,从),1(211.2111*N n n n n n n ∈>>++++++到时左边需增加的代数式是 ( )k n =1+=k n A .B .C .D . 221+k 221121+-+k k 221121+++k k 121+k 7.已知函数在处取得极值10,则=( ) 223)(a bx ax x x f +++=1=x a A .或 B .或 C . D .43-4-33-48.右下图是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图一是第1代“勾股树”,重复图一的作法,得到图二为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第代“勾股树”所有正方形的面积的和为( ) nA .B .C .D .n 12+n 1+n 2+n 9.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=11-3t +(t 的t+124单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .4+25ln5B .C .D . 6ln 24225+6ln 24235+6ln 48235+10.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式中“”即代表无限次重复,但原式却是个定值,它可以通过方程+++11111 ,求得,类似上述过程,则( ) x x=+11251+=x +++333A . B .3 C .6 D . 2113+2211. 函数在的最大值为2,则的取值范围是( )⎪⎩⎪⎨⎧>≤++=-)0()0(132)(123x e x x x x f ax ]2,2[-a A . B . )),12(ln 21[+∞+)]12(ln 210[+,C. D . )0,(-∞)]12(ln 21,(+-∞12.已知是定义在上的增函数,其导函数满足,则下列结()f x ),0(+∞)(x f '1)()(22>+'x x f x xf 论正确的是( )A .对于任意,B . 对于任意, ),0(+∞∈x ()0f x <),0(+∞∈x ()0f x >C .当且仅当D . 当且仅当0)(),1(<+∞∈x f x ,(1,),()0x f x ∈+∞>第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分) 13.在复平面内,复数21ii-对应的点的坐标为 14.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.15.定义A*B ,B*C ,C*D,D*B 依次对应如图所示的4个图形:那么以下4个图形中,可以表示A*D 的是 (填与图形对应的序号)16.任意,使得成立,则的取值范围是_______. ],1[e x ∈ln (0)x ax a a a x++>>a三、解答题:共70分。
武平县高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →|为( )A .1 B.43C.53D .2 2. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β3. 设n S 是等差数列{}n a 的前项和,若5359a a =,则95SS =( ) A .1 B .2 C .3 D .44. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞)5. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大. 6. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .7. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .8. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}9. 将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )A .B .﹣C .﹣D .10.若集合A={x|2x >1},集合B={x|lgx >0},则“x ∈A ”是“x ∈B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④12.设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .6二、填空题13.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.14.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .15.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想. 16.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线; ④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为 其中所有正确结论的序号是 .17.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 18. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.三、解答题19.(本小题满分12分)求下列函数的定义域:(1)()f x=;(2)()f x=.20.(本小题满分12分)∆的内角,,ABCa b c,(sin,5sin5sin)A B C所对的边分别为,,=+,m B A Cn B C C A=--垂直.(5sin6sin,sin sin)(1)求sin A的值;∆的面积S的最大值.(2)若a=ABC21.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.22.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?23.在四棱锥E﹣ABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.(Ⅰ)求证:DE∥平面ACF;(Ⅱ)求证:BD⊥AE.24.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.0.0050.02频率组距O千克武平县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →,∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴⎩⎪⎨⎪⎧x =6-2x ,y -1=4-2y 即x =2,y =53,∴CD →=(2,53)-(2,0)=(0,53),∴|CD →|=02+(53)2=53,故选C.2. 【答案】D【解析】解:在A 选项中,可能有n ⊂α,故A 错误; 在B 选项中,可能有n ⊂α,故B 错误; 在C 选项中,两平面有可能相交,故C 错误;在D 选项中,由平面与平面垂直的判定定理得D 正确. 故选:D .【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.3. 【答案】A 【解析】1111]试题分析:199515539()92152a a S a S a +===.故选A .111] 考点:等差数列的前项和. 4. 【答案】 D【解析】解:令f (x )=﹣2x 3+ax 2+1=0,易知当x=0时上式不成立; 故a==2x ﹣,令g (x )=2x ﹣,则g′(x )=2+=2,故g (x )在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.5.【答案】B第6. 【答案】D考点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 7. 【答案】D 【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.8.【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是{V|0<V≤}.故选:D.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.9.【答案】D【解析】解:将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+φ﹣)的图象,∴φ﹣=kπ+,即φ=kπ+,k∈Z,则φ的一个可能值为,故选:D.10.【答案】B【解析】解:A={x|2x>1}={x|x>0},B={x|lgx>0}={x|x>1},则B⊊A,即“x∈A”是“x∈B”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的关系的应用,比较基础.11.【答案】A【解析】考点:斜二测画法.12.【答案】B【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.二、填空题13.【答案】(02x #,02y #)上的点(,)x y 到定点(2,2)2,故MN 的取值范围为.22yxB14.【答案】.【解析】解:已知数列1,a 1,a 2,9是等差数列,∴a 1+a 2 =1+9=10.数列1,b 1,b 2,b 3,9是等比数列,∴=1×9,再由题意可得b 2=1×q 2>0 (q 为等比数列的公比),∴b 2=3,则=,故答案为.【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题.15.【答案】816.【答案】②③④【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力.由(1,4)λμ+=-a b 得124λμλμ-+=-⎧⎨+=⎩,∴21λμ=⎧⎨=⎩,①错误;a 与b 不共线,由平面向量基本定理可得,②正确;记OA =a ,由OM μ=+a b 得AM μ=b ,∴点M 在过A 点与b 平行的直线上,③正确; 由2μλ+=+a b a b 得,(1)(2)λμ-+-=0a b ,∵a 与b 不共线,∴12λμ=⎧⎨=⎩,∴2(1,5)μλ+=+=a b a b ,∴④正确;设(,)M x y ,则有2x y λμλμ=-+⎧⎨=+⎩,∴21331133x y x y λμ⎧=-+⎪⎪⎨⎪=+⎪⎩,∴200x y x y -≤⎧⎨+≥⎩且260x y -+=,∴(,)λμΩ表示的一条线段且线段的两个端点分别为(2,4)、(2,2)-,其长度为17.【答案】必要而不充分 【解析】试题分析:充分性不成立,如2y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 18.【答案】①②④ 【解析】三、解答题19.【答案】(1)()[),11,-∞-+∞;(2)[)(]1,23,4-.【解析】考点:函数的定义域. 1【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环. 20.【答案】(1)45;(2)4. 【解析】试题分析:(1)由向量垂直知两向量的数量积为0,利用数量积的坐标运算公式可得关于sin ,sin ,sin A B C 的等式,从而可借助正弦定理化为边的关系,最后再余弦定理求得cos A ,由同角关系得sin A ;(2)由于已知边及角A ,因此在(1)中等式22265bc b c a +-=中由基本不等式可求得10bc ≤,从而由公式 1sin 2S bc A =可得面积的最大值.试题解析:(1)∵(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂直, ∴2225sin 6sin sin 5sin 5sin 0m n B B C C A ∙=-+-=,考点:向量的数量积,正弦定理,余弦定理,基本不等式.111] 21.【答案】(1)甲,乙,丙,丁;(2)25P =. 【解析】试题分析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲,乙,丙,丁;(2)利用列举出从参加问卷调查的40名学生中随机抽取两名学生的方法共有15种,这来自同一所大学的取法共有种,再利用古典慨型的概率计算公式即可得出.试题解析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3.(2)设乙中3人为123,,a a a ,丁中3人为123,,b b b ,从这6名学生中随机选出2名学生发言的结果为12{,}a a ,13{,}a a ,11{,}a b ,12{,}a b ,13{,}a b ,32{,}a a ,12{,}b a ,22{,}b a ,32{,}b a ,31{,}a b ,32{,}a b ,33{,}a b ,12{,}b b ,13{,}b b ,23{,}b b ,共15种,这2名同学来自同一所大学的结果共6种,所以所求概率为62155P ==. 考点:1、分层抽样方法的应用;2、古典概型概率公式. 22.【答案】(1)(2)【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值(2)要符合园林局的要求,只要最小,由(1)知,令,即,解得或(舍去),令,当时,是单调减函数,当时,是单调增函数,所以当时,取得最小值.答:当满足时,符合园林局要求.23.【答案】【解析】【分析】(Ⅰ)连接FO ,则OF 为△BDE 的中位线,从而DE ∥OF ,由此能证明DE ∥平面ACF . (Ⅱ)推导出BD ⊥AC ,EC ⊥BD ,从而BD ⊥平面ACE ,由此能证明BD ⊥AE .【解答】证明:(Ⅰ)连接FO ,∵底面ABCD 是正方形,且O 为对角线AC 和BD 交点, ∴O 为BD 的中点, 又∵F 为BE 中点,∴OF 为△BDE 的中位线,即DE ∥OF , 又OF ⊂平面ACF ,DE ⊄平面ACF , ∴DE ∥平面ACF .(Ⅱ)∵底面ABCD 为正方形,∴BD ⊥AC , ∵EC ⊥平面ABCD ,∴EC ⊥BD , ∴BD ⊥平面ACE ,∴BD ⊥AE .24.【答案】(本小题满分12分)解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数. (Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)每天销售量的中位数为0.15701074.30.35+⨯=千克 (6分) (Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元;若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元; 若当天的销售量为[70,100),则超市获利754300⨯=元, (10分) ∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分)。
福建省龙岩市武平县第一中学高二周练(文)(11.2)一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、 1. 方程2(21)0mx m x m +++=有两个不相等的实数根,则实数m 的取值范围是( )A.14m >-B.14m <-C.14m ≥D.104m m >-≠且2. 下列各一元二次不等式中,解集为空集的是( )A .(x +3)(x -1)>0B .(x +4)(x -1)<0C .x 2-2x +3<0D .2x 2-3x -2>03. 不等式组127,(1)(2)4x x x -<-⎧⎨+-≥⎩的解集为( )A .(-∞,-2]∪[3,4)B .(-∞,-2]∪(4,+∞)C .(4,+∞)D .(-∞,-2]∪(4,+∞)6. 一元二次不等式ax 2+bx +2>0的解集是(-12, 13),则a +b 的值是( ) A.10 B.-10 C.14 D.-147. 若0<a <1,则不等式(x -a )(x -1a)>0的解集是( ) A .(a ,1a ) B .(1a,a )C .(-∞,a )∪(1a ,+∞)D .(-∞,1a)∪(a ,+∞)8. 若不等式20(0)ax bx c a ++>≠的解集为∅,则下列结论中正确的是( )A. 20,40a b ac <->B. 20,40a b ac >-<C. 20,40a b ac <-≤D.20,40a b ac >-≥9. 己知关于x 的方程(m +3)x 2-4mx +2m -1= 0 的两根异号,且负根的绝对值比正根大,那么实数m 的取值范围是( )A .-3< m <0B .0<m <3C .m <-3或m > 0D .m <0 或 m >3 10. 有如下几个命题:①如果x 1, x 2是方程ax 2+bx +c =0的两个实根且x 1<x 2,那么不等式ax 2+bx +c <0的解集为{x ∣x 1<x <x 2};②当Δ=b 2-4ac <0时,二次不等式 ax 2+bx +c >0的解集为∅; ③0x ax b-≤-与不等式(x -a )(x -b )≤0的解集相同; ④2231x xx -<-与x 2-2x <3(x -1)的解集相同. 其中正确命题的个数是( )A .3B .2C .1D .0 二、填空题, 本大题共4小题,每小题4分,满分16分,把正确的答案写在题中横线上.三、解答题, 本大题共5小题,每小题8',9'(×4)分,共44分 15.设0a >,解关于x 的不等式:2(1)10.ax a x -++<16. 已知函数y =(k 2+4k -5)x 2+4(1-k )x +3的图像都在x 轴上方,求实数k 的取值范围.17. 要在墙上开一个上半部为半圆形、下部为矩形的窗户(如图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?18. 设A ={x |x 2 +3k 2≥2k (2x -1)},B ={x |x 2-(2x -1)k +k 2≥0}且A ⊆B ,试求k 的取值范围.19.设a R ∈,函数2()22.f x ax x a =--若()0f x >的解集为A ,{}|13B x x =<<, 若A B =∅,求实数a 的取值范围周练(7)答案一、选择题二、填空题11. (-8,8) 12.1,4⎛⎫+∞ ⎪⎝⎭13. - 14. 18三、解答题15. 111,{|1}1,{|1}a x x a x x a a><<<<<当时解集为;当时解集为 16. [)1,19 17.半圆直径与矩形的高的比为2∶1 18.[)[)0,1,0+∞-19.当a=0时,f(x)=-2x ,由f(x)>0得x<0,与B 交集为空集。
武平县高中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数f (x )=sin (ωx +φ)(ω>0,-≤φ≤)的部分图象如图所示,则的值为()π2π2φωA.B .1814C. D .1122. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是()A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定3. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是()A .2B .3C .7D .94. 阅读右图所示的程序框图,若,则输出的的值等于( )8,10m n ==S A .28B .36C .45D .1205. 如图,程序框图的运算结果为()A .6B .24C .20D .1206. 已知直线的参数方程为(为参数,为直线的倾斜角),以原点O 为极点,轴l 1cos sin x t y t αα=+⎧⎪⎨=+⎪⎩t αl x 正半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆的两个交点为,当C 4sin(3πρθ=+l C ,A B 最小时,的值为( )||AB αA .B .C .D .4πα=3πα=34πα=23πα=7. 复数是虚数单位)的虚部为( )i iiz (21+=A .B .C .D .1-i -i 22【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.8. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A .B .C .D .9. 已知命题和命题,若为真命题,则下面结论正确的是( )p p q ∧A .是真命题B .是真命题C .是真命题D .是真命题p ⌝q ⌝p q ∨()()p q ⌝∨⌝10.已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2D .11.如图甲所示, 三棱锥 的高 ,分别在P ABC -8,3,30PO AC BC ACB ===∠=,M N BC和上,且,图乙的四个图象大致描绘了三棱锥的体积与PO (),203CM x PN x x ==∈(,N AMC -y 的变化关系,其中正确的是()A .B . C. D .1111]12.函数在定义域上的导函数是,若,且当时,,()f x R '()f x ()(2)f x f x =-(,1)x ∈-∞'(1)()0x f x -<设,,,则( )(0)a f =b f =2(log 8)c f =A .B .C .D .a b c <<a b c >>c a b <<a c b<<二、填空题13.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = . 14.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .15.阅读下图所示的程序框图,运行相应的程序,输出的的值等于_________. n 16.设函数f (x )=y=的交点个数是 .17.在△ABC 中,角A ,B ,C sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .18n 行(n ≥3)从左向右的第3个数为 .三、解答题19.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在岁间,旅游途中导游发现该[10,60]旅游散团人人都会使用微信,所有团员的年龄结构按分成5组,分[10,20),[20,30),[30,40),[40,50),[50,60]别记为,其频率分布直方图如下图所示.,,,,A B C D E(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;(Ⅱ)该团导游首先在三组中用分层抽样的方法抽取了名团员负责全团协调,然后从这6名团员中,,C D E 6随机选出2名团员为主要协调负责人,求选出的2名团员均来自组的概率.C 20.已知椭圆E 的长轴的一个端点是抛物线y 2=4x 的焦点,离心率是.(1)求椭圆E 的标准方程;(2)已知动直线y=k (x+1)与椭圆E 相交于A 、B 两点,且在x 轴上存在点M ,使得与k 的取值无关,试求点M 的坐标.21.设a>0,是R上的偶函数.(Ⅰ)求a的值;(Ⅱ)证明:f(x)在(0,+∞)上是增函数.22.一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.23.已知圆C经过点A(﹣2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.(Ⅰ)求圆C的方程;(Ⅱ)若,求实数k的值;(Ⅲ)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.24.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.(1)若p=,求A∩B;(2)若A∩B=B,求实数p的取值范围.武平县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】【解析】解析:选B.由图象知函数的周期T =2,∴ω==π,2π2即f (x )=sin (πx +φ),由f (-)=0得14-+φ=k π,k ∈Z ,即φ=k π+.π4π4又-≤φ≤,∴当k =0时,φ=,π2π2π4则=,故选B.φω142. 【答案】A【解析】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)==86,则<,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键. 3. 【答案】C【解析】解:∵函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f (x )=sin ωx+cos ωx=2sin (ωx+).再根据f ()=2sin (+)=﹣2,可得+=2k π+,k ∈Z ,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C .【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题. 4. 【答案】C【解析】解析:本题考查程序框图中的循环结构.,当121123mnn n n n m S C m---+=⋅⋅⋅⋅= 8,10m n ==时,,选C .82101045mn C C C ===5. 【答案】 B【解析】解:∵循环体中S=S ×n 可知程序的功能是:计算并输出循环变量n 的累乘值,∵循环变量n 的初值为1,终值为4,累乘器S 的初值为1,故输出S=1×2×3×4=24,故选:B .【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键. 6. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为,直线的普通方程为,直线过定点,∵22((1)4x y +-=l tan (1)y x α-=-l M ,∴点在圆的内部.当最小时,直线直线,,∴直线的斜率为,∴||2MC <M C ||AB l ⊥MC 1MC k =-l 1,选A .4πα=7. 【答案】A 【解析】,所以虚部为-1,故选A.()12(i)122(i)i i z i i i +-+===-- 8. 【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C 选项.故选:C .【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 9. 【答案】C 【解析】]试题分析:由为真命题得都是真命题.所以是假命题;是假命题;是真命题;p q ∧,p q p ⌝q ⌝p q ∨是假命题.故选C.()()p q ⌝∨⌝考点:命题真假判断.10.【答案】D 【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A 到直线2x+y ﹣2=0的距离,即|AM|min=.故选:D.【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义.11.【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.12.【答案】C【解析】考点:函数的对称性,导数与单调性.【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数满足:()f x 或,则其图象关于直线对称,如满足,()()f a x f a x +=-()(2)f x f a x =-x a =(2)2()f m x n f x -=-则其图象关于点对称.(,)m n 二、填空题13.【答案】 .【解析】解:∵数列{S n }是首项和公比都是3的等比数列,∴S n =3n .故a 1=s 1=3,n ≥2时,a n =S n ﹣s n ﹣1=3n ﹣3n ﹣1=2•3n ﹣1,故a n =.【点评】本题主要考查等比数列的通项公式,等比数列的前n 项和公式,数列的前n 项的和Sn 与第n 项an 的关系,属于中档题. 14.【答案】 50π .【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:=50π.故答案为:50π.【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力. 15.【答案】6【解析】解析:本题考查程序框图中的循环结构.第1次运行后,;第2次运行后,9,2,2,S T n S T ===>;第3次运行后,;第4次运行后,13,4,3,S T n S T ===>17,8,4,S T n S T ===>;第5次运行后,,此时跳出循环,输出结果21,16,5,S T n S T ===>25,32,6,S T n S T ===<6n =程序结束.16.【答案】 4 .【解析】解:在同一坐标系中作出函数y=f (x )=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4.故答案为:4.17.【答案】 4 .【解析】解:∵sinA,sinB,sinC依次成等比数列,∴sin2B=sinAsinC,由正弦定理可得:b2=ac,∵c=2a,可得:b=a,∴cosB===,可得:sinB==,∵•=24,可得:accosB=ac=24,解得:ac=32,∴S△ABC=acsinB==4.故答案为:4.18.【答案】 3+ .【解析】解:本小题考查归纳推理和等差数列求和公式.前n﹣1行共有正整数1+2+…+(n﹣1)个,即个,因此第n行第3个数是全体正整数中第3+个,即为3+.故答案为:3+.三、解答题19.【答案】【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.20.【答案】【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,…1分c=e•a=×=,故b===,…4分所以,椭圆E的方程为,即x2+3y2=5…6分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k2﹣5=0;…7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=﹣,x1x2=;…8分∴=(x1﹣m,y1)=(x1﹣m,k(x1+1)),=(x2﹣m,y2)=(x2﹣m,k(x2+1));∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2=m2+2m﹣﹣,要使上式与k无关,则有6m+14=0,解得m=﹣;∴存在点M(﹣,0)满足题意…13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.21.【答案】【解析】解:(1)∵a>0,是R上的偶函数.∴f(﹣x)=f(x),即+=,∴+a•2x=+,2x(a﹣)﹣(a﹣)=0,∴(a﹣)(2x+)=0,∵2x+>0,a>0,∴a﹣=0,解得a=1,或a=﹣1(舍去),∴a=1;(2)证明:由(1)可知,∴∵x>0,∴22x>1,∴f'(x)>0,∴f(x)在(0,+∞)上单调递增;【点评】本题主要考查函数单调性的判断问题.函数的单调性判断一般有两种方法,即定义法和求导判断导数正负.22.【答案】【解析】解:如图,设所截等腰三角形的底边边长为xcm,在Rt△EOF中,,∴,∴依题意函数的定义域为{x|0<x<10}【点评】本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围.23.【答案】【解析】【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;(II)方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l:kx﹣y+1=0的距离,即可求得实数k的值;方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1•x2+y1•y2=,即可求得k的值;(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,,再利用基本不等式,可求四边形PMQN面积的最大值;方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k≠0时,设,则,代入消元得(1+k2)x2+2kx﹣3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN面积的最大值.【解答】解:(I)设圆心C(a,a),半径为r.因为圆经过点A(﹣2,0),B(0,2),所以|AC|=|BC|=r,所以解得a=0,r=2,…(2分)所以圆C的方程是x2+y2=4.…(4分)(II)方法一:因为,…(6分)所以,∠POQ=120°,…(7分)所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)又,所以k=0.…(9分)方法二:设P(x1,y1),Q(x2,y2),因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)由题意得:…(7分)因为=x1•x2+y1•y2=﹣2,又,所以x1•x2+y1•y2=,…(8分)化简得:﹣5k2﹣3+3(k2+1)=0,所以k2=0,即k=0.…(9分)(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)又根据垂径定理和勾股定理得到,,…(11分)而,即…(13分)当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)方法二:设四边形PMQN的面积为S.当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)当直线l的斜率k≠0时,设则,代入消元得(1+k2)x2+2kx﹣3=0所以同理得到.…(11分)=…(12分)因为,所以,…(13分)当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)24.【答案】【解析】解:(1)当p=时,B={x|0≤x≤},∴A∩B={x|2<x≤};(2)当A∩B=B时,B⊆A;令2p﹣1>p+3,解得p>4,此时B=∅,满足题意;当p≤4时,应满足,解得p不存在;综上,实数p的取值范围p>4.。
武平县第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0D .0<a <1且b <02. 设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )A .94 B . C.92D .4 3. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或C .{}|33x x x <->或D . {}|303x x x <-<<或4. 已知集合A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( ) A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D5. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A .(1,+∞) B .(2,+∞) C .(﹣∞,﹣1) D .(﹣∞,﹣2) 6. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)7. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣8. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件9. 双曲线:的渐近线方程和离心率分别是( )A .B .C .D .10.在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a 11.双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( ) A .13 B .15 C .12 D .11 12.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( )A .4B .5C .6D .7二、填空题13.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.14.函数y=1﹣(x ∈R )的最大值与最小值的和为 2 .15.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn是向量与i的夹角,则++…+= .16.设函数f (x )=,则f (f (﹣2))的值为 .17.函数f (x )=(x >3)的最小值为 .18.将一张坐标纸折叠一次,使点()0,2与点()4,0重合,且点()7,3与点(),m n 重合,则m n +的 值是 .三、解答题19. 坐标系与参数方程线l :3x+4y ﹣12=0与圆C :(θ为参数 )试判断他们的公共点个数.20.如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,,E ,F 分别是A 1C 1,AB 的中点.(I )求证:平面BCE ⊥平面A 1ABB 1; (II )求证:EF ∥平面B 1BCC 1; (III )求四棱锥B ﹣A 1ACC 1的体积.21.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.22.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为A[]B[]C[]D[]23..已知定义域为R的函数f(x)=是奇函数.(1)求a的值;(2)判断f(x)在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);(3)若对于任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.24.如图,已知五面体ABCDE,其中△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(Ⅰ)证明:AD⊥BC(Ⅱ)若AB=4,BC=2,且二面角A﹣BD﹣C所成角θ的正切值是2,试求该几何体ABCDE的体积.武平县第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:∵函数y=a x﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限, ∴根据图象的性质可得:a >1,a 0﹣b ﹣1<0,即a >1,b >0, 故选:B2. 【答案】] 【解析】试题分析:设()()2ln 31g x ax x =-+的值域为A ,因为函数()1f x =[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940a a >⎧⎨∆=-≥⎩,解得94a ≤.考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。
首先求出A ,再利用转化思想将命题条件转化为(0]A -∞⊆,,进而转化为()231h x ax x =-+至少要取遍(01],中的每一个数,再利用数形结合思想建立不等式组:0a ≤或0940a a >⎧⎨∆=-≥⎩,从而解得94a ≤.3. 【答案】B 【解析】试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。
故选B 。
考点:1.函数的奇偶性;2.函数的单调性。
4. 【答案】B【解析】解:因为菱形是平行四边形的特殊情形,所以D ⊂A , 矩形与正方形是平行四边形的特殊情形,所以B ⊂A ,C ⊂A , 正方形是矩形,所以C ⊆B . 故选B .5. 【答案】D【解析】解:∵f (x )=ax 3﹣3x 2+1,∴f ′(x )=3ax 2﹣6x=3x (ax ﹣2),f (0)=1;①当a=0时,f (x )=﹣3x 2+1有两个零点,不成立;②当a >0时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上有零点,故不成立; ③当a <0时,f (x )=ax 3﹣3x 2+1在(0,+∞)上有且只有一个零点;故f (x )=ax 3﹣3x 2+1在(﹣∞,0)上没有零点;而当x=时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上取得最小值;故f ()=﹣3•+1>0;故a <﹣2; 综上所述,实数a 的取值范围是(﹣∞,﹣2); 故选:D .6. 【答案】A解析:抛物线C :y x 82 的焦点为F (0,2),准线为l :y=﹣2,设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .7. 【答案】B【解析】解:当a >1时,f (x )单调递增,有f (﹣1)=+b=﹣1,f (0)=1+b=0,无解;当0<a <1时,f (x )单调递减,有f (﹣1)==0,f (0)=1+b=﹣1,解得a=,b=﹣2;所以a+b==﹣;故选:B8. 【答案】B【解析】解:∵b ⊥m ,∴当α⊥β,则由面面垂直的性质可得a ⊥b 成立, 若a ⊥b ,则α⊥β不一定成立, 故“α⊥β”是“a ⊥b ”的充分不必要条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.9.【答案】D【解析】解:双曲线:的a=1,b=2,c==∴双曲线的渐近线方程为y=±x=±2x;离心率e==故选D10.【答案】C【解析】考点:等差数列的通项公式.11.【答案】A【解析】解:设点P到双曲线的右焦点的距离是x,∵双曲线上一点P到左焦点的距离为5,∴|x﹣5|=2×4∵x>0,∴x=13故选A.12.【答案】A解析:模拟执行程序框图,可得S=0,n=0满足条,0≤k,S=3,n=1满足条件1≤k,S=7,n=2满足条件2≤k,S=13,n=3满足条件3≤k,S=23,n=4满足条件4≤k,S=41,n=5满足条件5≤k ,S=75,n=6 …若使输出的结果S 不大于50,则输入的整数k 不满足条件5≤k ,即k <5, 则输入的整数k 的最大值为4. 故选:二、填空题13.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点12,33A ⎛⎫⎪⎝⎭处取得最大值为73.考点:线性规划. 14.【答案】2【解析】解:设f (x )=﹣,则f (x )为奇函数,所以函数f (x )的最大值与最小值互为相反数,即f (x )的最大值与最小值之和为0. 将函数f (x )向上平移一个单位得到函数y=1﹣的图象,所以此时函数y=1﹣(x ∈R )的最大值与最小值的和为2. 故答案为:2.【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键.15.【答案】.【解析】解:点An(n,)(n∈N+),向量=(0,1),θn是向量与i的夹角,=,=,…,=,∴++…+=+…+=1﹣=,故答案为:.【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题.16.【答案】﹣4.【解析】解:∵函数f(x)=,∴f(﹣2)=4﹣2=,f(f(﹣2))=f()==﹣4.故答案为:﹣4.17.【答案】12.【解析】解:因为x>3,所以f(x)>0由题意知:=﹣令t=∈(0,),h(t)==t﹣3t2因为h(t)=t﹣3t2的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;故h(t)∈(0,]由h(t)=⇒f(x)=≥12故答案为:1218.【答案】34 5【解析】考点:点关于直线对称;直线的点斜式方程.三、解答题19.【答案】【解析】解:圆C:的标准方程为(x+1)2+(y﹣2)2=4由于圆心C(﹣1,2)到直线l:3x+4y﹣12=0的距离d==<2故直线与圆相交故他们的公共点有两个.【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键.20.【答案】【解析】(I)证明:在三棱柱ABC﹣A1B1C1中,BB1⊥底面ABC,所以,BB1⊥BC.又因为AB⊥BC且AB∩BB1=B,所以,BC⊥平面A1ABB1.因为BC⊂平面BCE,所以,平面BCE⊥平面A1ABB1.(II)证明:取BC的中点D,连接C1D,FD.因为E,F分别是A1C1,AB的中点,所以,FD∥AC且.因为AC∥A1C1且AC=A1C1,所以,FD∥EC1且FD=EC1.所以,四边形FDC1E是平行四边形.所以,EF∥C1D.又因为C1D⊂平面B1BCC1,EF⊄平面B1BCC1,所以,EF∥平面B1BCC1.(III)解:因为,AB⊥BC所以,.过点B作BG⊥AC于点G,则.因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1所以,平面A1ACC1⊥底面ABC.所以,BG⊥平面A1ACC1.所以,四棱锥B﹣A1ACC1的体积.【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.21.【答案】【解析】(本题满分为12分)解:(1)由题意知:A=2,…∵T=6π,∴=6π得ω=,…∴f(x)=2sin(x+φ),∵函数图象过(π,2),∴sin(+φ)=1,∵﹣<φ+<,∴φ+=,得φ=…∴A=2,ω=,φ=,∴f(x)=2sin(x+).…(2)∵将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),可得函数y=2sin(x+)的图象,然后再将新的图象向轴正方向平移个单位,得到函数g(x)=2sin[(x﹣)+]=2sin(﹣)的图象.故y=g(x)的解析式为:g(x)=2sin(﹣).…【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了函数y=Asin(ωx+φ)的图象变换,函数y=Asin(ωx+φ)的解析式的求法,其中根据已知求出函数的最值,周期,向左平移量,特殊点等,进而求出A,ω,φ值,得到函数的解析式是解答本题的关键.22.【答案】B【解析】当x≥0时,f(x)=,由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;当a2<x<2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。