九年级反比例函数专题
- 格式:doc
- 大小:320.50 KB
- 文档页数:6
第19讲 反比例函数知识导航1.反比例函数的定义和解析式;2.反比例函数的图象和性质;3.反比例面数与方程及不等式;4.反比例函教与神奇的几何性质;5.反比例函数与直线y =a 或x =a ;6.反比例函数与全等相似;7.反比例函数与图形变换;8.反比例函数与定值及最值。
【板块一】反比例函数的定义和解析式 方法技巧 根据定义解题1.定义:一般地,形如ky x=(k 为常数,k ≠0)的函数,叫做反比例函数,其中x 是自变量,y 是函数.自变量x 的取值范围是不等于0的一切实数.2.解析式:ky x=(k ≠0)或xy =k (k ≠0)或1y kx -= (k ≠0). 题型一根据定义判断反比例函数【例1】下列函数:①2x y =;@2y x =;③y =12y x =;⑤12y x =+;⑥12y x =- ;⑦2xy =; ⑧12y x -=;⑨22y x = .其中y 是x 的反比例函数的有 (填序号).【解析】②③④⑦⑧.题型二根据定义确定k 值或解析式 【例2】(1)反比例函数32y x =- ,化为ky x=的形式,相应的k = ; (2)函数ky x =中,当x =2时,y =3,则函数的解析式为 【解析】(1)32- ;(2)6y x=.题型三根据定义确定待定系数的值【例3】(1)如果函数2+1m y x = 是关于x 的反比例函数,则m 的值为 (2)若函数()252m y m x -=+ (m 为常数)是关于x 的反比例函数,求m 的值及函数的解析式。
【解析】(1)-1;(2)m =2,y =4x .针对练习11.下列函数中,为反比例函数的是(B )A . 3x y =B . 13y x =C . 13y x =-D .21y x=答案:B2.反比例函数y =一化为ky x=的形式后,相应的k =答案: 3.若关于x 的函数()2274mm y m x --=- 是反比例函数,求m 的值答案:3.【板块二】反比例函数的图象和性质 式抓住反比例函数的性质并结合图象解题 一般地,对于反比例函数()0ky k x=≠,由函数图象,并结合解析式,我们可以发现: 1.图象分布当k >0时,x ,y (同号或异号),函数图象为第 象限的两支曲线;当k <0时,x ,y (同号或异号),函数图象为第 象限的两支曲线。
专题21反比例函数的图象与性质(3个知识点5种题型2种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数图象的画法(重点)知识点2.反比例函数的图象与性质(重点)知识点3.反比例函数表达式中比例系数k 的几何意义(难点)【方法二】实例探索法题型1.反比例函数的图象与性质的应用题型2.反比例函数与图形面积问题题型3.利用反比例函数图象的对称性解题题型4.创新题题型5.反比例函数与几何图形的综合【方法三】仿真实战法考法1.反比例函数的比例系数k 的几何意义考法2.利用反比例函数的性质比较函数值大小【方法四】成果评定法【学习目标】1.能画出反比例函数的图象,知道反比例函数的图象是双曲线。
2.理解反比例函数的性质,并能运用其性质解决相关的问题。
3.理解反比例函数)0(≠=k xky 中的比例系数k 的几何意义,并能运用其意义求与反比例函数图象有关的图形面积问题。
【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数图象的画法(重点)(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当0k >时,两支曲线分别位于第一、三象限内,当0k <时,两支曲线分别位于第二、四象限内.知识点2.反比例函数的图象与性质(重点)1、反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.注意:(1)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(k 为常数,0k ≠)中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.2.反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 值随x 值的增大而减小;(2)如图2,当0k <时,双曲线的两个分支分别位于第二、四象限,在每个象限内,y 值随x 值的增大而增大;注意:(1)反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号.(2)反比例的图像关于原点的对称【例2】(2022秋•南华县期末)反比例函数与一次函数y =kx +1在同一坐标系的图象可能是()A .B .C.D.【变式】(2022秋•大渡口区校级期末)在同一坐标系中,函数和y=kx﹣2的图象大致是()A.B.C.D.【例3】(2023•瑞安市开学)对于反比例函数,当﹣1<y≤2,且y≠0时,自变量x的取值范围是()A.x≥1或x<﹣2B.x≥1或x≤﹣2C.0<x≤1或x<﹣2D.﹣2<x<0或x≥1【变式】(2023•西湖区校级开学)若点A(x1,y1),B(x2,y2),C(x3,y3),都在反比例函数(k为常数,k>0)的图象上,其中y2<0<y1<y3,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x3知识点3.反比例函数表达式中比例系数k的几何意义(难点)通过反比例函数上一点向一条坐标轴作垂线,这个点与垂足和原点所构成的三角形面积为12k,与两条坐标轴围成矩形面积为k,注意加绝对值时,有正负两个答案.【例4】(2023•和平区校级三模)如图,点A在双曲线上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k 的值为()A .2B .4C .﹣2D .﹣4【变式】如图,矩形ABCD 的边CD 在x 轴上,顶点A 在双曲线1y x =上,顶点B 在双曲线3y x=上,求矩形ABCD 的面积.A B CDE Oxy【方法二】实例探索法题型1.反比例函数的图象与性质的应用1.(2023•株洲)下列哪个点在反比例函数的图象上?()A .P 1(1,﹣4)B .P 2(4,﹣1)C .P 3(2,4)D .2.(2023•西湖区校级开学)若点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),都在反比例函数(k 为常数,k>0)的图象上,其中y 2<0<y 1<y 3,则x 1,x 2,x 3的大小关系是()A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 33.(2023春•东阳市期末)已知反比例函数的图象的一支如图所示,它经过点(3,﹣2).(1)求此反比例函数的表达式,并补画该函数图象的另一支.(2)求当y ≤4,且y ≠0时自变量x 的取值范围.4.(1)平面直角坐标系中,点A (725)m m --,在第二象限,且m 为整数,求过点A 的反比例函数解析式;(2)若反比例函数3k y x -=的图像位于第二、四象限内,正比例函数2(1)3y k x =-过一、三象限,求整数k 的值.5.已知反比例函数(0)k y k x =≠,当自变量x 的取值范围为84x ≤≤--时,相应的函数取值范围是12y ≤≤--1,求这个反比例函数解析式.题型2.反比例函数与图形面积问题6.(1)若P是反比例函数3kyx=图像上的一点,PQ⊥y轴,垂足为点Q,若2POQs∆=,求k的值;(2)已知反比例函数kyx=的图像上有一点A,过A点向x轴,y轴分别做垂线,垂足分别为点B C,,且四边形ABOC的面积为15,求这个反比例函数解析式.7.(2022秋•朝阳期末)如图,一次函数y=k1x+b与反比例函数y=(x>0)的图象交于A(1,6),B(3,n)两点.(1)求反比例函数的解析式和n的值;(2)根据图象直接写出不等式k1x+b的x的取值范围;(3)求△AOB的面积.题型3.利用反比例函数图象的对称性解题8.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y=和y=的图象的四个分支上,则实数n的值为()A.﹣3B.﹣C.D.39.(2023•广西)如图,过的图象上点A,分别作x轴,y轴的平行线交的图象于B,D 两点,以AB,AD为邻边的矩形ABCD被坐标轴分割成四个小矩形,面积分别记为S1,S2,S3,S4,若,则k的值为()A.4B.3C.2D.1(1)若点A(1,1),分别求线段(2)对于任意的点A(a,b),试探究线段14.(2022秋·安徽滁州·九年级统考期中)如图,已知1A,2A,3A,…,n A…是x轴上的点,且15.(2021秋·河北石家庄每个台阶凸出的角的顶点记作(1)若L 过点1T ,则k =(2)若曲线L 使得1T T ~16.(2022秋·全国·九年级期末)如图,已知反比例函数题型5.反比例函数与几何图形的综合17.过原点作直线交双曲线(0)ky k x=>于点A 、C ,过A 、C 两点分别作两坐标轴的平行线,围成矩形ABCD ,如图所示.(1)已知矩形ABCD 的面积等于8,求双曲线的解析式;(2)若已知矩形ABCD 的周长为8,能否由此确定双曲线的解析式?如果能,请予求出;如果不能,说明理由.y ABCDOx18.正方形OAPB 、ADFE 的顶点A 、D 、B 在坐标轴上,点E 在AP 上,点P 、F 在函数(0)ky k x=>的图像上,已知正方形OAPB 的面积是16.(1)求k 的值和直线OP 的函数解析式;(2)求正方形ADEF 的边长.yABPFOxED19.如图,已知正方形OABC 的面积是9,点O 为坐原点,A 在x 轴上,C 在y 轴上,B 在函数(00)ky k x x=>>,的图像上,点P (m ,n )在(00)ky k x x=>>,的图像上异于B 的任意一点,过点P 分别作x 轴,y 轴的垂线,垂足分别是E 、F .设矩形OEPF 和正方形OABC 不重合部分的面积是S .(1)求点B 的坐标;(2)当92S =时,求点P 的坐标;(3)写出S 关于m 的函数解析式.A BC PE FyOx【方法三】仿真实战法考法1.反比例函数的比例系数k 的几何意义1.(2023•福建)如图,正方形四个顶点分别位于两个反比例函数y =和y =的图象的四个分支上,则实数n 的值为()A .﹣3B.﹣C.D .32.(2023•湘西州)如图,点A 在函数y=(x >0)的图象上,点B 在函数y=(x >0)的图象上,且AB ∥x 轴,BC ⊥x 轴于点C ,则四边形ABCO 的面积为()A .1B .2C .3D .4考法2.利用反比例函数的性质比较函数值大小3.(2023•镇江)点A(2,y1)、B(3,y2)在反比例函数y=的图象上,则y1y2(用“<”、“>”或“=”填空).4.(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y45.(2021•广安)若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y1【方法四】成果评定法一、单选题A.1 43.(2022·福建福州·校考模拟预测)如图,在x轴于B、D两点,连结A .4B .65.(2022秋·福建厦门·九年级校考期中)如图,过双曲线上任意一点交x 轴、y 轴于点M 、N ,所得矩形A .4B .4-6.(2021秋·河北石家庄·九年级校联考期中)关于反比例函数A .函数图像分别位于第一、三象限C .函数图像过()(23A mB n -,、,A.4 10.(2023·江苏宿迁图像上,点E在yA.1B 二、填空题11.(2022秋·湖南永州13.(2022秋·黑龙江大庆的大小关系是14.(2023·安徽滁州15.(2023秋·重庆沙坪坝比例函数()0ky k x=≠上两点,平行线,两直线交于点16.(2023秋·福建泉州·九年级校考专题练习)如图,已知直线(00)a y x a x =>>,和b y x =象于点D ,过点C 作CE ∥17.(2022秋·贵州铜仁·九年级统考期中)如图,点112232021OA A A A A A ==== 图象分别交于点123,,,B B B 18.(2023·浙江·九年级专题练习)如图,点所示,分别过点A ,C 作x 轴与构成的阴影部分面积为2,则矩形三、解答题19.(2023秋·陕西榆林·九年级校考期末)已知反比例函数(1)函数的图象在第二、四象限?(1)求k的值;(2)请用无刻度的直尺和圆规作出(3)设(2)中的角平分线与⊥.证:DE OA(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点()121,7552,,,,2A y B y C x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭②当函数值2y =时,求自变量x 的值;(1)求点A 的坐标;(2)求反比例函数的解析式:(1)点D的坐标为______,点E的坐标为______;(2)动点P在第一象限内,且满足12PBO ODE S S∆∆=。
北师大版数学九年级上期末复习压轴专题:反比例函数综合(四)1.如图,点A 是反比例图数y =(x <0)图象上一点,AC ⊥x 轴于点C ,与反比例函数y =(x <0)图象交于点B ,AB =2BC ,连接OA 、OB ,若△OAB 的面积为2,则m +n =( )A .﹣3B .﹣4C .﹣6D .﹣82.如图,点A ,B 在反比例函数y =﹣(x <0)的图象上,连结OA ,AB ,以OA ,AB 为边作▱OABC ,若点C 恰好落在反比例函数y =(x >0)的图象上,此时▱OABC 的面积是( )A .3B .C .2D .6 3.如图,是反比例函数y 1=和y 2=(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲于A 、B 两点,若S △AOB =3,则k 2﹣k 1的值是( )A.8 B.6 C.4 D.24.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.125.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为()A.2 B.1.5 C.4 D.66.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A 的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)7.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=,则k=()=在第一象限图象经过点A,与BC交于点F.S△AOFA.15 B.13 C.12 D.58.正方形ABCD的顶点A(2,2),B(﹣2,2),C(﹣2,﹣2),反比例函数y=与y =﹣的图象均与正方形ABCD的边相交,如图,则图中的阴影部分的面积是()A.2 B.4 C.8 D.69.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B在第一象限,点C在线段AB 上,点D在AB的右侧,△OAB和△BCD都是等腰直角三角形,∠OAB=∠BCD=90°,若函数y=(x>0)的图象经过点D,则△OAB与△BCD的面积之差为()A.12 B.6 C.3 D.210.双曲线与在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.1 B.2 C.3 D.411.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与AB、BC 相交于点D、E.若四边形ODBE的面积为6,则k的值为()A.1 B.2 C.3 D.412.如图,梯形AOBC的顶点A,C在反比例函数图象上,OA∥BC,上底边OA在直线y=x 上,下底边BC交x轴于E(2,0),则四边形AOEC的面积为()A.3 B.C.﹣1 D.+113.如图所示,正方形ABCD的边长为2,AB∥x轴,AD∥y轴,顶点A在双曲线y=上,边CD,BC分别交双曲线于E,F,线段AB,CD分别交y轴于G,H,且线段AE恰好经过原点,下列结论:=,其中①E是CD中点:②点F坐标为(,);③△AEF是直角三角形;④S△AEF 正确结论的个数是()A.1个B.2个C.3个D.4个14.如图,平面直角坐标系中,O为原点,点A,B分别在y轴、x轴的正半轴上.△AOB的两条外角平分线交于点P,且点P在反比例函数y=的图象上.PA,PB的延长线分别交x轴、y轴于点C,D,连结CD.则△OCD的面积是()A.8 B.8C.16 D.1615.如图,平行四边形AOBC中,对角线交于点E,双曲线y=(k>0)经过A、E两点,若平行四边形AOBC的面积为12,则k的值是()A.2 B.4 C.6 D.816.如图,△AOB的内心在x轴上,顶点A在函数y=(k1>0,x>0)的图象上,顶点B在函数y=(k2<0,x>0)的图象上,若△AOB的面积为4,则k1•k2的值为()A.﹣8 B.﹣12 C.﹣14 D.﹣1617.如图,已知三角形的顶点C在反比例函数y=位于第一象限的图象上,顶点A在x的负半轴上,顶点B在反比例函数y=(k≠0)位于第四象限的图象上,BC边与x轴交于点D,CD=2BD,AC边与y轴交于点E,AE=CE,若△ABD面积为,则k=()A.﹣4 B.﹣C.﹣2D.318.如图:A,B是函数y=的图象上关于原点O点对称的任意两点,AC垂直于x轴于点C,BD垂直于x轴于点D,设四边形ADBC的面积为S,则()A.S=2 B.2<S<4 C.S=4 D.S>419.如图,已知点A(m,m+3),点B(n,n﹣3)是反比例函数y=(k>0)在第一象限的图象上的两点,连接AB.将直线AB向下平移3个单位得到直线l,在直线l上任取一点C,则△ABC的面积为()A.B.6 C.D.920.如图,四边形OABC为平行四边形,A在x轴上,且∠AOC=60°,反比例函数y=(k >0)在第一象限内过点C,且与AB交于点E.若E为AB的中点,且S=8,则OC△OCE 的长为()A.8 B.4 C.D.参考答案1.解:设B(a,),A(a,)∵AB=2BC,∴=,∴m=3n,∵△OAB的面积为2,∴根据反比例函数k的几何意义可知:△AOC的面积为﹣,△BOC的面积为﹣,∴△AOB的面积为﹣+=2,∴n﹣m=4,∴n﹣3n=4,∴n=﹣2,∴m=﹣6,∴m+n=﹣8故选:D.2.解:如图,连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,﹣),点C(m,)(a<0,m>0)∵四边形ABCO是平行四边形∴AC与BO互相平分∴点E()∵点O坐标(0,0)∴点B[(a+m),(﹣)]∵点B在反比例函数y=﹣(x<0)的图象上,∴﹣+=﹣∴a=﹣2m,a=m(不合题意舍去)∴点A(﹣2m,)∴S△AOC=()(m+2m)﹣﹣1=∴▱OABC的面积=2×S△AOC=3故选:A.3.解:由反比例函数比例系数k的几何意义可知,S△BOC=S△AOC=∵S△BOC ﹣S△AOC=S△AOB=3∴﹣=3∴k2﹣k1=6故选:B.4.解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PO∴B为OA中点.∴S△PAB =S△POB由反比例函数比例系数k的性质,S△POB=3∴△POA的面积是6故选:B.5.解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x 轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.故选:B.6.解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD 的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),故选:C.7.解:过点A作AM⊥x轴于点M,如图所示.设OA=a=OB,则在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM=a,∴点A的坐标为(a,a).=,∵四边形OACB是菱形,S△AOF∴OB×AM=,即×a×a=39,解得a=±,而a>0,∴a=,即A(,6),∵点A在反比例函数y=的图象上,∴k=×6=15.故选:A.8.解:根据对称性可知,阴影部分的面积=正方形ABCD的面积的=×4×4=8,故选:C.9.解:∵△OAB和△BCD都是等腰直角三角形,∴OA=AB,CD=BC.设OA=a,CD=b,则点D的坐标为(a+b,a﹣b),∵反比例函数y=在第一象限的图象经过点D,∴(a+b)(a﹣b)=a2﹣b2=6,∴△OAB与△BCD的面积之差=a2﹣b2=×6=3.故选:C.10.解:设直线AB与x轴交于点C.∵AB∥y轴,∴AC⊥x轴,BC⊥x轴.∵点A在双曲线y=的图象上,∴△AOC的面积=×5=.点B在双曲线y=的图象上,∴△COB的面积=×3=.∴△AOB的面积=△AOC的面积﹣△COB的面积=﹣=1.故选:A.11.解:由题意得:E、M、D位于反比例函数图象上,则S△OCE =,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,则S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++6=4k,k=2.故选:B.12.解:因为AO∥BC,上底边OA在直线y=x上,则可设BE的解析式为y=x+b,将E(2,0)代入上式得,b=﹣2,BE的解析式为y=x﹣2.把y=1代入y=x﹣2,得x=3,C点坐标为(3,1),则反比例函数解析式为y=,将它与y=x组成方程组得:,解得x=,x=﹣(负值舍去).代入y=x得,y=.A点坐标为(,),OA==,BC==3,∵B(0,﹣2),E(2,0),∴BE=2,∴BE边上的高为,∴梯形AOBC高为:,梯形AOBC面积为:×(3+)×=3+,△OBE的面积为:×2×2=2,则四边形AOEC的面积为3+﹣2=1+.故选:D.13.解:①∵线段AE过原点,且点A、E均在双曲线y=上,∴点A、E关于原点对称,∵正方形ABCD边长为2,∴点A的坐标为(﹣,﹣1),点E的坐标为(,1),∴AG=DH=EH=,∵CD=2,∴CE=DE=1,∴E是CD中点;故①正确;②∵CH=,∴F(,),故②正确;③∵点A的坐标为(﹣,﹣1),点E的坐标为(,1),F(,),∴AE2==5,AF2==,EF2==1,∴AE2+EF2≠AF2,∴△AEF不是直角三角形;故③不正确;=2×2﹣﹣﹣=,④∵S△AEF故④正确;故选:C.14.解:如图,作PM⊥OA于M,PN⊥OB于N,PH⊥AB于H.∴∠PMA=∠PHA=90°,∵∠PAM=∠PAH,PA=PA,∴△PAM≌△PAH(AAS),∴PM=PH,∠APM=∠APH,同理可证:△BPN≌△BPH,∴PH=PN,∠BPN=∠BPH,∴PM=PN,∵∠PMO=∠MON=∠PNO=90°,∴四边形PMON是矩形,∵PM=PN,∴可以假设P(m,m),∵P(m,m)在y=上,∴m2=16,∵m>0,∴m=4,∴P(4,4).设OA=a,OB=b,则AM=AH=4﹣a,BN=BH=4﹣b,∴AB=AH+BH=8﹣a﹣b,∵AB2=OA2+OB2,∴a2+b2=(8﹣a﹣b)2,可得ab=8a+8b﹣32,∴4a+4b﹣16=ab,∵PM∥OC,∴,∴,∴OC=,同法可得OD=,=•OC•DO=•=•=•=16.∴S△COD故选:C.15.解:过A作AD⊥OB于D,过E作EF⊥OB于F,如图,设A(x,y=),B(a,0),∵四边形AOBC为平行四边形,∴AE=BE,∴EF为△BAD的中位线,∴EF=AD=,∴DF=(a﹣x),OF=OD+DF=,∴E(,),∵E点在双曲线上,∴•=k,∴a=3x,∵平行四边形的面积是12,∴AD•OB=12,即•a=12,∴•3x=12,∴k=4.故选:B.16.解:∵△AOB的内心在x轴上,∴∠AOE=∠BOE,∴∠AOC=∠BOD,过作AC⊥y轴于C,BD⊥y轴于D,∴△ACO∽△BDO,∴=,设A(a,b),B(c,d),∴AC=a,OC=b,BD=c,OD=﹣d,∴=,∴bc=﹣ad,∴S△AOB =S梯形ACDB﹣S△AOC﹣S△BDO=(BD+AC)(OC+OD)﹣AC•OC﹣BD•OD=(a+c)(b﹣d)﹣ab+cd=4,∴bc﹣ad=8,∴bc=4,∴c=,d=,∴点B(,),∴•=k2,∴k2•ab=﹣16又∵ab=k1,∴k2•k1=﹣16.故选:D.17.解:如图,过点C,点B分别作x轴的垂线,垂足分别为M,N,则EO∥CM,∴△AEO∽△ACM,∴,设AO=OM=a,OE=b,CM=2b,∴点C的坐标为(a,2b),∵顶点C 在反比例函数y =位于第一象限的图象上,∴2ab =4,即ab =2,∵CM ∥BN ,∴△CMD ∽△BND ,∴,设DN =m ,则MD =2m ,BN =b ,∴点B 的坐标为(a +3m ,﹣b ),∵顶点B 在反比例函数y =(k ≠0)位于第四象限的图象上,∴﹣b (a +3m )=k ,∵△ABD 面积为,∴,即ab +mb =,∴mb =0.5,∴k =﹣b (a +3m )=﹣ab ﹣3mb =﹣2﹣1.5=﹣3.5,故选:B .18.解:∵A ,B 是函数y =的图象上关于原点O 对称的任意两点,且AC 垂直于x 轴于点C ,BD 垂直于x 轴于点D ,∴S △AOC =S △BOD =×2=1,假设A 点坐标为(x ,y ),则B 点坐标为(﹣x ,﹣y ),则OC =OD =x ,∴S △AOD =S △AOC =1,S △BOC =S △BOD =1,∴四边形ADBC 面积=S △AOD +S △AOC +S △BOC +S △BOD =4.故选:C .19.解:∵点A(m,m+3),点B(n,n﹣3)在反比例函数y=(k>0)第一象限的图象上,∴k=m(m+3)=n(n﹣3),即:(m+n)(m﹣n+3)=0,∵m+n>0,∴m﹣n+3=0,即:m﹣n=﹣3,过点A、B分别作x轴、y轴的平行线相交于点D,∴BD=x B﹣x A=n﹣m=3,AD=y A﹣y B=m+3﹣(n﹣3)=m﹣n+6=3,又∵直线l是由直线AB向下平移3个单位得到的,∴平移后点A与点D重合,因此,点D在直线l上,∴S△ACB =S△ADB=AD•BD=,故选:A.20.解:过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,如图:∵四边形OABC为平行四边形,∴OC=AB,OC∥AB,∴∠EAF=∠AOC=60°,在Rt△COD中,∵∠DOC=60°,∴∠DOC=30°,设OD=t,则CD=t,OC=AB=2t,在Rt △EAF 中,∵∠EAF =60°,AE =AB =t , ∴AF =,EF =AF =t ,∵点C 与点E 都在反比例函数y =的图象上, ∴OD ×CD =OF ×EF ,∴OF ==2t ,∴OA =2t ﹣=t ,∴S 四边形OABC =2S △OCE ,∴t ×t =2×8,∴解得:t =(舍负), ∴OC =. 故选:D .。
专题06反比例函数(10个考点)【知识梳理+解题方法】一.反比例函数的定义(1)反比例函数的概念形如y=(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.(2)反比例函数的判断判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y=(k为常数,k≠0)或y=kx﹣1(k为常数,k≠0).二.反比例函数的图象用描点法画反比例函数的图象,步骤:列表﹣﹣﹣描点﹣﹣﹣连线.(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值.(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确.(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴.三.反比例函数图象的对称性反比例函数图象的对称性:反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线Y=﹣X;②一、三象限的角平分线Y=X;对称中心是:坐标原点.四.反比例函数的性质反比例函数的性质(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.五.反比例函数系数k的几何意义比例系数k的几何意义在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.六.反比例函数图象上点的坐标特征反比例函数y=k/x(k为常数,k≠0)的图象是双曲线,①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.七.待定系数法求反比例函数解析式用待定系数法求反比例函数的解析式要注意:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.八.反比例函数与一次函数的交点问题反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.(2)判断正比例函数y=k1x和反比例函数y=在同一直角坐标系中的交点个数可总结为:①当k1与k2同号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有2个交点;②当k1与k2异号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有0个交点.九.根据实际问题列反比例函数关系式根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.十.反比例函数的应用(1)利用反比例函数解决实际问题①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.(2)跨学科的反比例函数应用题要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.(3)反比例函数中的图表信息题正确的认识图象,找到关键的点,运用好数形结合的思想.【专题过关】一.反比例函数的定义(共3小题)1.(2021秋•遵化市期末)下列函数关系式中属于反比例函数的是()A.y=4x B.2x+y=4C.y=x2+3D.2.(2022•东营模拟)函数y=(m﹣2)是反比例函数,则m=.3.(2022•西宁一模)函数的自变量x的取值范围是.二.反比例函数的图象(共4小题)4.(2021秋•大城县期末)反比例函数的图象如图所示,则k的值可以是()A.﹣2B.C.1D.35.(2021秋•大城县期末)二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数在同一平面直角坐标系内的大致图象是()A.B.C.D.6.(2021秋•襄州区期末)问题呈现:我们知道反比例函数的图象是双曲线,那么函数(k、m、n为常数且k≠0)的图象还是双曲线吗?它与反比例函数的图象有怎样的关系呢?让我们一起开启探索之旅……探索思考:我我们可以借鉴以前研究函数的方法,首先探索函数的图象.(1)画出函数图象.①列表:x…﹣6﹣5﹣4﹣3﹣201234…y…﹣1﹣2﹣4421…②描点并连线.(2)观察图象,写出该函数图象的两条不同类型的特征:①,②;(3)理解运用:函数的图象是由函数的图象向平移个单位,其对称中心的坐标为.(4)灵活应用:根据上述画函数图象的经验,想一想函数的图象大致位置,并根据图象指出,当x满足时,y≥3.7.(2022•市南区校级二模)二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=,点A的坐标为(1,0),AB垂直于x轴,连接CB,则下列说法一定正确的是()A.如图①,四边形ABCO是矩形B.在同一平面直角坐标系中,二次函数y=ax2+bx,一次函数y=ax+b和反比例函数y=的图象大致如图②所示C.在同一平面直角坐标系中,二次函数y=﹣x(ax+b)+c与反比例函数y=的图象大致如图③所示D.在同一平面直角坐标系中,一次函数y=bx﹣ac与反比例函数y=在的图象大致如图④所示三.反比例函数图象的对称性(共3小题)8.(2022•高要区一模)若正比例函数y=﹣2x与反比例函数y=图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为()A.(2,﹣1)B.(1,﹣2)C.(﹣2,﹣1)D.(﹣2,1)9.(2022春•洪泽区月考)如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是.10.(2022•自贡模拟)如图,半径为2的两圆⊙O1和⊙O2均与x轴相切于点O,反比例函数(k>0)的图象与两圆分别交于点A,B,C,D,则图中阴影部分的面积是.(结果保留π)四.反比例函数的性质(共6小题)11.(2021秋•政和县期末)反比例函数中,反比例常数k的值为.12.(2022秋•青浦区期中)已知正比例函数y=中,y的值随x的值的增大而增大,那么它和反比例函数y=在同一平面直角坐标系内的大致图象可能是()A.B.C.D.13.(2021秋•丰宁县期末)已知反比例函数,则下列描述不正确的是()A.图象位于第一、第三象限B.图象必经过点C.图象不可能与坐标轴相交D.y随x的增大而减小14.(2022•威县校级模拟)如图,矩形ABCO在平面直角坐标系中,点A(﹣5,0),点C(0,6),双曲线L1:y=﹣(x<0)和双曲线L2:y=(x<0).[把矩形ABCO内部(不含边界)横、纵坐标均为整数的点称为“优点”](1)若k=﹣12,则L2和L1之间(不含边界)有个“优点”;(2)如果L2和L1之间(不含边界)有4个“优点”,那么k的取值范围为.15.(2022•杞县模拟)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质,探究过程如下,请补充完整.(1)列表:x…﹣3﹣2﹣10123…y…m12101n…其中,m=,n=.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点,在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值时y=1,求自变量x的值.16.(2022•沙市区模拟)探究分段函数y=的图象与性质.列表:x…﹣1﹣012…y…210121…描点:描出相应的点,并连线,如图所示结合图象研究函数性质,回答下列问题:(1)点A(3,y1),B(5,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1 x2;(填“>”、“=”或“<”)(2)当函数值y=2时,自变量x的值为;(3)在直角坐标系中作出y=x的图象;(4)当方程x+b=有三个不同的解时,则b的取值范围为.五.反比例函数系数k的几何意义(共5小题)17.(2022•茂南区二模)如图,两个反比例函数和在第一象限内的图象分别是l1和l2,设点P 在l1上,PC⊥x轴于点C,交l2于点A,PD⊥y轴于点D,交l2于点B,则四边形P AOB的面积为()A.k1+k2B.k1﹣k2C.k1k2D.k2﹣k118.(2022•河池)如图,点P(x,y)在双曲线y=的图象上,P A⊥x轴,垂足为A,若S△AOP=2,则该反比例函数的解析式为.19.(2022•开远市二模)若图中反比例函数的表达式均为,则阴影面积为2的是()A.B.C.D.20.(2022•靖江市二模)反比例函数,(n<0)的图象如图所示,点P为x轴上不与原点重合的一动点,过点P作AB∥y轴,分别与y1、y2交于A、B两点.(1)当n=﹣10时,求S△OAB;(2)延长BA到点D,使得DA=AB,求在点P整个运动过程中,点D所形成的函数图象的表达式.(用含有n的代数式表示).21.(2022•德城区模拟)如图,A、B两点在反比例函数y=(x>0)的图象上,其中k>0,AC⊥y轴于点C,BD⊥x轴于点D,且AC=1(1)若k=2,则AO的长为,△BOD的面积为;(2)若点B的横坐标为k,且k>1,当AO=AB时,求k的值.六.反比例函数图象上点的坐标特征(共9小题)22.(2022秋•合浦县期中)如图,点A是反比例函数图象上一点,则下列各点在该函数图象上的是()A.(﹣1,﹣1)B.(1,﹣1)C.D.(﹣2,1)23.(2021秋•碧江区期末)如图,△OAB、△BA1B1、△B1A2B2、…、△B n﹣1A n B n都是等边三角形,顶点A、A1、A2、…、A n在反比例函数(x>0)的图象上,则B2020的坐标是.24.(2022秋•杜集区校级月考)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于直线x=n(n为常数)对称,则把该函数称之为“X(n)函数“.(1)在下列关于x的函数中,是“X(n)函数”的是(填序号);①;②y=|4x|;③y=x2﹣2x﹣5.(2)若关于x的函数y=|x﹣h|(h为常数)是“X(3)函数”,与(m为常数,m>0)相交于A (x A,y A)、B(x B,y B)两点,A在B的左边,x B﹣x A=5,则m=.25.(2022•思明区校级二模)阅读理解:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三数组”.(1)若A(m,y1),B(m+1,y2),C(m+3,y3)三点均在反比例函数的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值;(2)若实数a,b,c是“和谐三数组”,且满足a>b>c>0,求点与原点O的距离OP的取值范围.26.(2022•牧野区校级三模)如图,矩形ABCD的边BC在x轴上,E为对角线AC,BD的交点,点A,C 的坐标分别为A(﹣3,3),C(﹣1,0).(1)反比例函数y1=在第三象限的图象经过D点,求这个函数的解析式;(2)点E是否在函数y1=的图象上?说明理由;(3)一次函数y2=k2+b的图象经过点B,点D,根据图象直接写出不等式k2x+b<的解集.27.(2022•荷塘区校级二模)如图,点A(a,a),B(b,b)是直线y=x上在第一象限的两点,过A,B两点分别作y轴的平行线交双曲线y=(x>0)于C,D两点.(1)当b=2,BD=1时,求k的值;(2)当k=1时:①若AC=BD,求a与b的数量关系;②若AC=2BD,求4OD2﹣OC2的值.28.(2021秋•梧州期末)在函数y=(其中a≠0,a为常数)经过点A(x1,y1),B(x2,y2),C(x3,y3),且x3<0<x1<x2,则把y1、y2、y3按从小到大排列为.29.(2022•营口)如图,在平面直角坐标系中,△OAC的边OC在y轴上,反比例函数y=(x>0)的图象经过点A和点B(2,6),且点B为AC的中点.(1)求k的值和点C的坐标;(2)求△OAC的周长.30.(2022秋•东湖区期中)如图,在平面直角坐标系中,正方形OABC的顶点O在坐标原点,顶点A在y 轴上,顶点C在x轴上,反比例函数y=k的图象过AB边上一点E,与BC边交于点D,BE=2,OE=10.(1)求k的值;(2)直线y=ax+b过点D及线段AB的中点F,点P是直线OF上一动点,当PD+PC的值最小时,直接写出这个最小值.七.待定系数法求反比例函数解析式(共4小题)31.(2021秋•平泉市期末)如图,矩形ABCD的两边AD,AB的长分别为3,8,E是DC的中点,反比例函数的图象经过点E,与AB交于点F.(1)若点B的坐标为(﹣6,0),求m的值.(2)若AF﹣AE=2,求反比例函数的解析式.32.(2022•蓬江区一模)如图,在平面直角坐标系中,正方形ABCD的顶点A、B分别在x轴、y轴的正半轴上,反比例函数的图象经过点C,OA=2,OB=4.(1)求反比例函数的解析式;(2)若将正方形ABCD沿x轴向右平移得到正方形A'B'C'D',当点D'在反比例函数的图象上时,请求出点B'的坐标,并判断点B'是否在该反比例函数的图象上,说明理由.33.(2022•睢阳区二模)如图,平行四边形ABCD的面积为12,AB∥y轴,AB,CD与x轴分别交于点M,N,对角线AC,BD的交点为坐标原点,点A的坐标为(﹣2,1),反比例函数的图象经过点B,D.(1)求反比例函数的解析式;(2)点P为y轴上的点,连接AP,若△AOP为等腰三角形,求满足条件的点P的坐标.34.(2021秋•孟村县期末)已知y与x成反比例,当x=﹣1时,y=﹣6.(1)y与x的函数解析式为;(2)若点A(a,﹣4),B(b,﹣8)都在该反比例函数的图象上,则a,b的大小关系是.八.反比例函数与一次函数的交点问题(共5小题)35.(2022•市南区校级一模)如图,直线y=kx+3与x轴、y轴分别交于点B、C,与反比例函数y=交于点A、D,过D作DE⊥x轴于E,连接OA,OD,若A(﹣2,n),S△OAB:S△ODE=1:2.(1)求反比例函数的表达式;(2)求点C的坐标;(3)直接写出关于x不等式:>kx﹣3的解为.36.(2022•宝安区校级模拟)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m ≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx>﹣b的解集是()A.x<﹣1B.﹣1<x<0C.x<﹣1或0<x<2D.﹣1<x<0或x>237.(2022•仁怀市模拟)如图,直线y=x﹣4分别与x轴,y轴交于点A,B,与反比例函数y=的图象交于点D,过点A作AC⊥x轴与反比例函数的图象相交于点C,若AC=AD,则k的值为()A.3B.4C.D.38.(2022•市南区校级二模)如图,在平面直角坐标系中,点A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的表达式为y2=k2x+b,回答下列问题:(1)求双曲线y1=和直线AB的y2=k2x+b表达式;(2)当y1>y2时,求x的取值范围;(3)求△AOB的面积.39.(2022•吉阳区模拟)如图,函数y=与函数y=kx(k>0)的图象相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于()A.24B.18C.12D.6九.根据实际问题列反比例函数关系式(共3小题)40.(2022秋•滁州期中)某电子产品的售价为8000元,购买该产品时可分期付款:前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.41.(2021•东胜区一模)A、B两地相距400千米,某人开车从A地匀速到B地,设小汽车的行驶时间为t 小时,行驶速度为v千米/小时,且全程限速,速度不超过100千米/小时.(1)写出v关于t的函数表达式;(2)若某人开车的速度不超过每小时80千米,那么他从A地匀速行驶到B地至少要多长时间?(3)若某人上午7点开车从A地出发,他能否在10点40分之前到达B地?请说明理由.42.(2021•杭州二模)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)一十.反比例函数的应用(共4小题)43.(2022秋•涟源市期中)如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流I(A)与电阻R(Ω)成反比例函数的图象,该图象经过点P(880,0.25).根据图象可知,下列说法正确的是()A.当I<0.25时,R<880B.I与R的函数关系式是I=(R>0)C.当R>1000时,I>0.22D.当880<R<1000时,I的取值范围是0.22<I<0.2544.(2022•南阳二模)在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,点P(4,3)在其图象上,则当力达到10N时,物体在力的方向上移动的距离是()A.2.4m B.1.2m C.1m D.0.5m45.(2022•邓州市二模)给定一个函数:y=x++1(x>0),为了研究它的图象与性质,并运用它的图象与性质解决实际问题,进行如下探索:(1)图象初探①列表如下x…1234…y…m3n…请直接写出m,n的值;②请在如下的平面直角坐标系中描出剩余两点,并用平滑的曲线画出该函数的图象.(2)性质再探请结合函数的图象,写出当x=,y有最小值为;(3)学以致用某农户要建造一个如图①所示的长方体无盖水池,其底面积为1平方米,深为1米.已知底面造价为3千元/平方米,侧面造价为0.5千元/平方米.设水池底面一边长为x米,水池总造价为y千元,可得到y与x的函数关系式为:y=x++3.根据以上信息,请回答以下问题:①水池总造价的最低费用为千元;②若该农户预算不超过5.5千元,请直接写出x的值应控制在什么范围?.46.(2021秋•丰南区期末)在工程实施过程中,某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成工程量x米的函数关系图象如图所示,是双曲线的一部分.(1)请根据题意,求y与x之间的函数表达式;(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠30米,问该工程队需要用多少天才能完成此项任务?(3)工程队在(2)的条件下工作5天后接到防汛紧急通知,最多再给5天时间完成全部任务,则最少还需调配几台挖掘机?。
专题26.27《反比例函数》全章复习与巩固(巩固篇)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.在反比例函数6y x=的图象上的点是()A .()2,3B .()4,2C .()6,1-D .()2,3-2.已知点A (﹣2,m ),B (2,m ),C (4,m +12)在同一个函数的图象上,这个函数可能是()A .y =xB .y =﹣2xC .y =x 2D .y =﹣x 23.若两个点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,且12x x <,则k 的值可以是()A .1B .2C .3D .44.已知抛物线221y x x m =--++与x 轴没有交点,则函数my x=和函数y mx m =-的大致图像是()A .B .C .D .5.已知点A (﹣2,y 1),B (﹣1,y 2),C (3,y 3)都在反比例函数y =3x的图象上,则y 1,y 2,y 3的大小关系正确的是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 36.如图,在平面直角坐标系中,菱形ABCD 的边BC 与x 轴平行,A 和B 两点的纵坐标分别为4和2,函数(0,0)k y k x x=>>的图象经过A 、B 两点.若菱形ABCD 的面积为则k 的值为()A .4B .8C .16D .7.如图,点A 是反比例函数y 1=1x(x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数2ky x=(x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为1,则k 的值是()A .3B .4C .5D .68.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <29.对于反比例函数2y x=-,下列说法不正确的是()A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <10.如图,在平面直角坐标系中,一次函数443y x =+的图象与x 轴、y 轴分别相交于点B ,点A ,以线段AB 为边作正方形ABCD ,且点C 在反比例函数(0)ky x x=<的图象上,则k 的值为()A .12-B .42-C .42D .21-二、填空题(本大题共8小题,每小题4分,共32分)11.已知直线y =kx 与双曲线y =6k x+的一个交点的横坐标是2,则另一个交点坐标是_____.12.已知点A (1,2)在反比例函数ky x=的图象上,则当1x >时,y 的取值范围是______.13.已知点A (381a a --,)在第二象限,且a 为整数,反比例函数ky x=经过该点,则k 的值为_________.14.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =kx(k ≠0)的图象经过其中两点,则m 的值为_____.15.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点(4,)P m ,且在每一个象限内,y 随x 的增大而增大,则点P 在第______象限.16.如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0ky k x=≠经过AC 边的中点D ,若BC =k =______.17.如图,平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为6,4,反比例函数y =kx(x >0)的图象经过A ,B 两点,若菱形ABCD的面积为k 的值为_____.18.如图,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O 左侧固定位置B 处悬挂重物A ,在中点O 右侧用一个弹簧秤向下拉,改变弹簧秤与点O 的距离x(cm),观察弹簧秤的示数y(N)的变化情况,实验数据记录如下:则y 与x 之间的函数关系为______.三、解答题(本大题共6小题,共58分)19.(8分)如图,在平面直角坐标系xOy 中,一次函数152y x =+和2y x =-的图象相交于点A ,反比例函数ky x=的图象经过点A .(1)求反比例函数的表达式;(2)设一次函数152y x =+的图象与反比例函数k y x =的图象的另一个交点为B ,连接OB ,求ABO ∆的面积.20.(8分)如图,正比例函数y kx =的图像与反比例函数()80y x x=>的图像交于点(),4A a .点B 为x 轴正半轴上一点,过B 作x 轴的垂线交反比例函数的图像于点C ,交正比例函数的图像于点D .(1)求a 的值及正比例函数y kx =的表达式;(2)若10BD =,求ACD △的面积.21.(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x (h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?22.(10分)如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.23.(10分)在平面直角坐标系xOy中,函数kyx=(0x>)的图象G经过点A(4,1),直线14l y x b=+∶与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当1b=-时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(12分)背景:点A在反比例函数kyx=(0k>)的图象上,AB x⊥轴于点B,AC y⊥轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形,如图1,点A在第一象限内,当4AC =时,小李测得3CD =.探究:通过改变点A 的位置,小李发现点D ,A 的横坐标之间存在函数关系,请帮助小李解决下列问题.(1)求k 的值;(2)设点A ,D 的横坐标分别为x ,z ,将z 关于x 的函数称为“Z 函数”.如图2,小李画出了0x >时“Z 函数”的图象.①求这个“Z 函数”的表达式.②过点(3,2)作一直线,与这个“Z 函数”图象仅有一个交点,求该交点的横坐标.参考答案1.A【分析】分别计算出各选项纵横坐标的乘积,判断是否等于6即可得解.解:A.23=6⨯,点(2,3)在反比例函数6y x=的图象上,故此选项符合题意;B.42=86⨯≠,点(4,2)不在反比例函数6y x=的图象上,故此选项不符合题意;C.61=66-⨯-≠,点(-6,1)不在反比例函数6y x=的图象上,故此选项不符合题意;D.23=66-⨯-≠,点(-2,3)不在反比例函数6y x=的图象上,故此选项不符合题意;故选:A【点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.C【分析】根据正比例函数和反比例函数还有二次函数的图象的对称性进行分析即可.解:∵A (﹣2,m ),B (2,m ),∴点A 与点B 关于y 轴对称;由于y =x ,y =2x的图象关于原点对称,因此选项A 、B 错误;∵m +12>m ,y =a x 2的图象关于y 轴对称由B (2,m ),C (4,m +12)可知,在对称轴的右侧,y 随x 的增大而增大,对于二次函数只有a >0时,在对称轴的右侧,y 随x 的增大而增大,∴C 选项正确,故选:C .【点拨】考核知识点:正比例函数和反比例函数还有二次函数的图象.理解正比例函数和反比例函数还有二次函数的图象的对称性是关键.3.A【分析】根据点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,推出121k x -=,223k x --=,得到12x k =-,223k x -=,根据12x x <,得到223k k --<,求得k <2,推出k 的值可能是1,解:∵点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,∴121k x -=,223k x --=,∴12x k =-,223k x -=,∵12x x<,∴223kk--<∴k<2,∴k的值可能是1,故选:A【点拨】本题主要考查了反比例函数,解题的关键是熟练掌握待定系数法求函数解析式,解不等式,反比例函数的图象和性质.4.C【分析】由已知可以得到m的取值范围,再根据反比例函数和一次函数的图象与性质即可得到解答.解:∵抛物线y=−x2−2x+m+1与x轴没有交点,∴方程−x2−2x+m+1=0没有实数根,∴Δ=4+4×1×(m+1)=4m+8<0,∴m<−2,∴−m>2,故函数y=mx的图象在第二、四象限,函数y=mx−m.故选:C.【点拨】本题考查函数的综合应用,熟练掌握二次函数与一元二次方程的关系、反比例函数与一次函数的图象与性质是解题关键.5.D【分析】把点A(-2,y1),B(-1,y2),C(3,y3)代入反比例函数的关系式求出y1,y2,y3,比较得出答案.解:把点A(﹣2,y1),B(﹣1,y2),C(3,y3)代入反比例函数3yx=的关系式得,y1=﹣1.5,y2=﹣3,y3=1,∴y2<y1<y3,故选:D.【点拨】本题考查反比例函数图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.6.D【分析】过点A 作AM x ⊥轴于点,M 交BC 于点,E 过点B 作BN x ⊥轴于点,N 求出2AE =,再由菱形的性质求出AD =,可得点A 的坐标,从而可得结论.解:过点A 作AM x ⊥轴于点M ,交BC 于点,E 过点B 作BN x ⊥轴于点N ,如图,∵BC //x 轴,∴,AE BC ⊥∴∠90,BEM EMN MNB ︒=∠=∠=∴四边形BEMN 是矩形,∴ME BN=∵,A B 点的纵坐标分别为4和2,∴4,2,AM BN ==∴2,ME =∴422,AE AM EM =-=-=∵四边形ABCD 是菱形,∴AD AE⊥∴2ABCD S AD AE AD =⋅==菱形,∴AD =,∵D 点在y 轴上,∴4)A∴4k ==故选:D【点拨】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.7.A【分析】延长BA ,与y 轴交于点C ,由AB 与x 轴平行,得到BC 垂直于y 轴,利用反比例函数k 的几何意义表示出三角形AOC 与三角形BOC 面积,由三角形BOC 面积减去三角形AOC 面积表示出三角形AOB 面积,将已知三角形AOB 面积代入求出k 的值即可.解:延长BA ,与y 轴交于点C ,∵AB //x 轴,∴BC ⊥y 轴,∵A 是反比例函数y 1=1x (x >0)图象上一点,B 为反比例函数y 2=k x(x >0)的图象上的点,∴S △AOC =12,S △BOC =2k ,∵S △AOB =1,即2211k -=,解得:k =3,故选:A .【点拨】本题考查了反比例函数k 的几何意义,熟练掌握反比例函数k 的几何意义是解本题的关键.8.C【分析】一次函数y1=kx+b 落在与反比例函数y 2=c x 图象上方的部分对应的自变量的取值范围即为所求.解:∵一次函数y1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y1>y2的解集是﹣3<x <0或x >2,故选C .【点拨】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.9.D【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.解:A.k=−2<0,∴它的图象在第二、四象限,故本选项正确;B.k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确;D.若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0<x2,则y2<y1,故本选项错误.故选:D.【点拨】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.10.D【分析】过点C作CE⊥x轴于E,证明△AOB≌△BEC,可得点C坐标,代入求解即可;解:∵当x=0时,04=4y=+,∴A(0,4),∴OA=4;∵当y=0时,4043x=+,∴x=-3,∴B(-3,0),∴OB=3;过点C作CE⊥x轴于E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠CBE+∠ABO=90°,∠BAO+∠ABO=90°,∴∠CBE=∠BAO.在△AOB和△BEC中,CBE BAO BEC AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△BEC ,∴BE=AO=4,CE=OB=3,∴OE=3+4=7,∴C 点坐标为(-7,3),∵点A 在反比例函数(0)k y x x=<的图象上,∴k=-7×3=-21.故选D .【点拨】本题考查了一次函数与坐标轴的交点、待定系数法求函数解析式、正方形的性质,以及全等三角形的判定与性质,解答此题的关键是正确作出辅助线及数形结合思想的运用.11.(-2,-4)【分析】根据交点的横坐标是2,得到622k k +=,求得k 值,确定一个交点坐标为(2,4),根据图像的中心对称性质,确定另一个交点坐标即可.解:∵交点的横坐标是2,∴622k k +=,解得k =2,故函数的解析式为y =2x ,y =8x ,当x =2时,y =4,∴交点坐标为(2,4),根据图像的中心对称性质,∴另一个交点坐标为(-2,-4),故答案为:(-2,-4).【点拨】本题考查了反比例函数与正比例函数的交点问题,函数图像的中心对称问题,熟练掌握交点的意义,灵活运用图像的中心对称性质是解题的关键.12.0<y <2【分析】根据图象结合反比例函数k y x =的图象性质,分析其增减以及其过点的坐标解答即可.解:点A (1,2)在反比例函数k y x =的图象上,∴反比例函数k y x=的图象在第一象限,k =2∴y 随x 的增大而减小;∴当x >1时,y 的取值范围时0<y <2;故答案为:0<y <2.【点拨】本题考查的是反比例函数图象上点的坐标特点,掌握数形结合的思想以及反比例函数的图象成为解答本题的关键.13.-2【分析】根据第二象限的符号特征,且a 为整数,求出a =2,得A (-2,1),将A (-2,1)代入k y x=,得k 的值.解:∵点A (3a −8,a −1)在第二象限,且a 为整数,∴38010a a -<->ìïíïî,解得1<a <83,∴a =2,∵3×2-8=-2,2-1=1,∴A (-2,1),∵反比例函数k y x=经过点A ,∴将A (-2,1)代入k y x =,得21k -=,∴k =-2,故答案为:-2.【点拨】本题考查了第二象限的符号特征和反比例函数,解题的关键是掌握第二象限的符号特征.14.-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x =≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.解: 点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限,∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x=≠的图象经过其中两点,∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,326m ∴⨯=-,1m ∴=-,故答案为:1-.【点拨】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.15.四【分析】直接利用反比例函数的性质确定m 的取值范围,进而分析得出答案.解:∵反比例函数k y x=(k ≠0)图象在每个象限内y 随着x 的增大而增大,∴k <0,又反比例函数k y x =的图象经过点(4,)P m ,∴40m k =<∴0m <∴(4,)P m 在第四象限.故答案为:四.【点拨】此题主要考查了反比例函数的性质,正确记忆点的坐标的分布是解题关键.16.32-【分析】根据ABC 是等腰直角三角形,BC x ⊥轴,得到AOB 是等腰直角三角形,再根据BC =A 点,C 点坐标,根据中点公式求出D 点坐标,将D 点坐标代入反比例函数解析式即可求得k .解:∵ABC 是等腰直角三角形,BC x ⊥轴.∴90904545ABO ABC ∠=︒-∠=︒-︒=︒;2AB =.∴AOB 是等腰直角三角形.∴BO AO =.故:A ,(C .(D .将D 点坐标代入反比例函数解析式.3222D D k x y =⋅=-⨯-.故答案为:32-.【点拨】本题考查平面几何与坐标系综合,反比例函数解析式;本体解题关键是得到AOB 是等腰直角三角形,用中点公式算出D 点坐标.17.12【分析】过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为6,4,可得出横坐标,即可表示AE ,BE 的长,根据菱形的面积为AE 的长,在Rt △AEB 中,计算BE 的长,列方程即可得出k 的值.解:过点A 作x 轴的垂线,交CB 的延长线于点E ,∵BC ∥x 轴,∴AE ⊥BC ,∵A ,B 两点在反比例函数y =k x (x >0)的图象,且纵坐标分别为6,4,∴A (6k ,6),B (4k ,4),∴AE =2,BE =4k ﹣6k =k 12,∵菱形ABCD 的面积为∴BC×AE =BC∴AB =BC在Rt △AEB 中,BE 1,∴112k=1,∴k=12,故答案为:12.【点拨】本题考查了反比例函数和几何综合,菱形的性质,勾股定理,掌握数形结合的思想是解题关键.18.300yx=【分析】通过表格我们可以得到表格中每组数据相乘为一个定值300,故我们可以猜想y与x之间是成反比例函数的关系,根据表格中的数据求出反比例函数的解析式,再将其余的点带入验证即可.解:由表格猜想y与x之间的函数关系为反比例函数解:设反比例函数解析式为k yx =把x=10,y=30代入得:k=300∴300 yx =将其余点带入均符合要求∴y与x之间的函数关系式为:300 yx =故答案为:300 yx =【点拨】本题主要考查的是反比例函数的性质以及解析式的求法,正确的掌握反比例函数的性质是解题的关键.19.(1)反比例函数的表达式为8yx-=;(2)ABO∆的面积为15.【分析】(1)联立两一次函数解出A点坐标,再代入反比例函数即可求解;(2)联立一次函数与反比例函数求出B点坐标,再根据反比例函数的性质求解三角形的面积.解:(1)由题意:联立直线方程1522y xy x⎧=+⎪⎨⎪=-⎩,可得24xy=-⎧⎨=⎩,故A点坐标为(-2,4)将A(-2,4)代入反比例函数表达式kyx=,有42k=-,∴8k=-故反比例函数的表达式为8 yx =-(2)联立直线152y x =+与反比例函数8y x=-,1528x y x y ⎧=+⎪⎪⎨⎪=-⎪⎩解得122,8x x =-=-,当8x =-时,1y =,故B (-8,1)如图,过A ,B 两点分别作x 轴的垂线,交x 轴于M 、N 两点,由模型可知S 梯形AMNB =S △AOB ,∴S 梯形AMNB =S △AOB =12121()()2y y x x +-⨯=1(14)[(2)(8)]2+⨯---⨯=156152⨯⨯=【点拨】此题主要考查一次函数与反比例函数综合,解题的关键是熟知一次函数与反比例函数的图像与性质.20.(1)a=2;y=2x ;(2)635【分析】(1)已知反比例函数解析式,点A 在反比例函数图象上,故a 可求;求出点A 的坐标后,点A 同时在正比例函数图象上,将点A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设B 点坐标为(b ,0),则D 点坐标为(b ,2b),根据BD=10,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.解:(1)已知反比例函数解析式为y=8x,点A(a ,4)在反比例函数图象上,将点A 坐标代入,解得a=2,故A 点坐标为(2,4),又∵A 点也在正比例函数图象上,设正比例函数解析为y=kx ,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x .故a=2;y=2x .(2)根据第一问的求解结果,以及BD 垂直x 轴,我们可以设B 点坐标为(b ,0),则C 点坐标为(b ,8b)、D 点坐标为(b ,2b),根据BD=10,则2b=10,解得b=5,故点B 的坐标为(5,0),D 点坐标为(5,10),C 点坐标为(5,85),则在△ACD 中,()18105225S ⎛⎫=⨯-⨯- ⎪⎝⎭△ACD =635.故△ACD 的面积为635.【点拨】(1)本题主要考查求解正比例函数及反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法是解答本题的关键.(2)本题根据第一问求解的结果以及BD 垂直x 轴,利用待定系数法,设B 、C 、D 三点坐标,求出B 、C 、D 三点坐标,是解答本题的关键,同时掌握三角形面积公式,即可求解.21.(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【分析】(1(2)观察图象可得;(3)代入临界值y =10即可.(1)解:设线段AB 解析式为y =k 1x +b (k ≠0)∵线段AB 过点(0,10),(2,14),代入得110214b k b ⎧⎨+⎩==,解得1210k b ⎧⎨⎩==,∴AB 解析式为:y =2x +10(0≤x <5).∵B 在线段AB 上当x =5时,y =20,∴B 坐标为(5,20),∴线段BC 的解析式为:y =20(5≤x <10),设双曲线CD 解析式为:y =2k x (k 2≠0),∵C (10,20),∴k 2=200.∴双曲线CD 解析式为:y =200x(10≤x ≤24),∴y 关于x 的函数解析式为:()210(05)20(510)2001024x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)解:由(1)恒温系统设定恒温为20°C ;(3)解:把y =10代入y =200x 中,解得x =20,∴20-10=10.答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【点拨】本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.22.(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)分析:(1)求得A (1,3),把A (1,3)代入双曲线y=k x ,可得y 与x 之间的函数关系式;(2)依据A (1,3),可得当x >0时,不等式34x+b >k x的解集为x >1;(3)分两种情况进行讨论,AP 把△ABC 的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P 的坐标.解:(1)把A (1,m )代入y 1=﹣x+4,可得m=﹣1+4=3,∴A (1,3),把A (1,3)代入双曲线y=k x,可得k=1×3=3,∴y 与x 之间的函数关系式为:y=3x ;(2)∵A (1,3),∴当x >0时,不等式34x+b >k x的解集为:x >1;(3)y 1=﹣x+4,令y=0,则x=4,∴点B 的坐标为(4,0),把A (1,3)代入y 2=34x+b ,可得3=34+b ,∴b=94,∴y 2=34x+94,令y 2=0,则x=﹣3,即C (﹣3,0),∴BC=7,∵AP 把△ABC 的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P (﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.23.(1)4;(2)①3个.(1,0),(2,0),(3,0).②514b -≤<-或71144b <≤.分析:(1)根据点A (4,1)在k y x=(0x >)的图象上,即可求出k 的值;(2)①当1b =-时,根据整点的概念,直接写出区域W 内的整点个数即可.②分a .当直线过(4,0)时,b .当直线过(5,0)时,c .当直线过(1,2)时,d .当直线过(1,3)时四种情况进行讨论即可.(1)解:∵点A (4,1)在k y x=(0x >)的图象上.∴14k =,∴4k =.(2)①3个.(1,0),(2,0),(3,0).②a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -≤<-或71144b <≤.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.24.(1)4(2)①4z x x=-;②2,3,4,6【分析】(1)利用待定系数法求解即可;(2)①设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,继而解得点D 的横坐标为4z x x =-,根据题意解题即可;②分两种种情况讨论,当过点3,2()的直线与x 轴垂直时,或当过点3,2()的直线与x 轴不垂直时,结合一元二次方程求解即可.解:(1)由题意得,1AB AD ==,∴点A 的坐标是(4,1),所以414k =⨯=;故答案为:4(2)①设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,所以点D 的横坐标为4z x x =-,所以这个“Z 函数”表达式为4z x x=-;②第一种情况,当过点3,2()的直线与x 轴垂直时,3x =;第二种情况,当过点3,2()的直线与x 轴不垂直时,设该直线的函数表达式为'(0)z mx b m =+≠,23m b ∴=+,即32b m =-+,'32z mx m ∴=-+,由题意得,432x mx m x-=-+22432x mx mx x ∴-=-+,2(1)(23)40m x m x ∴-+-+=(a )当1m =时,40x -+=,解得4x =;(b )当1m ≠时,2224(23)4(1)4928200b ac m m m m -=---⨯=-+=,解得12102,9m m ==,当12m =时,()2244020x x x -+=-=,.解得122x x ==;当2109m =时,()2221440,12360,6093x x x x x -+=-+=-=,解126x x ==所以x 的值为2,3,4,6.【点拨】本题考查反比例函数的图象与性质、求一次函数的解析式、解一元二次方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.。
人教版九年级数学中考反比例函数专项练习命题点1 图象与性质1.一台印刷机每年可印刷的书本数量 y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是(C)A B C D2.反比例函数y =mx 的图象如图所示,以下结论:①常数m <-1;②在每个象限内,y 随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h <k ;④若P(x ,y)在图象上,则P ′(-x ,-y)也在图象上.其中正确的是(C)A .①②B .②③C .③④D .①④3.如图,函数y =⎩⎪⎨⎪⎧1x (x >0),-1x (x <0)的图象所在坐标系的原点是(A)A .点MB .点NC .点PD .点Q4.定义新运算:a ⊕b =⎩⎪⎨⎪⎧ab(b >0),-ab(b <0). 例如:4⊕5=45,4⊕(-5)=45.则函数y =2⊕x(x≠0)的图象大致是(D)A B C D5.如图,若抛物线y =-x2+3与x 轴围成的封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y =kx(x >0)的图象是(D)A B CD命题点2 反比例函数、一次函数与几何图形综合6.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx (x>0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)解:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形, ∴AD =BC =2,AD ∥BC ,BC ⊥x 轴.∴AD ⊥x 轴. 又∵A(1,0),∴D(1,2).∵点D 在反比例函数y =mx 的图象上,∴m =1×2=2.∴反比例函数的解析式为y =2x .(2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C. (3)设点P 的横坐标为a ,则23<a <3.命题点3 反比例函数的实际应用(8年2考)7.(2019·杭州)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数解析式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围;②方方能否在当天11点30分前到达B 地?说明理由.解:(1)∵vt =480,且全程速度限定为不超过120千米/小时,∴v 关于t 的函数解析式为v =480t(t ≥4).(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时.将t =6代入v =480t ,得v =80;将t =245代入v =480t,得v =100.∴小汽车行驶速度v 的范围为80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t ,得v =9607.∵9607>120,超速了. 故方方不能在当天11点30分前到达B 地.基础训练1.(2019·柳州)反比例函数y =2x的图象位于(A)A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限2.(2019·哈尔滨)点(-1,4)在反比例函数y =kx 的图象上,则下列各点在此函数图象上的是(A)A .(4,-1)B .(-14,1)C .(-4,-1)D .(14,2)3.(2019·邢台模拟)已知甲圆柱型容器的底面积为30 cm 2,高为8 cm ,乙圆柱型容器底面积为x cm 2.若将甲容器装满水,全部倒入乙容器中(乙容器没有水溢出),则乙容器水面高度y(cm)与x(cm 2)之间的大致图象是(C)A B C D4.(2019·唐山乐亭县模拟)若点(x 1,y 1),(x 2,y 2)都是反比例函数y =-6x 图象上的点,并且y 1<0<y 2,则下列结论中正确的是(A)A .x 1>x 2B .x 1<x 2C .y 随x 的增大而减小D .两点有可能在同一象限5.(2019·唐山滦南县一模)如图,正比例函数y =x 与反比例函数y =4x 的图象交于A ,B 两点,其中A(2,2),当y =x 的函数值大于y =4x的函数值时,x 的取值范围为(D)A .x >2B .x <-2C .-2<x <0或0<x <2D .-2<x <0或x >26.(2019·石家庄模拟)已知反比例函数y =kx 的图象过第二、四象限,则一次函数y =kx +k的图象大致是(B)A B C D7.(2019·唐山路北区模拟)已知点P(m ,n)是反比例函数y =-3x 图象上一点,当-3≤n <-1时,m 的取值范围是(A)A .1≤m <3B .-3≤m <-1C .1<m ≤3D .-3<m ≤-18.(原创)(2017·河北T15变式)将九年级某班40名学生的数学测试成绩分为5组,第1~4组的频率分别为0.3,0.25,0.15,0.2,第5组的频数记为k ,则反比例y =kx (x >0)的图象是(D)A B C D9.(原创)(2019·河北T12变式)如图,函数y =⎩⎪⎨⎪⎧m x (x >0),-m x (x<0)的图象如图所示,以下结论:①常数m >0;②在每个象限内,y 随x 增大而减小;③若点A(-2,a),B(3,b)在图象上,则a <b ;④若P(x ,y)在图象上,则P ′(-x ,y)也在图象上,其中正确的是(D)A .①②B .②③C .③④D .①④10.(2019·兰州)如图,矩形OABC 的顶点B 在反比例函数y =kx (x >0)的图象上,S矩形OABC=6,则k =6.11.(2019·北京)在平面直角坐标系xOy 中,点A(a ,b)(a >0,b >0)在双曲线y =k 1x 上,点A 关于x 轴的对称点B 在双曲线y =k 2x,则k 1+k 2的值为0.12.(2019·盐城)如图,一次函数y =x +1的图象交y 轴于点A ,与反比例函数y =kx (x >0)的图象交于点B(m ,2).(1)求反比例函数的解析式; (2)求△AOB 的面积.解:(1)∵点B(m ,2)在直线y =x +1上, ∴2=m +1,解得m =1. ∴点B 的坐标为(1,2).∵点B(1,2)在反比例函数y =kx (x >0)的图象上,∴2=k1,解得k =2.∴反比例函数的解析式是y =2x.(2)将x =0代入y =x +1,得y =1,则点A 的坐标为(0,1). ∵点B 的坐标为(1,2), ∴△AOB 的面积为12×1×1=12.能力提升13.(2019·石家庄新华区模拟)如图,在平面直角坐标系中,点A(0,2),点P 是双曲线y =kx (x >0)上的一个动点,作PB ⊥x 轴于点B ,当点P 的横坐标逐渐减小时,四边形OAPB 的面积将会(C)A .逐渐增大B .不变C .逐渐减小D .先减小后增大14.(2019·陕西)如图,D 是矩形AOBC 的对称中心,A(0,4),B(6,0).若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为(32,4).16.(2019·秦皇岛海港区模拟)如图,在平面直角坐标系中,▱ABCD 的顶点A(1,b),B(3,b),D(2,b +1).(1)点C 的坐标是(4,b +1)(用b 表示);(2)双曲线y =kx 过▱ABCD 的顶点B 和D ,求该双曲线的解析式;(3)如果▱ABCD 与双曲线y =4x(x >0)总有公共点,求b 的取值范围.解:(2)∵双曲线y =kx 过▱ABCD 的顶点B(3,b)和D(2,b +1),∴3b =2(b +1),解得b =2,即B(3,2),D(2,3). 则该双曲线解析式为y =6x .(3)将A(1,b)代入y =4x,得b =4;将C(4,b +1)代入y =4x,得b +1=1,即b =0.则▱ABCD 与双曲线y =4x(x >0)总有公共点时,b 的取值范围为0≤b ≤4.17.如图为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的直角坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA =5米,进口AB ∥OD ,且AB =2米,出口C 点距水面的距离CD 为1米,则B ,C 之间的水平距离DE 的长度为(D)A .5米B .6米C .7米D .8米18.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:①如图2,点M ,N 在反比例函数y =kx (x >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F ,试证明:MN ∥EF ;②若①中的其他条件不变,只改变点M ,N 的位置,如图3所示,请判断MN 与EF 是否平行?解:(1)AB ∥CD.理由:过点C 作CG ⊥AB 于点G ,过点D 作DH ⊥AB 于点H , ∴∠CGA =∠DHB =90°.∴CG ∥DH. ∵△ABC 和△ABD 的面积相等, ∴CG =DH.∴四边形CGHD 是矩形.∴AB ∥CD.(2)①证明:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2),∵点M ,N 在反比例函数y =kx (x >0)的图象上,∴x 1y 1=k ,x 2y 2=k. ∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =x 2,NF =y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12x 2y 2=12k.∴S △EFM =S △EFN ,由(1)中的结论可知,MN ∥EF.②MN ∥EF ,理由:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2). ∵M ,N 在反比例函数y =kx (k >0)的图象上,∴x 1y 1=k ,x 2y 2=k.∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =-x 2,NF =-y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12(-x 2)(-y 2)=12k.∴S △EFM =S △EFN .由(1)中的结论可知,MN ∥EF.反比例函数中的面积问题1.(2019·枣庄)如图,在平面直角坐标系中,等腰Rt △ABC 的顶点A ,B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =kx (x >0)的图象上.若AB =1,则k的值为(A)A .1 B.22C. 2 D .22.如图,A ,B 两点在双曲线y =4x(x >0)上,分别经过A ,B 两点向x 轴作垂线段,已知S阴影=1,则S 1+S 2=(D)A .3B .4C .5D .63.(2019·黄冈)如图,一直线经过原点O ,且与反比例函数y =kx (k>0)相交于点A ,B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC.若△ABC 面积为8,则k =8.4.如图,A ,B 是反比例函数y =2x 的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则(B)A .S =2B .S =4C .2<S <4D .S >45.(2019·郴州)如图,点A ,C 分别是正比例函数y =x 与反比例函数y =4x 的图象的交点,过A 点作AD ⊥x 轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为8.6.如图,AB 是反比例函数y =3x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB =4.7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,▱OABC 的顶点A 在反比例函数y =1x (x >0)的图象上,顶点B 在反比例函数y =5x (x >0)的图象上,点C 在x 轴的正半轴上,则▱OABC 的面积是(C)A.32B.52C .4D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交反比例函数y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =k x (k >0)图象上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD ,△BOM ,四边形CMEF 的面积分别为S 1,S 2,S 3,则(B)A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB 的边OA 和菱形OCDE 的边OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx (x >0)的图象经过点B ,则k 的值为3.。
专题26.3 反比例函数(巩固篇)(专项练习)一、单选题1.下列式子中表示y 是x 的反比例函数的是( ) A .24y x =-B .y=5x2C .y=21x D .y=13x2.若关于x 的一元二次方程x 2﹣2x ﹣m =0无实数根,则反比例函数1m y x+=的图象可能经过点( )A .(3,1)B .(0,3)C .(﹣3,﹣1)D .(﹣3,1)3.若反比例函数ky x=的图象过点(,则不在这个反比例函数图象上的点是( ) A.B.(C.)D .()2,34.已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值为3时,自变量x 的值为( )A .﹣2B .﹣23C .﹣2或﹣23D .﹣2或﹣325.若点A (a ,b )在反比例函数2y x=的图像上,则代数式ab -4的值为( ) A .0B .-2C .2D .-66.若函数231(1)m m y m x ++=+是反比例函数,则m 的值为( ) A .m =-2 B .m =1 C .m =2或m =1 D .m =-2或m =-1 7.定义:[a ,b ]为反比例函数y=abx (ab ≠0,a ,b 为实数)的“关联数”.反比例函数y=1k x的“关联数”为[m ,m+2],反比例函数y=2k x的“关联数”为[m+1,m+3],若m>0,则 ( ) A .k 1=k 2 B .k 1>k 2 C .k 1<k 2 D .无法比较 8.若点,,在反比例函数的图象上,则的大小关系是( )A .B .C .D .9.已知y =y 1+y 2,其中y 1与1x成反比例且比例系数为k 1,y 2与x 成正比例且比例系数为k 2.若x =-1时,y =0,则k 1,k 2的关系为( )A .k 1+k 2=0B .k 1k 2=1C .k 1k 2=-1D .k 1=k 210.某村耕地总面积为50公顷,且该村人均耕地面积y (单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是( )A .该村人均耕地面积随总人口的增多而增多B .该村人均耕地面积y 与总人口x 成正比例C .若该村人均耕地面积为2公顷,则总人口有100人D .当该村总人口为50人时,人均耕地面积为1公顷 二、填空题 11.已知函数6y x=,当x =﹣2时,y 的值是__. 12.已知函数3(2)m y m x -=-是反比例函数,则m =_________. 13.已知反比例函数y =1k x-的图象经过点(1,2),则k 的值为_____. 14.已知1y x =与y= x -3相交于点(),P a b ,则11a b-的值为__________.15.已知11(,)A x y ,22(,)B x y 都在反比例函数6y x=的图象上,若123x x =-,则12y y 的值为______.16.已知点(),1A a ,()4,B b -在同一个反比例函数的图像上,则a 与b 之间的数量关系是=a _________.17.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为________.(无需确定x 的取值范围)18.在平面直角坐标系中,点(),M m n ()0,0m n ><在双曲线1k y x=上,点M 关于y 轴的对称点N 在双曲线2k y x=上,则12k k +的值为______. 三、解答题19.如图,某养鸡场利用一面长为11m 的墙,其他三面用栅栏围成矩形,面积为260m ,设与墙垂直的边长为x m ,与墙平行的边长为y m .(1) 直接写出y 与x 的函数关系式为______;(2) 现有两种方案5x =或6x =,试选择合理的设计方案,并求此栅栏总长.20.已知:关于x 的一元二次方程()2kx 4k 1x 3k 30-+++= (k 是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x 1,x 2(其中x 1<x 2),设21y x x 2=--,判断y 是否为变量k 的函数?如果是,请写出函数解析式;若不是,请说明理由.21.当m 取何值时,()2312m m y m x ++=+是关于x 的反比例函数?22.已知点(,)p m n 是反比例函数2y x=图象上一动点,且m n ≠,将代数式22211()m nm n m n m n +÷-+-化简并求值.23.华润苏果超市计划购进甲、乙两种商品,已知甲的进价比乙多20元/件,用2000元购进甲种商品的件数与用1600元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价各是多少元?(2)小丽用960元只购买乙种商品,她购买乙种商品y 件,该商品的销售单价为x 元,列出y 与x 函数关系式?若超市销售乙种商品,至少要获得20%的利润,那么小丽最多可以购买多少件乙种商品?24.为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强()kPa p 是气体体积()ml V 的反比例函数,其图象如图所示.(1)求这个函数的表达式;(2)当气体体积为40ml 时,求气体压强的值;(3)若注射器内气体的压强不能超过400kPa ,则其体积V 要控制在什么范围?参考答案1.D【分析】根据反比例函数的定义逐项分析即可. 解:A. 24y x =-,y 是x 的一次函数,故不符合题意; B. y=5x2,y 是x 的正比例函数,故不符合题意; C. 21y x =,y 是x²的反比例函数,故不符合题意; D. y=13x,y 是x 的反比例函数,符合题意;故选:D .【点拨】本题考查了反比例函数的定义,一般地,形如ky x=(k 为常数,k ≠0)的函数叫做反比例函数.2.D【分析】由方程根的情况可求得m 的取值范围,则可求得反比例函数图象经过的象限,可求得答案.解:∵关于x 的一元二次方程x 2﹣2x ﹣m =0无实数根, ∴Δ<0,即(﹣2)2+4m <0, 解得m <﹣1, ∴m +1<0, ∴反比例函数1m y x+=的图象经过二、四象限, ∴反比例函数1m y x+=的图象可能经过点(﹣3,1), 故选:D .【点拨】本题主要考查反比例函数的性质和一元二次方程根的判别式,根据一元二次方程根的判别式求得m 的取值范围是解题的关键.3.D【分析】由题意得出k 的值,再进行选择即可.解:∵反比例函数y=kx 的图象过点),,∵点A. B. C , ∵点A. B. C 都在这个反比例函数图象上. 故答案选D.【点拨】本题考查了求反比例函数解析式,解题的关键是熟练的掌握待定系数法求反比例函数的解析式.4.A【分析】根据分段函数的解析式分别计算,即可得出结论. 解:若x <2,当y =3时,﹣x +1=3, 解得:x =﹣2;若x ≥2,当y =3时,﹣2x =3,解得:x =﹣23,不合题意舍去; ∵x =﹣2, 故选:A .【点拨】本题考查了反比例函数的性质、一次函数的图象上点的坐标特征;根据分段函数进行分段求解是解题的关键.5.B解:∵点(a ,b )反比例函数2y x=上, ∵b=2a,即ab=2,∵原式=2-4=-2. 故选B .考点:反比例函数图象上点的坐标特征. 6.A解:根据反比例函数定义可知2311,{10,m m m ++=-+≠解得12,{1,m m m =-=-≠-或 ∵m =-2.故选A . 7.C【分析】利用题中的新定义表示出k 1与k 2,利用作差法比较即可. 解:根据题意得:12213m k m m k m ⎧⎪⎪+⎨+⎪⎪+⎩==,∵m >0,∵k 1-k 2=()()()()2213322232323m m m m m m m m m m m m ++----==-++++++<0, 则k 1<k 2.【点拨】此题考查了反比例函数的定义,弄清题中的新定义是解本题的关键. 8.B 解:把,,分别代入可得,即可得,故选B.9.A【分析】根据y 1与1x成反比例且比例系数为k 1,y 2与x 成正比例且比例系数为k 2,可得k 1的表示,k 2的表示,根据y =y 1+y 2,若x =-1时,y =0,可得答案.解:k 1=y 1·1x,y 2=k 2x ,y 1=k 1x , y =y 1+y 2, x =-1时,-k 1-k 2=0, k 1+k 2=0, 故选:A .【点拨】本题考查反比例函数的定义,解题的关键是先表示出y 1,y 2,再求出答案. 10.D【分析】人均耕地面积y (单位:公顷/人)与总人口x (单位:人)的函数关系是反比例函数,它的图象在第一象限,根据反比例函数的性质可推出A ,D 错误,再根据函数解析式求出自变量的值与函数值,有可判定C ,B .解:如图所示,人均耕地面积y (单位:公顷/人)与总人口x (单位:人)的函数关系是反比例函数,它的图象在第一象限,∵y 随x 的增大而减小, ∵A ,B 错误, 设y=kx(k >0,x >0),把x=50时,y=1代入得:k=50, ∵y=50x, 把y=2代入上式得:x=25,∵C 错误,把x=50代入上式得:y=1, ∵D 正确, 故选D. 11.-3【分析】根据函数图像与点的关系,代入计算即可 解:当x =﹣2时,则6632y x ===--. 故答案为:-3.【点拨】本题考查了反比例函数的解析式与点的关系,把问题转化为代数式的值的问题求解是解题的关键.12.-2【分析】让x 的指数为-1,系数不为0列式求值即可. 解:依题意得31m -=-且20m -≠, 解得2m =-. 故答案为:-2.【点拨】考查反比例函数的定义;反比例函数解析式的一般形式y =kx(k≠0),也可转化为y=kx -1(k≠0)的形式,特别注意不要忽略k≠0这个条件.13.3【分析】列等式k -1=1×2=2,计算即可. 解:∵反比例函数y =1k x-的图象经过点(1,2), ∵2=11k -, ∵k -1=1×2=2, ∵k =3, 故答案为:3.【点拨】本题考查了反比例函数图像与点的关系,熟记图像过点,点的坐标满足函数的解析式是解题的关键.14.-3【分析】利用反比例函数图象上点的坐标特征及一次函数图象上点的坐标特征可得出1b a =,3b a =-,进而可得出1ab =,3b a -=-,再将其代入11a b-中即可求出结论. 解:∵1y x=与3y x =-相交于点(),P a b , ∵1b a=,3b a =-, ∵1ab =,3b a -=-, ∵113b a a b ab--==-. 故答案为:-3.【点拨】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征以及分式的加减法,利用反比例函数图象上点的坐标特征及一次函数图象上点的坐标特征,找出1ab =,3b a -=-是解题的关键.15.12-【分析】把A 、B 两点的坐标代入解析式,再根据123x x =-即可求解. 解:把11(,)A x y ,22(,)B x y 代入6y x=得: 121266,y y x x∵123x x =- ∵12123612y y x x故答案为-12【点拨】本题考查的是反比例函数,整体代入思想是解答本题的关键. 16.4b -【分析】设反比例函数解析式为ky x=,根据题意将点,A B 代入解析式即可求解. 解:∵点(),1A a ,()4,B b -在同一个反比例函数的图像上, 设反比例函数解析式为k y x=, ∵14k a b =⨯=-, 即4a b =-, 故答案为:4b -.【点拨】本题考查了反比例函数的性质,掌握反比例函数的性质是解题的关键. 17.100y x=解:根据题意得xy =0.25×400=100,∵100y x=. 18.0【分析】由点M(m ,n)(m >0,n <0)在双曲线1k y x=上,可得k 1=mn ,由点M 与点N 关于y 轴对称,可得到点N 的坐标,进而表示出k 2,然后得出答案.解:∵点M(m ,n)(m >0,n <0)在双曲线1k y x=上, ∵k 1=mn ,又∵点M 与点N 关于y 轴对称, ∵N(-m ,n), ∵点N 在双曲线2k y x=上, ∵k 2=-mn ,∵k 1+k 2=mn+(-mn )=0, 故答案为:0.【点拨】本题考查反比例函数图象上的点坐标的特征,关于y 轴对称的点的坐标的特征以及互为相反数的和为0的性质.19.(1)60y x=(2)22m【分析】(1))利用矩形的面积计算公式可得出xy = 60,变形后即可得出结论; (2)利用反比例函数图象上点的坐标特征可求出当x = 5和x = 6时的y 值,结合墙长11m 即可得出应选x = 6的设计方案,再将其代入2x + y 中即可求出此栅栏的总长.(1)解:根据题意得:60xy =, ∵y 与x 的函数关系式为:60y x=,故答案为:60y x=;(2)解:当x = 5时,60125y ,∵1211>,∵不符合题意,舍去;当x =6时,60106y ==, ∵1011<, ∵符合题意,此栅栏总长为:2261022x y ;答:应选择x = 6的设计方案,此栅栏总长为22m .【点拨】本题考查了反比例函数的应用,解题的关键是:(1)根据各数量之间的关系,找出y 与x 的函数关系式;(2)利用反比例函数图象上点的坐标特征,求出x =5和x =6时的y 值.20.(1)见分析(2)y 是变量k 的函数.【分析】(1)根据一元二次方程定义得k ≠0,再计算△得()22k 1∆=-,而k 是整数,则2k -1≠0,得到△>0,根据△的意义即可得到方程有两个不相等的实数根,(2)先根据求根公式求出一元二次方程()2kx 4k 1x 3k 30-+++=的解为x =3或x =11k+,而k 是整数,x 1<x 2,则有x 1=11k+,x 2=3,代入得到21y x x 2=--即可得出结论, 解:(1)方程()2kx 4k 1x 3k 30-+++=是一元二次方程,∵k ≠0,()()()224k 14k 3k 32k 1∆=+-+=-, ∵k 是整数,∵k ≠12,2k -1≠0, ∵()22k 1∆=->0,∵方程有两个不相等的实数根;(2)y 是k 的函数,解方程得:x =∵x =3或x =11k+, ∵k 是整数,∵1k ≤1,∵11k+≤2<3, 又∵x 1<x 2,∵x 1=11k+,x 2=3, ∵2111y x x 2312k k ⎛⎫=--=-+-=- ⎪⎝⎭, ∵y 是变量k 的函数.21.-1【分析】根据反比例函数的定义即可求解.解:∵()2312m m y m x ++=+是关于x 的反比例函数,∵231120.m m m ⎧++=-⎨+≠⎩, 解得122m m m =-=-⎧⎨≠-⎩或, ∵1m =-,故答案为:-1.【点拨】本题考查了反比例函数的定义,关键要注意x 的指数为-1,系数不等于0要同时成立.22.2mn,1. 【分析】根据P 点在反比例函数上可得2mn =,再将分式化简后将值代入计算即可.解:原式=22222m n m n m n m n m n++-÷-- =222222m m n m n m n-⋅- =2mn, ∵点(,)p m n 是反比例函数2y x=图象上一动点, ∵2n m =,即2mn =, 将2mn =代入,原式=212=. 【点拨】本题考查反比例函数上点的坐标特征,分式的化简求值.熟练掌握分式的混合运算的运算顺序和运算法则是解题关键.23.(1)甲商品的进价为100元/件,乙商品的进价为80元/件;(2)960y x=;小丽最多可以购买10件乙种商品. 【分析】(1)设乙商品的进价为x 元/件,根据用2000元购进甲种商品的件数=用1600元购进乙种商品的件数即可列出关于x 的方程,解方程并检验即得结果;(2)根据购买乙种商品的数量=960除以该商品的销售单价即得y 与x 的函数关系式;由超市销售乙种商品,至少要获得20%的利润可得关于x 的不等式,解不等式即可求出x 的范围,进一步即可求出结果.解:(1)设乙商品的进价为x 元/件,则甲商品的进价为(x +20)元/件, 根据题意,得:2000160020x x =+, 解得:x =80,经检验:x =80是所列方程的解,x +20=100,答:甲商品的进价为100元/件,乙商品的进价为80元/件.(2)y 与x 的函数关系式为960y x=; 根据题意,得:808020%x -≥⨯,解得:96x ≥,∵10y ≤,即小丽最多可以购买10件乙种商品.【点拨】本题考查了分式方程的应用、一元一次不等式的应用和列出实际问题中的反比例函数关系式,属于常考题型,正确理解题意、找准相等与不等关系是解题的关键.24.(1)6000p V=(2)气体压强为150kPa (3)体积V 应不少于15ml 【分析】(1)利用待定系数法进行求解即可;(2)把40ml V =代入反比例函数解析式求解即可;(3)把400kPa p =代入反比例函数解析式求解即可.(1)解:设k p V=, 由图可得,反比例函数图象过()30,200,20030k ∴=, 解得6000k =,∵反比例函数的解析式为6000p V=; (2)当40ml V =时,6000p==,15040∵气体压强为150kPa;p=时,(3)当400kPa6000400=,VV=,解得15∵体积V应不少于15ml.【点拨】本题考查了反比例函数的应用,熟练掌握知识点是解题的关键.。
一、反比例函数的定义:
反比例函数是指其表达式可以表示为y=k/x(k≠0),其中k为常数,x≠0。
二、反比例函数的一般式:
1.y=k/x
2.k为比例系数,表示常数项。
三、反比例函数的图像特点:
1.垂直于y轴;
2.不过原点,但会经过x轴的正半轴和y轴的正半轴;
3.上升(k>0)或下降(k<0)。
四、反比例函数的性质:
1.定义域:x≠0,值域:y≠0
2.渐近线:x轴和y轴是反比例函数的渐近线。
3.对称性:关于y轴对称。
4.单调性:k>0时,单调递减;k<0时,单调递增。
五、反比例函数图像的平移:
1.y=k/(x-h):左右平移h个单位;
2.y=k/(x)+v:上下平移v个单位。
六、反比例函数与直线的关系:
1. 反比例函数与直线y=kx的图像在一起;
2. 直线y=kx可以看做反比例函数的简化形式,即k=1
七、反比例函数的应用:
1.反比例函数在实际中常用于描述两个变量之间的比例关系,如一方
的量增大,另一方的量就会减小的规律。
2.可以用反比例函数解决实际问题,如物品的价格与销量之间的关系、速度与时间之间的关系等。
第六章反比例函数及反比例函数k的几何意义专题训练北师大版2024—2025学年九年级上册反比例函数比例系数k的几何意义(1)意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:例1.如图,点P是反比例函数y=(k≠0)的图象上任意一点,过点P作PM⊥x轴,垂足为M,若△POM的面积等于3,则k的值等于()A.﹣6B.6C.﹣3D.3变式1.如图,在▱AOBC中,对角线AB、OC交于点E,双曲线经过A、E两点,若▱AOBC的面积为18,则k的值是()A.5B.6C.7D.8变式2.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣4变式3.如图,点P是反比例函数图象上的一点,PF⊥x轴于F点,且Rt△POF面积为4.则k的值为()A.8B.﹣8C.﹣4D.4变式4.如图,点M是反比例函数y=(x<0)图象上一点,MN⊥y 轴于点N.若P为x轴上的一个动点,则△MNP的面积为()A.2B.4C.6D.无法确定变式5.如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x﹣2于点Q,连接OP,OQ,当点P在曲线C上运动,且点P在Q上方时,△POQ面积的最大值为()A.2B.3C.4D.6变式6.如图,已知点A为反比例函数y=(x<0)的图象上一点,过点A作AB⊥y轴,垂足为B,若△OAB的面积为3,则k的值为()A.3B.﹣3C.6D.﹣6变式7.关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△P AB中,PB∥y轴,AB∥x轴,PB 与AB相交于点B.若△P AB的面积大于12,则关于x的方程(a ﹣1)x2﹣x+=0的根的情况是()A.2个不相等的实数根B.2个相等的实数根C.1个实数根D.无实数根变式8.如图,两个反比例函数y1=和y2=在第一象限内的图象分别是C1和C2,设点P在C1上,P A⊥x轴于点A,交C2于点B,则△POB的面积为()A.4B.2C.1D.6变式9.如图,若反比例函数的图象经过点A,AB⊥x轴于点B,C点是y轴上一点,且△ABC的面积4,则k的值为()A.﹣8B.﹣4C.4D.8变式10.如图,反比例函数的图象经过矩形OABC的边AB的中点D,若矩形OABC的面积为6,则k的值为()A.﹣3B.3C.﹣6D.6变式11.如图,点A是反比例函数的图象上的一点,过点A作AB ⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC 的面积为3,则k的值是()A.3B.﹣6C.6D.﹣3变式12.下面四个图中反比例函数的表达式均为,则阴影部分的图形的面积为3的有()A.1个B.2个C.3个D.4个变式13.如图,将一块含30°角的三角板AOB按如图所示摆放在平面直角坐标系中,∠B=60°,∠BAO=90°,△AOB的面积为4,BO与x轴的夹角为30°,若反比例函数的图象经过点A,则k的值为()A.3B.C.6D.9变式14.如图1,在△OAB中,∠AOB=45°,点B的坐标为,点A在反比例函数的图象上,设△OAB的面积为S1;如图2,在△ABC中,AB=AC,BC在x轴上,且OB:BC=1:2,点A在反比例函数的图象上,设△ABC的面积为S2,则S1+S2的值为()A.B.5C.D.变式15.如图,已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线过OB的中点E,且与边BC交于点D,若△DOE的面积为7.5,则k的值是()A.5B.10C.15D.变式16.如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为8.若点P(a,4)也在此函数的图象上,则a的值是()A.2B.﹣2C.4D.﹣4变式17.如图,在平面直角坐标系xOy中,点A、B分别在y、x 轴上,BC⊥x轴,点M、N分别在线段BC、AC上,BM=CM,NC=2AN,反比例函数y=(x>0)的图象经过M、N两点,P为x轴正半轴上一点,且OP:BP=1:4,△APN的面积为3,则k的值为()A.B.C.D.变式18.如图,在平面直角坐标系中,平行四边形ABCD与y轴分别交于E、F两点,对角线BD在x轴上,反比例函数的图象过点A并交AD于点G,连接DF.若BE:AE=1:2,AG:GD=3:2,且△FCD的面积为,则k的值是()A.B.3C.D.5变式19.如图,平面直角坐标系中,矩形OABC的边与函数y=(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4B.6C.8D.不能确定例2.如图,矩形OABC的顶点A,C分别在x轴、y轴的正半轴上,它的对角线OB与函数的图象相交于点D,且,若矩形OABC的面积为24,则k的值是.变式1.如图,已知在平面直角坐标系xOy中,点P是▱ABCO对角线OB的中点,反比例函数的图象经过点A,点P.若▱ABCO的面积为30,且y轴将▱ABCO的面积分为1:3,则k的值为.变式2.如图,在平面直角坐标系xOy中,点A,B都在反比例函数y=(x>0)的图象上,延长AB交y轴于点C,过点A作AD⊥y轴于点D,连接BD并延长,交x轴于点E,连接CE.若AB=2BC,△BCE的面积是4.5,则k的值为.变式3.如图,在平面直角坐标系xOy中,等腰Rt△OAB,∠B=90°,点A在x轴正半轴上,点B在第一象限内,反比例函数y=的图象与AB交于点C,连接OC,若BC=2AC,△OBC的面积为6,则k的值为.变式4.如图,在平面直角坐标系中,C,A分别为x轴、y轴正半轴上的点,以OA,OC为边,在第一象限内作矩形OABC,且S矩形OABC=8,将矩形OABC翻折,使点B与原点O重合,折痕为MN,点C的对应点C'落在第四象限,过M点的反比例函数y=(k ≠0)的图象恰好过MN的中点,则点C'的坐标为.变式5.如图,在平面直角坐标系中,点A、C在y轴上,且,点B(﹣2,0)在x轴上,将△ABC绕点A逆时针旋转90°后得到△AB'C′,线段AB′与双曲线交于点D,连接B′C、C′C,当点D为AB′中点,且S△B'CC′=6时,则k的值是.变式6.如图,在△AOB中,OC平分∠AOB,=,反比例函数y=(k<0)图象经过点A、C两点,点B在x轴上,若△AOB的面积为9,则k的值为.变式7.如图,点A,B,C,D是菱形的四个顶点,其中点A,D在反比例函数y=(m>0,x>0)的图象上,点B,C在反比例函数y=(n<0)的图象上,且点B,C关于原点成中心对称,点A,C的横坐标相等,则的值为;过点A作AE∥x轴交反比例函数y=(n<0)的图象于点E,连结ED并延长交x轴于点F,连结OD.若S△DOF=7,则m的值为.变式8.如图,A(a,b)、B(﹣a,﹣b)是反比例函数y=的图象上的两点,分别过点A、B作y轴的平行线,与反比例函数y=的图象交于点C、D,若四边形ACBD的面积是8,则m、n之间的关系是.变式9.如图,平面直角坐标系xOy中,Rt△ABO的斜边BO在x轴正半轴上,OB=5,反比例函数y=(x>0)的图象过点A,与AB边交于点C,且AC=3BC,则a的值为,射线OA,射线OC分别交反比例函数y=(b>a>0)的图象于点D,E,连接DE,DC,若△DEC的面积为45,则b的值为.变式10.如图,点A、B在反比例函数y=(x>0)的图象上,延长AB交x轴于C点,若△AOC的面积是12,且点B是AC的中点,则k=.变式11.如图,菱形ABCD中,∠ABC=120°,顶点A,C在双曲线上,顶点B,D在双曲线上,且BD经过点O.若k1+k2=2,则菱形ABCD面积的最小值是.变式12.如图,在平面直角坐标系xOy中,正方形ABCD的顶点A、C恰好落在双曲线上,且点O在AC上,AD交x轴于点E.①当A点坐标为(1,m)时,D点的坐标为;②当CE平分∠ACD时,正方形ABCD的面积为.例3.如图,O为坐标原点,点A(﹣1,5)和点B(m,﹣1)均在反比例函数图象上(1)求m,k的值;(2)当x满足什么条件时,﹣x+4>﹣;(3)P为y轴上一点,若△ABP的面积是△ABO面积的2倍,直接写出点P的坐标.变式1.已知点A(a,ma+2)、B(b,mb+2)是反比例函数y=图象上的两个点,且a>0,b<0,m>0.(1)求证:a+b=﹣;(2)若OA2+OB2=2a2+2b2,求m的值;(3)若S△OAB=3S△OCD,求km的值.变式2.如图,双曲线y=上的一点A(m,n),其中n>m>0,过点A作AB⊥x轴于点B,连接OA.(1)已知△AOB的面积是3,求k的值;(2)将△AOB绕点A逆时针旋转90°得到△ACD,且点O的对应点C恰好落在该双曲线上,求的值.。
人教版九年级数学下册第二十六章-反比例函数专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,反比例函数k y x=过点A ,正方形ABOC 的边长为2,则k 的值是( )A .2B .2-C .4D .4-2、如图,AOB 和BCD △均为等腰直角三角形,且顶点A 、C 均在函数(0)k y x x=>的图象上,连结AD 交BC 于点E ,连结OE .若4OAE S =△,则k 的值为( )A .22B .23C .4D .423、关于反比例函数12y x=,下列说法不正确的是( ) A .图象经过(2,6) B .图象位于一、三象限 C .图象关于直线y x =对称 D .y 随x的增大而增大4、已知点(x 1,y 1),(x 2,y 2)均在双曲线y =﹣1x上,下列说法中错误的是( ) A .若x 1=x 2,则y 1=y 2 B .若x 1=﹣x 2,则y 1=﹣y 2 C .若0<x 1<x 2,则y 1<y 2D .若x 1<x 2<0,则y 1>y 25、如图,OAC 和BAD 都是等腰直角三角形,90ACO ADB ∠=∠=︒,反比例函数6y x=在第一象限的图象经过点B ,则OAC 与BAD 的面积之差OACBADSS-为( )A .9B .12C .6D .36、若反比例函数k y x=的图象经过点(4,1)-,则这个函数的图象一定经过点( )A .(4,1)--B .1,42⎛⎫- ⎪⎝⎭C .(4,)1-D .1,42⎛⎫ ⎪⎝⎭7、如图,四边形OABC 是矩形,四边形ADEF 是边长为2的正方形,点A ,D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在线段AB 上,点B ,E 在反比例函数y =k x(k >0)的图象上,若S 四边形OABC ﹣S 四边形ADEF =2,则k 的值为( )A .2B .3C .4D .68、若点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)都是反比例函数y =21a x--的图象上的点,并且x 1<0<x 2<x 3,则下列各式中正确的是( ) A .y 1<y 3<y 2B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 1<y 2<y 39、如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x10、反比例函数4y x-=与一次函数1y x =-在同一坐标系中的大致图象可能是( ) A . B . C . D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、已知反比例函数2k y x+=,在x >0时,y 随x 的增大而减小,则k 的取值范围是_____.2、如图,四边形ABCO 是平行四边形,2, 6.OA AB ==点C 在x 轴的负半轴上,将 ABCO 绕点A 逆时针旋转得到平行四边形ADEF ,AD 经过点O ,点F 恰好落在x 轴的正半轴上.若点D 在反比例函数(0)ky x x=<的图像上,则k 的值为_________.3、若反比例函数y =1kx-,当x >0时,y 随着x 的增大而增大,则k 的取值范围是_______. 4、反比例函数1y x=-(x <0)图象上的点的函数值y 随x 增大而_____ (填“增大”或“减小”). 5、如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线ky x=的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2020,n )均在该波浪线上,则mn =________.三、解答题(5小题,每小题10分,共计50分) 1、如图:一次函数的图象与反比例函数ky x=的图象交于()2,6A -和点()4,B n .(1)求点B的坐标;(2)根据图象回答,当x在什么范围时,一次函数的值大于反比例函数的值.2、如图,在平面直角坐标系中,一次函数y=﹣x+1与反比例函数y=kx的图象在第四象限相交于点A(2,﹣1),一次函数的图象与x轴相交于点B.(1)求反比例函数的表达式及点B的坐标;(2)当一次函数值小于反比例函数值时,请直接写出x的取值范围是;(3)点C是第二象限内直线AB上的一个动点,过点C作CD∥x轴,交反比例函数y=kx的图象于点D,若以O,B,C,D为顶点的四边形为平行四边形,请直接写出点C的坐标为.3、心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,第分钟时学生的注意力更集中.(2)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?请说明理由.4、如图,已知一次函数122y x=-与反比例函数kyx=的图象在第一、三象限分别交于A,B两点,点B的横坐标为2-,连接,OA OB.(1)求k的值(2)求AOB的面积.5、我国自主研发多种新冠病毒有效用药已经用于临床救治.某新冠病毒研究团队测得成人注射一针某种药物后体内抗体浓度y(微克/ml)与注射时间x天之间的函数关系如图所示(当20x≤时,y与x是正比例函数关系;当20x≥时,y与x是反比例函数关系).(1)根据图象求当20x≥时,y与x之间的函数关系式;(2)当20x≥时,体内抗体浓度不高于140微克/ml时是从注射药物第多少天开始?---------参考答案----------- 一、单选题 1、D 【分析】根据正方形ABOC 的边长为2,求出点A (-2,2),根据反比例函数ky x=过点A ,将点A 坐标代入解析式求出k 即可. 【详解】解:∵正方形ABOC 的边长为2, ∴OB =OC =2, ∴点A (-2,2),∵反比例函数k y x=过点A , ∴224k xy ==-⨯=-. 故选:D . 【点睛】本题考查待定系数法求反比例函数解析式,正方形的性质,解题关键是根据正方形边长得出点A 坐标. 2、C 【分析】先证明,AO CB ∥可得4,ABOAEOSS==如图,过A 作AQ x ⊥轴于,Q 利用等腰直角三角形的性质证明12,2AOQAOBSS ==再利用反比例函数k 值的几何意义可得答案.【详解】解: AOB 和BCD △均为等腰直角三角形,45,AOB CBD ∴∠=︒=∠ ,AO CB ∴∥ 4,ABO AEOSS∴==如图,过A 作AQ x ⊥轴于,QAOB 为等腰直角三角形,,90,AO AB OAB ∴=∠=︒,QO QB ∴=12,2AOQAOBSS ∴==24,AOQk S∴==反比例函数的图象在第一象限,则0,k >4.k ∴=故选C 【点睛】本题考查的是等腰直角三角形的性质,反比例函数k 值的几何意义,掌握“反比例函数k 值的几何意义”是解本题的关键. 3、D 【分析】直接利用反比例函数的性质分别分析得出答案. 【详解】解:A 、反比例函数12y x=中,当2x =时,6y =,即该函数图象经过点(2,6),说法正确,不合题意; B 、反比例函数12y x=的图象位于第一、三象限,说法正确,不合题意; C 、反比例函数12y x=的图象关于直线y x =对称,说法正确,不合题意; D 、反比例函数12y x=的图象在每一象限内y 随x 的增大而减小,说法错误,符合题意. 故选:D . 【点睛】本题主要考查了反比例函数的性质,解题的关键是正确掌握相关性质. 4、D 【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线y =1x-,用y 1、y 2表示出x 1,x 2,据此进行判断. 【详解】解:∵点(x 1,y 1),(x 2,y 2)均在双曲线y =1x-上,∴y 1=11x -,y 2=21x -.A 、当x 1=x 2时,11x -=21x -,即y 1=y 2,故本选项说法正确;B 、当x 1=﹣x 2时,11x -=21x ,即y 1=﹣y 2,故本选项说法正确; C 、因为双曲线y =1x-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确;D 、因为双曲线y =1x-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1<y 2,故本选项说法错误; 故选:D . 【点睛】本题主要考查了反比例函数的图象性质,熟悉掌握反比例函数的图象变化进行比较是解题的关键. 5、D 【分析】已知反比例函数的解析式为y =6x ,根据系数k 的代数意义,设函数图象上点B 的坐标为(m ,6m)再结合已知条件求解即可; 【详解】解:如图,设点C (n ,0),∵点B 在反比例函数y =6x的图象上,∴设点B (m ,6m).∵△OAC 和△BAD 都是等腰直角三角形,∴点A 的坐标为(n ,n ),点D 的坐标为(n ,6m ),AD =BD , ∴n −6m =m −n ,化简整理得m 2−2mn =−6. ∴S ΔOAC −S ΔBAD =12n 2−12(m −n )2=−12m 2+mn =−12(m 2−2mn ), ∴S △OAC −S ΔBAD =3.故选D .【点睛】本题主要考查了反比例函数与几何综合,三角形面积,等腰直角三角形的性质,解题的关键在于能够熟练掌握反比例函数图像上点的坐标特征.6、C【分析】根据已知条件求出k 的值判断即可;【详解】 ∵反比例函数k y x=的图象经过点(4,1)-,∴()414k =-⨯=-, A 中,()()4144-⨯-=≠-,所以函数的图象不经过该点,故本项错误;B 中,14242⎛⎫-⨯=-≠- ⎪⎝⎭,所以函数的图象不经过该点,故本项错误; C 中,()414⨯-=-,所以函数的图象经过该点,故本项正确;D 中,1422⨯=,所以函数的图象不经过该点,故本项错误;【点睛】本题主要考查了反比例函数图象上点的坐标特征,准确计算是解题的关键.7、D【分析】设B 点坐标为(m ,n ),则OA =m ,AB =n ,根据S 四边形OABC ﹣S 四边形ADEF =2,得到2OA AB AD DE ⋅-⋅=,即42OA AB ⋅-=,则6mn =,由此即可得到答案.【详解】设B 点坐标为(m ,n ),∴OA =m ,AB =n ,∵S 四边形OABC ﹣S 四边形ADEF =2,∴2OA AB AD DE ⋅-⋅=,即42OA AB ⋅-=,∴6mn =,又∵点B 在反比例函数k y x =上,∴6k mn ==故选D .【点睛】本题主要考查了反比例函数比例系数的几何意义,解题的关键在于能够熟练掌握反比例函比例系数的几何意义.8、B【分析】先根据20a ≥,可以得到210a --<,则可得到反比例函数21a y x --=的图象位于二、四象限,如图在每个象限内,y 随x 的增大而增大,据此求解即可.解:∵20a ≥,∴211a +≥∴210a --<, ∴反比例函数21a y x--=的图象位于二、四象限,如图,在每个象限内,y 随x 的增大而增大,∵x 1<0<x 2<x 3,∴y 2<y 3<y 1.故选B .【点睛】本题主要考查了比较反比例函数的函数值的大小,解题的关键在于能够根据题意得到210a --<从而判断出反比例函数图像的增减性.9、A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】 解:设这个反比例函数的表达式为(0)k y k x=≠,由题意,将点(3,1)P --代入得:3(1)3k =-⨯-=, 则这个反比例函数的表达式为3y x =,【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键.10、A【分析】反比例函数y=﹣4x的图象位于第二、四象限,一次函数y=x﹣1的图象必过第一、三,四象限,且与y轴的交点在y轴负半轴上,根据以上两个特征即可确定结果.【详解】解:∵y=﹣4x中的比例系数为-4∴反比例函数y=﹣4x的图象位于第二、四象限,∵一次函数y=x﹣2中比例系数为正数1,∴一次函数y=x﹣2的图象必过第一、三象限,∵一次函数y=x﹣2中b=-2,∴一次函数y=x﹣2的图象还过第四象限,即一次函数y=x﹣2的图象过第一、三、四象限,∴满足题意的是选项A,故选A.【点睛】本题考查了反比例函数与一次函数的图象与性质,在给定了反比例函数与一次函数的解析式后,根据它们的比例系数即可确定函数图象经过的象限,根据一次函数的b的符合可最后确定一次函数所经过的象限.二、填空题【解析】【分析】 反比例函数(0)k y k x=≠当0k >时,图象分布在一、三象限,在每个分支中,y 随x 的增大而减小;当0k <时,图象分布在二、四象限,在每个分支中,y 随x 的增大而增大. 【详解】 解:根据题意,反比例函数2k y x+=,在x >0时,y 随x 的增大而减小, 可知该反比例函数图象分布在第一象限,20k +>2k ∴>-故答案为:2k >-.【点睛】本题考查反比例函数的图象与性质,是重要考点,掌握相关知识是解题关键.2、【解析】【分析】根据平行四边形的性质和旋转的性质可以求得点D 的坐标,从而可以求得k 的值.【详解】解:如图,作DM ⊥x 轴由题意可得,OA =2,AF =2,∴∠AFO =∠AOF ,∵AB ∥OF ,∠BAO =∠OAF ,∴∠BAO =∠AOF ,∴∠BAF +∠AFO =180°,解得,∠BAO =60°,∴∠DOC =60°,∵AO =2,AD =6,∴OD=4,∴点D 的横坐标是:-4×cos60°=-2,纵坐标为:-4×sin60°=∴点D 的坐标为(-2,,∵D 在反比例函数y=kx (x <0)的图象上,∴2k ,得k故答案为:【点睛】本题考查了反比例函数图象上点的坐标特征、平行四边形的性质、坐标与图形,解答本题的关键是明确题意,利用数形结合的思想解答.3、k>1【解析】【分析】若反比例函数y=1kx-,当x>0时,y随着x的增大而增大,即反比例系数1-k<0,从而求得k的范围.【详解】解:∵反比例函数y=1kx-,当x>0时,y随着x的增大而增大,∴1-k<0解得:k>1.故答案为:k>1.【点睛】正确理解反比例函数的性质,能把函数的增减性与比例系数的符号相结合解题,是最基本的要求.4、增大【解析】【分析】根据反比例函数的比例系数10k=-<进而判断函数的增减性,即可求得答案【详解】解:10k=-<∴反比例函数1yx=-(x<0)图象上的点的函数值y随x增大而增大故答案为:增大【点睛】本题考查了判断反比例函数的增减性,理解“0k<时,反比例函数图象在每个象限内是y随x增大而增大”是解题的关键.5、18【解析】【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为2,A,B之间的水平距离为2,双曲线解析式为y=12x,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q、点Q'离x轴的距离相同,都为3,即点Q的纵坐标n=3,即可得到mn的值.【详解】解:由图可得,A,C之间的水平距离为6,20186=3362÷…,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由B(2,6)可得,2612k=⨯=∴双曲线解析式为y=12x,202020182-=,故点Q与点P的水平距离为2,∴点Q'的横坐标224=+=,∴在y=12x中,令x=4,则y=3,∴点Q、点Q'离x轴的距离相同,都为3,即点Q的纵坐标n=3,∴6318mn =⨯=,故答案为:18.【点睛】此题考查图象规律的探究,根据图象中点的坐标得到点坐标的变化规律是解题的关键.三、解答题1、(1)()4,3B -;(2)2x <-或04x <<.【分析】(1)先根据点A 的坐标可得反比例函数的解析式,再将点B 的坐标代入计算即可得;(2)结合点,A B 的坐标,根据一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方即可得.【详解】解:(1)将点()2,6A -代入k y x=得:2612k =-⨯=-, 则反比例函数的解析式为12y x =-, 将点()4,B n 代入12y x =-得:1234n =-=-, 则点B 的坐标为()4,3B -;(2)一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方, 2x ∴<-或04x <<.【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握待定系数法和函数图象法是解题关键.2、(1)2y x-=,(1,0)B ;(2)10x -<<或2x >;(3)(1或(1 【分析】(1)将点A 坐标代入反比例函数关系式求出k ,把0y =代入一次函数关系式求得B 点横坐标,进而求得结果;(2)先求出直线和反比例函数另一个交点坐标,然后由图象得出结果;(3)因为//CD OB ,所以只需CD OB =,设点C 的纵坐标是a ,表示出C 、D 两点横坐标,列出方程求得结果.【详解】解:(1)k y x =过(2,1)A -, 2(1)2k xy ∴==⨯-=-,2y x-∴=, 由0y =得,10x -+=,1x ∴=,(1,0)B ∴;(2)由21x x -=-+得, 12x =,21x =-,∴当一次函数值小于反比例函数值时,10x -<<或2x >,故答案是:10x -<<或2x >;(3)设(1,)C a a -,2(D a -,)a , 2|1|CD a a ∴=-+, 当CD OB =时,2|1|1a a-+=,a ∴=1a =±C 在第二象限,a =1a =(1C ∴或(1,故答案是:(1或(,1.【点睛】 本题考查了反比例函数、一次函数及其图象性质,平行四边形判定等知识,解题的关键是设点的坐标,正确表示线段长度.3、(1)5;(2)能,理由见解析.【分析】(1)根据函数解析分别求得5x =时,30x =时的函数值,即可得到结论;(2)分别求出注意力指数为36时的两个时间,再将两时间之差和19比较,大于19则能讲完,否则不能.【详解】设线段AB 的解析式为:y AB =kx +b ,把(10,50)和(0,30)代入得,105030k b b +=⎧⎨=⎩,解得230k b =⎧⎨=⎩, ∴直线AB 的解析式为:230AB y x =+;设双曲线CD 的函数关系式为:CD a y x =, 把(20,50)代入得,50=20a , ∴a =1000,∴双曲线CD 的函数关系式为:1000CD y x=; (1)当5x =时,40AB y =,30x =时,1003CD y = 100403> 故答案为:5;(2)当y =40时,则2x +30=40,解得x =5;当y =40时,则1000x=40,解得x =25. ∴25﹣5=20>18.∴教师能在学生注意力达到所需要求状态下讲完这道题.【点睛】本题考查了反比例函数与一次函数的应用,根据函数图象获取信息是解题的关键.4、(1)6k =;(2)8.【分析】(1)先根据一次函数的解析式求出点B 的坐标,再利用待定系数法即可得;(2)设一次函数122y x =-与x 轴的交点为点C ,先根据一次函数的解析式求出点C 的坐标,再联立一次函数和反比例函数的解析式求出点A 的坐标,然后根据AOB 的面积等于AOC △的面积与BOC 的面积之和即可得.【详解】解:(1)对于一次函数122y x =-,当2x =-时,1(2)232y =⨯--=-,即(2,3)B --,将点(2,3)B --代入ky x =得:2(3)6k =-⨯-=;(2)如图,设一次函数122y x =-与x 轴的交点为点C ,当0y =时,1202x -=,解得4x =,即(4,0)C ,由(1)可知,反比例函数的解析式为6y x =, 联立1226y x y x⎧=-⎪⎪⎨⎪=⎪⎩,解得23x y =-⎧⎨=-⎩或61x y =⎧⎨=⎩, 则(6,1)A , 所以114143822AOC BOC AOB SS S =+=⨯⨯+⨯⨯=, 即AOB 的面积为8.【点睛】本题考查了反比例函数与一次函数的综合等知识点,熟练掌握待定系数法是解题关键.5、(1)5600y x=;(2)体内抗体浓度不高于140微克/ml 是从注射药物第40天开始 【分析】(1)直接利用反比例函数解析式求法得出答案;(2)结合所求解析式,把140y =代入求出答案.【详解】解:(1)设当20x 时,y 与x 之间的函数关系式是k y x =, 图象过(20,280)解得:5600k =, y 与x 之间的函数关系式是5600y x=; (2)当20x ≥时,5600140x=,解得:40x =, ∴体内抗体浓度不高于140微克/ml 是从注射药物第40天开始.【点睛】本题主要考查了反比例函数的应用,解题的关键是正确求出函数解析式.。
专题20反比例函数(3个知识点4种题型1种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)知识点2.反比例函数表达式的确定(重点)知识点3.根据实际问题列反比例函数的表达式(重点)【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值题型2.反比例关系的应用题型3.反比例函数关系的判断及应用题型4.应用几何图形中的数量关系建立反比例函数关系【方法三】仿真实战法考法.反比例函数的概念【方法四】成果评定法【学习目标】1.理解反比例函数的概念,会判断一个函数是不是反比例函数。
2.能结合具体问题确定反比例函数的表达式,并会确定实际问题中自变量的取值范围,求出函数值。
【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即xy k=,或表示为kyx=,其中k是不等于零的常数.一般地,形如kyx=(k为常数,0k≠)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.注意:(1)在kyx=中,自变量x是分式kx的分母,当0x=时,分式kx无意义,所以自变量x的取值范围是,函数y的取值范围是0y≠.故函数图象与x轴、y轴无交点.(2)kyx=()可以写成()的形式,自变量x的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)kyx=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k,从而得到反比例函数的解析式.【例1】(2023春•邗江区期末)下列式子中,表示y是x的反比例函数的是()A.xy=1B.y=C.y=D.y=【变式】(2022秋•怀化期末)下列函数不是反比例函数的是()A.y=3x﹣1B.y=﹣C.xy=5D.y=知识点2.反比例函数表达式的确定(重点)待定系数法求反比例函数解析式一般步骤:【例2】(2022秋·九年级单元测试)已知y=y1-y2,y1与x成反比例,y=5;当x=1时,y=-1;求当x=-1时,y的值.知识点3.根据实际问题列反比例函数的表达式(重点)【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值一、单选题2.(2022秋•岳阳县期末)若函数y=(m+4)x|m|﹣5是反比例函数,则m的值为()A.4B.﹣4C.4或﹣4D.03.(2022秋•惠来县期末)函数y=x k﹣1是反比例函数,则k=()A.3B.2C.1D.0题型2.反比例关系的应用k15.(2023春·上海浦东新·九年级校考阶段练习)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,16.(2022秋·河北保定·九年级校联考阶段练习)写出下列函数关系式,指出其中的正比例函数和反比例函题型4.应用几何图形中的数量关系建立反比例函数关系19.(2022春·九年级课时练习)如图,某养鸡场利用一面长为11m 的墙,其他三面用栅栏围成矩形,面积为260m ,设与墙垂直的边长为x m ,与墙平行的边长为y m .(1)直接写出y 与x 的函数关系式为______;(2)现有两种方案5x =或6x =,试选择合理的设计方案,并求此栅栏总长.20.如图,在矩形ABCD 中,点P 是BC 边上一动点,连接AP ,过点D 作DE AP ⊥于点E.设AP x =,DE y =,若6AB =,8BC =,试求y 与x 之间的函数关系式.【方法三】仿真实战法考法.反比例函数的概念1.(2023•临沂)正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为105m3,设土石方日平均运送量为V(单位:m3/天),完成运送任务所需要的时间为t(单位:天),则V与t满足()A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系2.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2【方法四】成果评定法一、单选题A.①②B.9.(2022春·九年级课时练习)下列选项中,能写成反比例函数的是(A.人的体重和身高B.正三角形的边长和面积二、填空题18.(2021春·全国·九年级专题练习)已知反比例函数的解析式为三、解答题19.(2023秋·九年级课时练习)下列例系数.。
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
专题26.14反比例函数与几何综合专题(基础篇)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.如果等腰三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数关系式为()A .y=B .y=C .y=D .y=2.如图,点A 在反比例函数y =﹣x(x <0)的图象上,过点A 作AC ⊥x 轴垂足为C ,OA 的垂直平分线交x 轴于点B ,当AC =1时,△ABC 的周长为()A .1B 1+C D2+3.如图,点A 是双曲线y =6x是在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不)A .13y x=-B .3y x =-C .16y x=-D .6y x=-4.如图,反比例函数ky x=(0x >)的图象经过点()1,2A 和点(),B m n ,过点B 作BC y⊥轴与C ,若ABC 的面积为2,则点B 的坐标为()A .23,3⎛⎫ ⎪⎝⎭B .2,33⎛⎫ ⎪⎝⎭C .()2,1D .()1,25.如图,菱形AOBC 的边BO 在x 轴正半轴上,点A (2,,反比例函数kyx=图象经过点C ,则k 的值为()A .12B .C .D .6.在ABC 中90ACB ∠=︒,将Rt ABC 放在如图所示的平面直角坐标系中,ABC 的边AC x ∥轴.1AC =,点B 在x 轴上,点C 在反比例函数2(0)y x x=>的图像上,将ABC 先向左平移3个单位长度,再向下平移5个单位长度得到111A B C △,此时点1A 在反比例函数()0ky x x=<的图像上.11B C 与此图像交于点P ,则点P 的纵坐标是()A .92-B .72-C .94-D .74-7.如图,点A 在双曲线y =6x上,过A 作AC ⊥x ,垂足为C ,OA 的垂直平分线交OC 于B ,且AC =1.5,则△ABC 的周长为()A .6.5B .5.5C .5D .48.如图,在平面直角坐标系中,O 是坐标原点,在OAB ∆中,AO AB =,AC OB ⊥于点C ,点A 在反比例函数()0ky k x=≠的图像上,若4OB =,3AC =,则k 的值为().A .12B .8C .6D .39.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,60BOC ∠=︒,顶点C 的坐标为(m ,反比例函数()0ky k x=<的图象与菱形对角线AO 交于点D ,连结BD ,当DB x ⊥轴时,k 的值是()A .B .C .D .-10.如图,平行于y 轴的直线l 分别与反比例函数k y x =(x >0)和1y x=-(x >0)的图象交于M 、N 两点,点P 是y 轴上一动点,若△PMN 的面积为2,则k 的值为()A .2B .3C .4D .5二、填空题(本大题共8小题,每小题4分,共32分)11.如图反比例函数图像过A(2,2),AB ⊥x 轴于B ,则△OAB 的面积为_______12.如图,点A 、B 是反比例函数y =kx(x >0)图象上的两点,且A 、B 两点的纵坐标分别为2和1,C 在x 轴上,AC =BC ,∠ACB =90°,则k =_____.13.如图,在平面直角坐标系中,△ABO 边AB 平行于y 轴,反比例函数(0)k y x x=>的图像经过OA 中点C 和点B ,且△OAB 的面积为9,则k =________14.我市某校想种植一块面积为400平方米的长方形草坪,要求两邻边均不小于10米,草坪的一边长y (米)与另一边长x (米)之间的关系如图中曲线AB 所示,其中AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D ,连接AB ,则四边形ACDB 的面积为______平方米.15.在平面直角坐标系中,OA =AB ,∠OAB =90°,反比例函数ky x=(x >0)的图像经过A 和B 两点其中A (2,m ),且点B 的纵坐标为n ,则n =______.16.如图,在平面直角坐标中,点O为坐标原点,直线y=kx﹣(k<0)交x轴的正半轴于点A,交y轴的正半轴于点B,若BC平分∠ABO交OA于点C,AC=2OC,则k 的值为____.17.如图,在平面直角坐标系中,等边△ABC的顶点A在反比例函数y=kx(x>0)图象上,C在x轴上,AB//x轴,BC与双曲线交于点D,且BD=3CD=6,则k=_______.18.如图,在平面直角坐标系xOy中,反比例函数8yx=的图象经过A(2,4),B两点,∠AOB=45°,则点B的坐标为________.三、解答题(本大题共6小题,共58分)19.(8分)如图,在平面直角坐标系中,O为坐标原点,某反比例函数的图象经过点()1,3A--.()1求该反比例函数的解析式;()2点(),3B m 和()3,C n 均在该反比例函数的图象上,点P 在x 轴上,请画出使PB PC+的值最小的P 点位置,并求出此时点P 的坐标.20.(8分)如图,点P 的坐标是(32)-,,过点P 作x 轴的平行线交y 轴于点A ,交双曲线(0)ky x x =>于点N ,作PM AN ⊥交双曲线(0)k y x x=>于点M ,连接AM .已知PN =4.(1)求k 的值;(2)求APM △的面积.21.(10分)如图,在平面直角坐标系中,O 为坐标原点,点A ,B 在函数()0ky x x=>的图象上(点A 的纵坐标大于点B 的纵坐标),点A 的坐标为(2,4),过点A 作AD ⊥x 轴于点D ,过点B 作BC ⊥x 轴于点C ,连结OA ,AB .(1)求k 的值.(2)若CD =2OD ,求四边形OABC 的面积.22.(10分)如图,矩形ABCD 的两边AD AB 、的长分别为3、8.边BC 落在x 轴上,E 是DC 的中点,连接AE ,反比例函数my x=的图象经过点E ,与AB 交于点F .(1)直接写出AE 的长;(2)若2AF AE -=,求反比例函数的解析式.23.(10分)如图,一次函数4y x =-+的图象与反比例函数()0ky k x=≠在第一象限内的图象交于()1,A n 和()3,B m 两点.(1)求反比例函数的表达式.(2)在第一象限内,当一次函数4y x =-+的值大于反比例函数()0ky k x=≠的值时,写出自变量x 的取值范围(3)求△AOB 面积.24.(12分)如图,已知平行四边形ABCD 的顶点A 、C 在反比例函数ky x=的图象上,顶点B 、D 在x 轴上.已知点()32A -,、(50)B -,.(1)直接写出点C 、D 的坐标;(2)求反比例函数的解析式;(3)求平行四边形ABCD 的对角线AC 、BD 的长;(4)求平行四边形ABCD 的面积S .参考答案1.C试题分析:利用三角形面积公式得出xy=10,进而得出答案.解:∵等腰三角形的面积为10,底边长为x ,底边上的高为y ,∴xy=10,∴y 与x 的函数关系式为:y=.故选C .考点:根据实际问题列反比例函数关系式.2.B【分析】依据点A 在反比例函数y =﹣x(x <0)的图象上,AC ⊥x 轴,AC =1,可得OC ,再根据CD 垂直平分AO ,可得OB =AB ,再根据△ABC 的周长=AB+BC+AC =OC+AC 进行计算即可.解:∵点A 在反比例函数y =﹣x(x <0)的图象上,AC ⊥x 轴,∴AC×OC ∵AC =1,∴OC ∵OA 的垂直平分线交x 轴于点B ,∴OB =AB ,∴△ABC 的周长=AB+BC+AC =OB+BC+AC =OC+AC +1,故选:B .【点拨】本题考查了线段垂直平分线的性质以及反比例函数图象上点的坐标特征,比较容易掌握.3.D【分析】连接OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,利用反比例函数的性质和等腰直角三角形的性质,根据“AAS”可判定△COD ≌△OAE ,设A 点坐标为(a ,6a ),得出OD =AE =6a,CD =OE =a ,最后根据反比例函数图象上点C 的坐标特征确定函数解析式.解:如图,连接OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,∵A点、B点是正比例函数图象与双曲线y=6x的交点,∴点A与点B关于原点对称,∴OA=OB,∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,∴△COD≌△OAE(AAS),设A点坐标为(a,6a),得出OD=AE=6a,CD=OE=a,∴C点坐标为(-6a,a),∵-6a•a=-6,∴点C在反比例函数y=-6x图象上.故选:D.【点拨】本题主要考查了用待定系数法求反比例函数的解析式,解题时需要综合运用反比例函数图象上点的坐标特征、等腰直角三角形的性质.判定三角形全等是解决问题的关键环节.4.A【分析】根据三角形面积公式得到12•m•(2−n)=2,即2m−mn=4,再根据反比例函数图象上点的坐标特征得到mn=2,则可计算出m=3,n=23,从而可确定B点坐标.解:∵△ABC的面积为2,∴12•m •(2−n )=2,即2m −mn =4,∵反比例函数k y x=(x >0)的图象经过点A (1,2)和点B (m ,n ),∴1×2=mn ,∴2m −2=4,解得m =3,∴n =23,∴B (3,23).故选A .【点拨】本题考查了反比例函数比例系数k 的几何意义:在反比例函数k y x =图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.也考查了反比例函数图象上点的坐标特征.5.C【分析】根据题意可求出菱形的边长.再根据边BO 在x 轴正半轴上,即可判断AC x ∥轴,从而可求出C 点坐标,代入反比例函数解析式求解即可.解:∵点A (2,,∴4OA =,∴菱形的边长为4,即4AC =.∵边BO 在x 轴正半轴上,∴AC x ∥轴,∴246C A x x AC =+=+=,C A y y ==∴C (6,.将C (6,代入k y x =,得:6k =解得:k =故选C .【点拨】本题考查两点的距离公式,菱形的性质,坐标与图形以及求反比例函数解析式.利用数形结合的思想是解题关键.6.A【分析】首先由边AC ∥x 轴,AC =1,点C 在函数2(0)y x x=>的图像上,求得点C 的坐标,继而求得点A 与点B 的坐标,然后由旋转的性质、平移的性质,求得△A 1B 1C 1各顶点的坐标,再由点A 1在函数()0k y x x=<的图像上,B 1C 1与此图像交于点P ,求得答案.解:∵边AC ∥x 轴,AC =1,∴点C 的横坐标为1,∵点C 在函数2(0)y x x =>的图像上,∴y =2,∴点C 的坐标为:(1,2),∴点A 的坐标为:(0,2),点B 的坐标为:(1,0),∵将ABC 先向左平移3个单位长度,再向下平移5个单位长度得到111A B C △,,∴A 1的坐标为:(-3,﹣3),B 1的坐标为:(-2,-5),C 1的坐标为:(-2,﹣3),∵点A 1在函数()0k y x x=<的图像上,∴k =xy =-3×(﹣3)=9,∴此反比例函数的解析式为:9y x =,∵线段B 1C 1的解析式为:x =-2∴点P 的横坐标为:-2,∴点P 的纵坐标为:92y =-.故选:A .【点拨】此题属于反比例函数综合题.考查了待定系数求反比例函数解析式、旋转的性质、平移的性质以及点与函数的关系.注意求得△A 1B 1C 1各顶点的坐标是关键.7.B【分析】由于BD 是OA 的垂直平分线,那么OB AB =,据图可知A 点的纵坐标是1.5,把 1.5y =代入反比例函数解析式,易求OC ,进而可求ABC ∆的周长.解:如图所示,BD Q 是OA 的垂直平分线,OB AB ∴=,1.5AC = ,∴点A 的纵坐标是1.5,把 1.5y =代入6y x=,得61.5x =,解得4x =,4OC ∴=,ABC ∴∆的周长 1.54 5.5AC AB BC AC OB BC AC OC =++=++=+=+=,故选:B .【点拨】本题考查了反比例函数图象上点的坐标特征、线段垂直平分线的性质,解题的关键是求出A 点的坐标.8.CC 点坐标,结合AC 长即可得到A 点坐标,根点A 在反比例函数的图像上,将点A 的坐标代入反比例函数解析式中可得k 值.解:∵AO AB =,∴OAB ∆为等腰三角形,又∵AC OB ⊥,∴C 为OB 中点,∵4OB =,∴2OC =,∵3AC =,∴A 点坐标为(2,3),将A 点坐标代入反比例函数(0)k y k x=≠得,32k =,∴6k =.故选:C .【点拨】本题考查反比例函数图像上的点的性质,等腰三角形的判定和性质.利用等腰三角形的性质求得反比例函数上点的坐标是解题关键.9.C【分析】延长AC交y轴于E,如图,根据菱形的性质得AC//OB,则AE⊥y轴,再由∠BOC=60°得到∠COE=30°,则根据含30度的直角三角形三边的关系得到CE OE=2,OC=2CE=4,接着根据菱形的性质得OB=OC=4,∠BOA=30°,于是在Rt△BDO中可计算出BD=3,所以D点坐标为(−4,3),然后利用反比例函数图象上点的坐标特征可求出k的值.解:延长AC交y轴于E,如图,∵菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∴AC//OB,∴AE⊥y轴,∵∠BOC=60°,∴∠COE=30°,∴CO=2CE而顶点C的坐标为(m,∴OE=CE=-m,CO=-2m,∵CO2=CE2+OE2,即(-2m)2=(-m)2+(2,解得m=-2∴OC=2CE=4,∴C(2,-∵四边形ABOC为菱形,∴OB =OC =4,∠BOA =30°,∴OD =2BD在Rt △BDO 中,DO 2=BD 2+OB 2,即(2BD )2=BD 2+42,∴BD =3,∴D 点坐标为(−4,3),∵反比例函数()0k y k x =<的图象经过点D ,∴k =故选:C .【点拨】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了含30度的直角三角形三边的关系.10.B【分析】由题意易得点M 到y 轴的距离即为△PMN 以MN 为底的高,点M 、N 的横坐标相等,设点1,,,k M a N a a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则有11k k MN a a a +⎛⎫=--= ⎪⎝⎭,进而根据三角形面积公式可求解.解:由平行于y 轴的直线l 分别与反比例函数k y x =(x >0)和1y x=-(x >0)的图象交于M 、N 两点,可得:点M 到y 轴的距离即为△PMN 以MN 为底的高,点M 、N 的横坐标相等,设点1,,,k M a N a a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,∴11k k MN a a a+⎛⎫=--= ⎪⎝⎭,∵△PMN 的面积为2,∴111222PMN k S MN a a a+=⋅=⨯⨯= ,解得:3k =;故选B .【点拨】本题主要考查反比例函数与几何的综合,熟练掌握反比例函数与几何的综合是解题的关键.11.2【分析】根据题意可得OB=2,AB=2,然后根据三角形的面积公式即可求出结论.解:∵反比例函数图像过A(2,2),AB ⊥x 轴于B ,∴OB=2,AB=2∴S △ABC =12OB·AB=2故答案为:2.【点拨】此题考查的是坐标与图形的面积,掌握三角形的面积公式是解决此题的关键.12.6【分析】过点A 作AG ⊥x 轴于点G ,过点B 作BH ⊥x 轴于点H ,易证△AGC ≌CHB ,根据全等三角形的性质,可得GC 和CH 的值,根据A 、B 的纵坐标,表示出横坐标,列方程求解即可.解:过点A 作AG ⊥x 轴于点G ,过点B 作BH ⊥x 轴于点H ,如图所示,则有∠AGC =∠CHB =90°,∴∠GAC +∠GCA =90°,∵∠ACB =90°,AC =BC ,∴∠ACG +∠HCB =90°,∴∠GAC =∠HCB ,∴△AGC ≌CHB (AAS ),∴AG =CH =2,GC =BH =1,∴=3∵A 、B 在反比例函数的图象上,∴,22k A ⎛⎫ ⎪⎝⎭,B (k ,1),∴32k k -=,∴k =6,故答案为:6.【点拨】本题考查了反比例函数图象上点的坐标特征,设计等腰直角三角形的性质,构造全等三角形是解题的关键.13.6【分析】延长AB 交x 轴于D ,根据反比例函数k y x =(x >0)的图象经过点B ,设B k m m ⎛⎫ ⎪⎝⎭,,则OD =m ,根据△OAB 的面积为9,列等式可表示AB 的长,表示点A 的坐标,根据线段中点坐标公式可得C 的坐标,从而得出结论.解:延长AB 交x 轴于D ,如图所示:∵AB y ∥轴,∴AD ⊥x 轴,∵反比例函数k y x=(x >0)的图像经过OA 中点C 和点B ,∴设B k m m ⎛⎫ ⎪⎝⎭,,则OD =m ,∵△OAB 的面积为9,∴192AB OD ⋅=,即12AB •m =9,∴AB =18m ,∴A (m ,18k m +),∵C 是OA 的中点,∴C 11822k m m +⎛⎫ ⎪⎝⎭,,∴11822k k m m+=⋅,∴k =6,故答案为:6.【点拨】本题主要考查了反比例函数上点的坐标特征,线段的中点坐标公式,三角形面积公式,解本题的关键是设未知数建立方程解决问题.14.750【分析】由题意得y 与x 的函数关系式为400y x =,则当10x =时,4004010y ==,当40x =时,4001040y ==,即可得40AC =,10BD =,401030CD =-=,即可得.解:∵长方形草坪的面积为400平方米,∴y 与x 的函数关系式为400y x =,∴当10x =时,4004010y ==,当40x =时,4001040y ==,∵AC x ⊥轴,BD x ⊥轴,∴40AC =,10BD =,401030CD =-=,∴四边形ABCD 的面积为:()()2401030750m 2+⨯=,故答案为:750.【点拨】本题考查了反比例函数的应用,解题的关键是理解题意,掌握反比例函数的性质.15【分析】过A 作AC ⊥y 轴,垂足为C ,作BD ⊥AC ,垂足为D ,通过证△AOC ≌△ABD 可得:OC =AD =m ,AC =BD =2,即可求得B 点的纵坐标.解:如图:过A 作AC ⊥y 轴,垂足为C ,作BD ⊥AC ,垂足为D ,∵∠BAO =90°,∴∠OAC +∠BAD =90°,∠BAD +∠ABD =90°,∴∠ABD =∠CAO ,∵∠D =∠ACO =90°,AO =AB ,∴△ACO ≌△DAB (AAS ),∴AD =CO ,BD =AC ,∵A (2,m ),∴OC =AD =m ,AC =BD =2.∴点B 坐标为()2,2m m +-∴()()222m m m =+-∴解得11m =+21m =(舍去)∴n =m ﹣2,.【点拨】本题考查反比例函数图像上点的坐标特征,全等三角形的判定和性质,关键是求得BD 的长.16.【分析】过点C 作CD ⊥AB 于点D ,则OC =CD ,利用面积法结合AB =2OC ,可得出AB =2OA ,利用勾股定理可得出OA =,利用一次函数图象上点的坐标特征可求出OA ,OB的长,结合OA =可求出k 值.解:如图,过点C 作CD ⊥D ,∵BC 平分∠ABO ,∴OC =CD ,∵12BOC S OC OB ∆=⋅,1122ABC S AC OB AB CD ∆=⋅=⋅,∴2ABC BOC S AC AB S OC OB∆∆===,∴AB =2OB ,∴OA ==,当x =0时,y,当y =0时,x =∴OB =-,=OA∴()-,解得:3k =-,故答案为:-.3【点拨】本题考查了角平分线的性质、三角形的面积、勾股定理以及一次函数图象上点的坐标特征,利用面积法找出OA=是解题的关键.173【分析】过点A、D分别作x轴和垂线,垂足分别为E、F,求得CD=2,AB=BC=AC=8,利用直角三角形的性质求得CE=4,CF=1,设A,,D,利用OF-OE=CE+CF=5,列方程求解即可.解:过点A、D分别作x轴和垂线,垂足分别为E、F,∵△ABC是等边三角形,BD=3CD=6,∴CD=2,AB=BC=AC=8,∵AB//x轴,∴∠ACE=∠BCF=30°,∴CE=4,CF=1,由勾股定理得AEDF设AOF,解得:k【点拨】本题考查了反比例函数图象上点的坐标特征,含30°角的直角三角形的三边关系,解题的关键是通过含30°角的直角三角形的三边关系表示点A 和点B 的坐标.18.3⎛ ⎝⎭【分析】将OA 绕O 点顺时针旋转90°到OC ,连接AB 、CB ,作AM ⊥y 轴于M ,CN ⊥x 轴于N ,通过证得△AOB ≌△COB (SAS ),得到AB =CB ,证得△AOM ≌△CON (AAS ),求得C (4,-2),设B 点的坐标为(m ,8m),根据AB =BC ,得到关于m 的方程,解方程求得m 的值,即可求得B 的坐标.解:将OA 绕O 点顺时针旋转90°到OC ,连接AB 、CB ,作AM ⊥y 轴于M ,CN ⊥x 轴于N ,∵点A 的坐标为(2,4),∴AM =2,OM =4,∵∠AOB =45°,∴∠BOC =45°,在△AOB 和△COB 中,OA OC AOB COB OB OB ⎧⎪∠∠⎨⎪⎩===,∴△AOB ≌△COB (SAS ),∴AB =CB ,∵∠AOM +∠AON =90°=∠CON +∠AON ,∴∠AOM =∠CON ,在△AOM 和△CON 中,AOM CON AMO ONC OA OC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOM ≌△CON (AAS ),∴CN =AM =2,ON =OM =4,∴C (4,-2),设B 点的坐标为(m ,8m ),∵AB =CB ,∴2222882442m m m m-+-=-++()()()(),解得m =-(负值不合题意,舍去)故答案为:⎛ ⎝.【点拨】本题考查了反比例函数图象上点的坐标特征,三角形全等的判定和性质,作出辅助线根据全等三角形是解题的关键.19.(1)3y x =;(2)P 点坐标为5()20【分析】(1)根据待定系数法即可求解;(2)先求出B,C 的坐标,再根据对称性作A 点关于x 轴的对称点’A ,连接'BA 交x 轴于P 点,求出直线'BA 的解析式即可得到P 点坐标.解:解:()1设反比例函数解析式为k y x=把()1,3A 代入,得133k =⨯=,∴反比例函数解析式为3y x=()2把(3,)B m 代入得33m =,解得1m =,B ∴点坐标为(3)1,;作A 点关于x 轴的对称点’A ,连接'BA 交x 轴于P 点,则’3(1)A -,,''PA PB PA PB BA +=+= ,设直线'BA 的解析式为y mx n =+,则331m n m n +=-⎧⎨+=⎩,解得25m n =⎧⎨=-⎩∴直线'BA 的解析式为25y x =-,当0y =时,250x -=,解得52x =P ∴点坐标为5()20.【点拨】此题主要考查反比例函数与几何综合,解题的关键是熟知反比例函数的图像与性质、待定系数法的应用.20.(1)-14(2)4【分析】(1)由题意可得出3AP =,2N y =-.再根据PN =4,可求出AN =7,即得出N 的坐标,最后将N 的坐标代入反比例函数解析式,即可求出k 的值;(2)由题意可得出3M x =,代入所求出的反比例函数解析式,即得出M 的纵坐标,从而可求出PM 的长,最后由三角形面积公式计算即可.解:(1)由题意可知3AP =,2N =-.∵PN =4,∴AN =AP +PN =3+4=7,∴7N x =,∴N (7,-2).将N (7,-2)代入k y x =,得:27k -=解得:14=-k .(2)由题意可知3M x =.由(1)可知反比例函数解析式为:14y x =-,将3M x =代入14y x =-得:143M y =-∴1482(33P M PM y y =-=---=,∴11834223APM S AP PM =⋅=⨯⨯=△.【点拨】本题考查坐标与图形,求反比例函数的解析式,反比例函数与几何的综合.利用数形结合的思想是解题关键.21.(1)8(2)443【分析】(1)将点A 的坐标(2,4)代入()0k y x x=>,可得结果;(2)利用反比例函数的解析式可得点B 的坐标,利用三角形的面积公式和梯形的面积公式可得结果.(1)解:将点A 的坐标(2,4)代入()0k y x x =>,可得k =xy =2×4=8,∴k 的值为8;(2)∵k 的值为8,∴函数k y x =的解析式为8y x =,∵CD =2OD ,OD =2,∴CD =4,∴OC =6,∴点B 的横坐标为6,将x =6代入8y x =,得43y =,∴点B 的坐标为(6,43),∴S 四边形OABC =S △AOD +S 梯形ABCD =12×2×4+12×(43+4)×4=443.【点拨】本题主要考查了反比例函数图象上点的坐标特征,运用数形结合思想是解答此题的关键.22.(1)5(2)4y x=-【分析】(1)根据勾股定理即可求解;(2)设E 点的坐标为(x ,4),F 点的坐标是(x −3,1),代入m y x =求出x ,再求出m ,即可得出答案.解:(1)∵矩形ABCD 的两边AD AB 、的长分别为3、8,∵点E 为DC 的中点,∴CE =DE =4,在Rt △ADE 中,由勾股定理得:AE 5=;(2)∵AF −AE =2,∴AF =5+2=7,∴BF =8−7=1,设E 点的坐标为(x ,4),F 点的坐标是(x −3,1),代入m y x=得:m =4x =(x −3)•1,解得:x =−1,即m =−4,所以当AF −AE =2时反比例函数表达式是4y x=-.【点拨】本题考查了反比例函数图象上点的坐标特征,用待定系数法求反比例函数的解析式,矩形的性质等知识点,能求出E 点的坐标是解此题的关键.23.(1)3y x=.(2)1﹤x ﹤3.(3)4.【分析】(1)把A n 的值,再代入反比例函数解析式可求得k ,即可得出反比例函数的表达式;(2)根据A ,B 点的横坐标,结合图象可直接得出满足条件的x 的取值范围;(3)设一次函数与x 轴交于点C ,可求得C 点坐标,利用AOB AOC BOC S S S =-△△△可求得ABO 的面积.(1)解:(1)∵点A 在一次函数图象上,∴n =-1+4=3,∴A (1,3),∵点A 在反比例函数图象上,∴k =3×1=3,∴反比例函数的表达式为3.y x=(2)结合图象可知当一次函数值大于反比例函数值时,x 的取值范围为1<x <3.(3)如图,设一次函数与x 轴交于点C ,在y =-x +4中,令y =0可求得x =4,∴C (4,0),即OC =4,将B (3,m )代入y =-x +4,得m =1,∴点B 的坐标为(3,1).114341 4.22AOB AOC BOC S S S =-=⨯⨯-⨯⨯= 故△AOB 的面积为4.【点拨】本题是反比例函数与一次函数的综合题,主要考查函数图象的交点问题,掌握两函数图象的交点坐标满足每个函数解析式是解题的关键.24.(1)C (3,-2);D (5,0)(2)6y x =-(3)10BD =;AC =20S =【分析】(1)由题意,点A 、C ,点B 、D 关于原点对称,即可得出答案;(2)直接将点()32A -,代入反比例函数k y x =,即可求出解析式;(3)直接根据B 、D BD 的长,过点A 作AE ⊥x 轴于E ,有勾股定理可求出OA 的长,即可得出AC 的长;(4)由2ABD S S = ,即可求解.(1)解:由题意点A 、C ,点B 、D 关于原点对称,且()32A -,、(50)B -,,∴C (3,-2);D (5,0).(2)∵反比例函数图象经过点(-3,2),∴()326k xy ==-⨯=-反比例函数的解析式为6y x=-.(3)()5510BD =--=;过点A 作AE ⊥x 轴于E ,在Rt △AEO 中,AO ===∴2AC AO ==(4)Δ122210202ABD S S ==⨯⨯⨯=.【点拨】本题考查反比例函数,平行四边形,熟练运用反比例函数的对称性是解题的关键.。
《专题:反比例函数中K的几何意义》教学设计一、教学目标(一)知识与技能1.理解和掌握反比例函数(k≠0)中k的几何意义;2.K的几何意义的应用。
(二)过程与方法在教学过程中引导学生自主探索、思考及想象,经历探索K的几何意义的过程,发展学生分析归纳和概括的能力。
(三)情感态度与价值观通过学习,培养学生积极参与和勇于探索的精神,科学的学习态度,同时通过多媒体演示激发学生学习的兴趣。
二、教学重点、难点重点:反比例函数(k≠0)中k的几何意义的探究和运用;难点:灵活运用K的几何意义。
三、考点分析反比例函数是历年中考数学的一个重要考点章节,且多以大题的形式出现,常常结合三角形,四边形等相关知识综合考察,所以,应该引起广大学生的重视。
反比例函数中k的几何意义也是其中一个很重要的知识点,常在中考选择题,计算大题中进行考察。
这类考题大多考点简单但方法灵活,目的在于考察学生的数学图形思维。
本次专题目的在于让学生掌握反比例函数k几何意义这一知识要点,灵活利用这一知识点解决数学问题,并熟悉与反比例函数k几何意义的常见考察方式和解题思路。
四、学情分析知识基础:本节课学习前,学生通过学习反比例函数概念、图形和性质,对于函数图象的认识以及函数图象当中的面积计算问题有一定基础,在上一节课的学习中,学生已经掌握了反比例函数的图象与性质,能够根据图象判断出K的符号,以及解决反比例函数与一次函数相结合的面积问题。
学习方法:学生已经积累的学习函数的方法有:画图象,观察图像归纳函数性质,了解函数变化规律和函数的变换趋势等。
学生喜欢用探究式的学习方式,通过自己的分析来体验知识间的内在联系。
五、教学过程(一)、复习反馈导入新课1、若点P(2,3)在反比例函数kyx=的图像上,则k=_____ 。
2、若点P(m,n)在反比例函数kyx=的图像上,则mn=_____ 。
3、如图,S矩形ABCD= ,S△ABD=,S矩形ABCD与S△ABD有何关系?设计意图:通过这三道小题的热身,尤其是第3小题的训练,为学生过渡到反比例函数K 的几何意义的探究做一个铺垫。
反比例函数专题考点一 反比例函数的定义一般地,函数y =k x 或y =-1kx kx -1(k 是常数,k≠0)叫做反比例函数.1.反比例函数y =k x 中的k x是一个分式,所以自变量x≠0,函数与x 轴、y 轴无交点.2.反比例函数解析式可以写成xy =k(k≠0),它表明在反比例函数中自变量x 与其对应函数值y 之积,总等于已知常数k.考点二 反比例函数的图象和性质反比例函数y =k x(k≠0)的图象总是关于原点对称的, 它的位置和性质受k 的符号的影响.(1)k >0⇔图象(双曲线)的两个分支分别在一、三象限,如图①所示.图象自左向右是下降的⇔当x <0或x >0时,y 随x 的增大而减小(或y 随x 的减小而增大).(2)k <0⇔图象(双曲线)的两个分支分别在二、四象限,如图②所示.图象自左向右是上升的⇔当x <0或x >0时,y 随x 的增大而增大(或y 随x 的减小而减小).考点三 反比例函数解析式的确定由于反比例函数的关系式中只有一个未知数,因此只需已知一组对应值就可以.待定系数法求解析式的步骤:①设出含有待定系数的函数解析式;②把已知条件代入解析式,得到关于待定系数的方程;③解方程求出待定系数.考点四 反比例函数中比例系数K 的几何意义反比例函数y =k x (k≠0)中k 的几何意义:双曲线y =k x(k≠0)上任意一点向两坐标轴作垂线,两垂线与坐标轴围成的矩形面积为|k|.理由:如图①和②,过双曲线上任意一点P 作x 轴、y 轴的垂线PA 、PB 所得的矩形PAOB 的面积S =PA·PB=|y|·|x|=|xy|;∵y =k x,∴xy =k ,∴S =|k|,即过双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形面积均为|k|,同理可得S △OPA =S △AOB =12|xy|=12|k|.考点五 反比例函数的应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.复习巩固:1、(2010·桂林)若反比例函数y =k x的图象经过点(-3,2),则k 的值为( ) A .-6 B .6 C .-5 D .52、下列四个点中,有三个点在同一反比例函数y =k x的图象上,则不在这个函数图象上的点是( )A .(5,1)B .(-1,5)C .(53,3)D .(-3,-53) 3、(2010·宁波)已知反比例函数y =1x,下列结论不正确的是( ) A .图象经过点(1,1) B .图象在第一、三象限C .当x>1时,0<y<1D .当x<0时,y 随着x 的增大而增大4.反比例函数y =k -1x的图象在每条曲线上,y 随x 的增大而减小,则k 的值可为( ) A .-1 B .0 C .1 D .25、反比例函数y =1x(x >0)的图象如图所示,随着x 值的增大,y 值( ) A .增大 B .减小 C .不变 D .先减小后增大6、 (2010·兰州)已知点(-1,y1)、(2,y2)、(3,y3)在反比例函数y =-k2-1x的图象上.下列结论中正确的是( )A .y1>y2>y3B .y1>y3>y2C .y3>y1>y2D .y2>y3>y17.如图,正方形ABOC 的边长为2,反比例函数y =k x过点A , 则k 的值是( )A .2B .-2C .4D .-48、(2010·天津)已知反比例函数y =k -1x(k 为常数,k≠1). ①若点A(1,2)在这个函数的图象上,求k 的值;②若在这个函数图象的每一支上,y 随x 的增大而减小,求k 的取值范围;③若k =13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.典例分析:例1、(2010·眉山)如图,已知双曲线y =k x(k<0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点 C.若点A 的坐标为(-6,4),则△AOC 的面积为( ) A .12 B .9 C .6D .4例2、如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线y =3x(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( )A .逐渐增大B .不变C .逐渐减小D .先增大后减小例3、如图,已知直线y =ax +b 经过点A(0,-3),与x 轴交于点C ,且与双曲线相交于点B(-4,-a)、点D.(1)求直线和双曲线的函数关系式;(2)求△CDO(其中O 为原点)的面积.例4、(2010·成都)如图,已知反比例函数y =k x与一次函数y =x +b 的图象在第一象限相交于点A(1,-k +4).①试确定这两个函数的表达式;②求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.中考真题:1、(2010·玉溪)如图所示的计算程序中,y 与x 之间的函数关系对应的图象所在的象限是( )A .第一象限B .第一、三象限C .第二、四象限D .第一、四象限2、.(2009中考变式题)反比例函数y =(2m -1)xm 2-2,当x>0时,y 随x 的增大而增大,则m 的值是( )A .±1B .小于12的实数 C .-1 D .1 3、.(2010·台州)反比例函数y =6x图象上有三个点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),其中x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 3<y 2<y 14、(2010·青岛)函数y =ax -a 与y =a x(a ≠0)在同一直角坐标系中的图象可能是( )5、(2011中考预测题)如图所示,是一次函数y =kx +b 与反比例函数y =2x的图象,则关于x 的方程kx +b =2x的解为( ) A .x 1=1,x 2=2 B .x 1=-2,x 2=-1 C .x 1=1,x 2=-2 D .x 1=2,x 2=16、(2010·山西)如图,A 是反比例函数图象上一点,过点A 作AB 垂直y 轴于点B ,点P 在x 轴上,△ABP 的面积为2,则这个反比例函数的解析式为________.7、(2009中考变式题)函数y 1=x(x ≥0),y 2=4x(x>0)的图象如图所示,则下列结论: ①两函数图象的交点A 的坐标为(2,2);②当x>2时,y 2>y 1;③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小.其中正确的序号是________.8、(2010·泉州)已知点A 在双曲线y =6x上,且OA =4,过A 作AC 垂直x 轴于C ,OA 的垂直平分线交OC 于B.(1)△AOC 的面积=______;(2)△ABC 的周长为______.9、(2010·济宁)如图,正比例函数y =12x 的图象与反比例函数y =k x(k ≠0)在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△OAM 的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA +PB 最小.10、(2010·义乌)如图,一次函数y =kx +2的图象与反比例函数y =m x的图象交于点P ,点P 在第一象限.PA 垂直x 轴于点A ,PB 垂直y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、D ,且S △PBD =4,OC OA=12.(1)求点D 的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.作业:1、反比例函数3k y x+=的图象在二、四象限,则k 的取值范围是 ; 2、已知正比例函数y kx =的图像与反比例函数4k y x-=的图像有一个交点的横坐标是1-,那么它们的交点坐标分别为 。
3、函数12y x =-的自变量x 的取值范围是 . 4、已知函数(0)k y k x =≠,当12x =-时,6y =,则函数的解析式为 ;5、如果函数25(2)k y k x -=-是反比例函数,那么k= ;6、已知()1k y k x =-是反比例函数,则它的图象在第 象限。
7、若点A (7,y 1),B (5,y 2)在双曲线y=x2上,则y 1与y 2的大小关系是 ; 二、选择题1、反比例函数(0)k y k x =≠的图象经过点(2,6),则下列各点中没在该图象上的是( )A :(4,3)B :(-3,-4)C :(-2.5,-4.8)D :(5,2.8) 2、已知点A (-1,5)在反比例函数(0)k y k x=≠的图象上,则该函数的解析式为( ) A :1y x= B :25y x = C :5y x =- D :5y x = 3、下列关系式中,哪个等式表示y 是x 的反比例函数( ) A :23y x =B : 2x y =C :12y x =+D :1y x=- 4、若点(1,1-x )、225(,)4x -、)25,(3x 都在反比例函数x y 2=的图象上,则321,,x x x 的大小关系是( ) A :231x x x << B :312x x x << C :321x x x << D :132x x x <<三、解答题关于x 的一次函数2y mx n =-与反比例函数2m y x=的图象的一个交点A (1,-4),求一次函数和反比例函数的解析式;。