高二上学期12月月考试卷
- 格式:doc
- 大小:92.00 KB
- 文档页数:8
一、填空题1.抛掷两枚硬币,恰好出现一次正面向上的概率是__________. 【答案】##0.512【分析】列举出所有的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】同时抛掷两枚硬币,可能出现的所有结果有:(正,正)、(正,反)、(反,正)、(反,反).恰好出现一次正面向上的概率:.21=42P =故答案为:.122.用斜二测画法画出的水平放置的的直观图如图,其中,若原的面积ABC 1B O C O ''''==ABC 为2,则______. A O ''=【答案】1【分析】根据斜二测画法原则可还原,利用面积公式计算即可求解.ABC 【详解】由直观图可还原,如下图所示, ABC其中,又因 1,2OB O B OC O C BC B C ¢¢¢¢¢¢======,2OA BC AO A O ¢¢^=所以 11222222ABC S BC A O A O ¢¢¢¢=´=´´=即得1A O ¢¢=故答案为: .13.已知圆锥的侧面积为,且它的侧面展开图是一个半圆,则这个圆锥的底面半径是_________.2π【答案】1【分析】设出圆锥底面半径和母线长,利用侧面展开后,扇形弧长公式和面积公式进行求解.【详解】设圆锥的底面半径为r ,圆锥的母线长为l ,则,解得:,又21π2π2l =2l =2ππ2πr l ==,解得:.1r =故答案为:14.已知事件A 与事件B 相互独立,若,,则______.()0.3P A =()0.6P B =()P A B ⋂=【答案】0.42## 2150【分析】根据相互独立事件概率乘法公式以及对立事件的概率公式求得正确答案.【详解】.()()()()10.30.60.42P A B P A P B ⋂=⨯=-⨯=故答案为:0.425.在四棱台中的12条棱所在直线中,与直线是异面直线的共有______条1111ABCD A B C D -1AB 【答案】6【分析】根据异面直线的定义来确定正确答案.【详解】根据异面直线的定义可知,与直线是异面直线的有:1AB ,共条,111111,,,,,A D BC CD DD D C C C 6故答案为:66.为了了解某水库里大概有多少条鱼,先打捞出了1000条鱼,在鱼身上标记一个不会掉落的印记后放回水库,过一段时间后再次捕捞了200条鱼,发现其中5条鱼有印记.则这个水库里大概有______条鱼【答案】40000【分析】利用“捉放捉”原则即可求得这个水库里大概有40000条鱼【详解】设水库里大概有x 条鱼,则,解之得 10005200x =40000x =故答案为:400007.正四面体ABCD 的各棱长均为2,则点A 到平面BCD 的距离为______.【分析】设是底面的中心,则的长是点A 到平面BCD 的距离,由勾股定理计算可O BCD △AO 得.【详解】如图,是底面的中心,则平面,平面,,O BCD △AO ⊥BCD BO ⊂BCD AO BO ⊥正四面体ABCD 的棱长均为2,则, 223BO ==. AO ===8.下列说法中正确的是______.①一组数据中比中位数大的数和比中位数小的数一样多;②极差、方差、标准差都是描述一组数据的离散程度的统计量;③平均数、众数和中位数都是描述一组数据的集中趋势的统计量.【答案】②③【分析】根据中位数,平均数、众数、极差、方差和标准差的定义即可判断.【详解】对于①,中位数是一组数据按照从小到大的顺序排列,位于中间的那个数据(或中间两个数据的平均数),但是也有一些特殊的,比如:这组数据,中位数是,而比小1,2,3,4,4,5,6,7,844的数据是个,比大的数据却是个,所以一组数据中比中位数大的数和比中位数小的数不一定344一样多,故①说法错误;对于②,极差反映的是一组数据最大值与最小值的差,方差和标准差反映了数据分散程度的大小,所以说极差、方差、标准差都是描述一组数据的离散程度的统计量,故②说法正确;对于③,平均数、众数和中位数都是描述一组数据的集中趋势的量,所以说平均数、众数和中位数都是描述一组数据的集中趋势的统计量,故③说法正确,故答案为:②③.9.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时,测得水深为3cm .若不计容器的厚度,则球的体积为______3cm【答案】## 1256π1256π【分析】过球心作与正方体的前后面平行的截面,如图,截球得大圆,截正方体得正方形,ABCD 水面是过点的虚数,它与圆相切,然后根据圆(球)的性质计算出球半径,从而得体积.E 【详解】过球心作与正方体的前后面平行的截面,如图,截球得大圆,截正方体得正方形,ABCD ,线段是正方体上底面截球所得截面圆直径,虚线表示水面,,设球半径4AB =AB 431EF =-=为,则,, R 1OE R =-122AF AB ==由勾股定理得,即,解得, 222OA AF OF =+2222(1)R R =+-52R =所以球体积为. 33445125()3326V R πππ==⨯=故答案为:. 1256π10.甲、乙两人进行某项比赛,采用三局两胜模式,假定甲每一局比赛赢的概率都为0.6,则甲最终赢得比赛的概率为______.【答案】0.648【分析】分析试验过程,分别求出两局比赛后甲获胜和三局比赛后甲获胜的概率,即可求解.【详解】甲、乙两人进行某项比赛,每局比赛相互独立.两局比赛后甲获胜的概率为:;0.60.60.36⨯=三局比赛后甲获胜的概率为:;20.60.40.60.288⨯⨯⨯=所以甲最终赢得比赛的概率为:.0.360.2880.648+=故答案为:0.64811.从编号分别为1、2、3、4、5的5个大小与质地相同的小球中随机取出3个,则恰有2个小球编号相邻的概率为______. 【答案】##0.6 35【分析】利用列举法写出所有可能的基本事件,并列出所有满足恰好两个小球编号相邻的可能情况,然后利用古典概型求解.【详解】依题意得,取出的三个小球编号的所有可能为,123,124,125,134,135,145,234,235,245,345共种,其中恰好两个小球编号相邻的有,共种,根据古典概型的计算10124,125,134,145,235,2456公式,恰有2个小球编号相邻的概率为:. 63105=故答案为: 3512.已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 侧面BCC 1B 1的交线长为________..【分析】根据已知条件易得侧面,可得侧面与球面的交线上的点1D E 1D E ⊥11B C CB 11B C CB到与球面的交线是扇形的弧,再根据弧长公式可求得结E 11B C CB EFG FG果.【详解】如图:取的中点为,的中点为,的中点为,11B C E 1BB F 1CC G 因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以BAD ∠=1111ABCD A B C D -111D B C,1D E 111D E B C ⊥又四棱柱为直四棱柱,所以平面,所以,1111ABCD A B C D -1BB ⊥1111D C B A 111BB B C ⊥因为,所以侧面,1111BB B C B = 1D E ⊥11B C CB 设为侧面与球面的交线上的点,则,P 11B C CB 1D E EP ⊥,所以1D E =||EP ===所以侧面与球面的交线上的点到,11B C CB E因为与球面的交线是扇形的弧, ||||EF EG ==11B C CB EFG FG因为,所以, 114B EF C EG π∠=∠=2FEG π∠=所以根据弧长公式可得. 2FGπ==. 【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.二、单选题13.平面与平面相交于直线l ,点A 、B 在平面上,点C 在平面上但不在直线l 上,直线αβαβAB 与直线l 相交于点D .设A 、B 、C 三点确定的平面为,则与的交线是( )γβγA .直线ACB .直线ABC .直线CD D .直线BC【答案】C【分析】根据已知得既在平面上又在平面可得答案.D C 、βγ【详解】因为直线AB 与直线l 相交于点D ,,所以平面,D ∈l D ∈β又点C 在平面上,所以平面,βCD ⊂β因为平面,点在直线AB 上,所以平面,AB ⊂γD D ∈γ又平面,所以平面,C ∈γCD ⊂γ所以与的交线是直线.βγCD 故选:C.14.掷一颗骰子,设事件:落地时向上的点数是奇数,事件:落地时向上的点数是偶数,事件A B :落地时向上的点数是的倍数,事件:落地时向上的点数是.则下列每对事件中,不是互C 3D 4斥事件的为( )A .与B .与C .与D .与A B B C A D C D 【答案】B【分析】判断选项中的两个事件是否可以同时发生即可.【详解】对于A ,“落地时向上的点数是奇数”与“落地时向上的点数是偶数”不可能同时发生, ∴,事件与事件互斥,故选项A 不正确;A B ⋂=∅A B 对于B ,“落地时向上的点数是偶数”与“落地时向上的点数是的倍数”同时发生即“落地时向上的点3数是”,6∴“落地时向上的点数是”,事件与事件不是互斥事件,故选项B 正确;B C ⋂=6B C 对于C ,“落地时向上的点数是奇数”与“落地时向上的点数是” 不可能同时发生,4∴,事件与事件互斥,故选项C 不正确;A D ⋂=∅A D 对于D ,“落地时向上的点数是的倍数”与“落地时向上的点数是” 不可能同时发生, 34∴,事件与事件互斥,故选项D 不正确.C D ⋂=∅C D 故选:B.15.某地教育行政部门为了解“双减”政策的落实情况,在某校随机抽取了100名学生,调查他们课后完成作业的时间,根据调查结果绘制如下频率直方图.根据此频率直方图,下列结论中错误的是( )A .估计该校学生的平均完成作业的时间超过2.7小时B .所抽取的学生中有25人在2小时至2.5小时之间完成作业C .该校学生完成作业的时间超过3.5小时的概率估计为20%D .估计该校有一半以上的学生完成作业的时间在2小时至3小时之间【答案】D【分析】对A ,根据直方图中平均数的公式计算,可判断A;对B ,利用直方图中2小时至小时2.5之间的频率判断B;对C ,计算超过3.5小时的频率可判断C;对D ,计算做作业的时间在2小时至3小时之间的频率,可判断D.【详解】对A ,直方图可计算学生做作业的时间的平均数为:1.250.05 1.750.152.250.25 2.750.203.250.15⨯+⨯+⨯+⨯+⨯ 3.750.104.250.05 4.750.05+⨯+⨯+⨯,所以A 正确;2.75 2.7=>对B ,直方图中2小时至小时之间的频率为,故所抽取的学生中有2.5()2.520.50.25-⨯=25人在2小时至小时之间完成作业,故B 正确;1000.25⨯= 2.5对C ,由直方图得超过3.5小时的频率为,所以C 正确;0.5(0.20.10.1)0.2⨯++=对D ,做作业的时间在2小时至3小时之间的频率为,所以D 错误. 0.5(0.50.4)0.450.5⨯+=<故选:D16.在棱长为2的正方体中,E 为棱BC 的中点,F 是侧面内的动点,若1111ABCD A B C D -11B BCC 平面,则点F 轨迹的长度为( )1//A F 1AD EA B C D .【答案】B【分析】取中点,中点,连接,则易证平面平面,进而得当F 的轨1BB M 11B C N MN 1//A MN 1AD E 迹为线段时,则有平面,再根据勾股定理及三角形的中位线计算即可.MN 1//A F 1AD E 【详解】如图所示:取中点,中点,连接,1BB M 11B C N MN 因为,,//MN 1BC 1//BC 1AD 所以,//MN 1AD 平面,平面,MN ⊄1AD E 1AD ⊂1AD E 所以平面,//MN 1AD E 同理可证明平面,1//A N 1AD E 又因为,平面,1MN A N N = 1,MN A N ⊂1A MN 所以平面平面,1//A MN 1AD E 当F 的轨迹为线段时,此时平面,则有平面,MN 1A F ⊂1A MN 1//A F 1AD E此时. 11122MN BC ==⨯=故选:B.三、解答题17.某校共有在校学生200人,为了了解该校学生的体能情况,对该校所有学生进行体能测试,然后采用分层抽样的方法随机抽取了20名学生的成绩,整理得到如下茎叶图:(1)求该校女学生人数、样本中女生成绩的极差、25百分数;(2)已知全体女生的平均成绩为70,全体男生的平均成绩为72,求该校全体学生的平均成绩.【答案】(1)80,32,62(2)71.2【分析】(1)利用样本与总体的关系即可求得该校女学生人数;依据极差定义即可求得样本中女生成绩的极差;依据百分位数定义即可求得样本中女生成绩的25百分数;(2)利用平均数定义即可求得该校全体学生的平均成绩.【详解】(1)样本中女生有8人,则该校女学生人数为 20880200÷=样本中女生成绩由小到大排列为 5659656873747788,,,,,,,则样本中女生成绩的极差为885632-=由,可得样本中女生成绩的25百分数为 80.252⨯=5965622+=(2)由(1)可得该校女学生人数为,则该校男生人数为120 80又全体女生的平均成绩为70,全体男生的平均成绩为72,则该校全体学生的平均成绩为 80701207271.2200⨯+⨯=18.如图,在圆柱中,底面直径AB 等于母线.1AA(1)若AB =2,求圆柱的侧面积;(2)设AB 与CD 是底面互相垂直的两条直径,求异面直线AC 与所成角的大小.1A B 【答案】(1);4π(2). π3【分析】(1)由已知得到底面半径以及母线的值,代入公式即可求出; r l (2)用向量、、来表示出、,进而求出它们的夹角,即可求出结果.AB DC 1AA AC 1A B u u u r 【详解】(1)由已知可得,底面半径,母线,1r =12l AA ==所以圆柱的侧面积.2π4πS rl ==(2)由已知可得,两两垂直,且相等,1,,AB CD AA设,则,. 2AB =1OA OC ==AC =1A B ==又, , 1122AC OC OA DC AB =-=+u u u r u u u r u u r u u u r u u u r 11A B AB AA =-u u u r u u u r u u u r 则. ()111122AC A B DC AB AB AA ⎛⎫⋅=+⋅- ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r 21111112222DC AB DC AA AB AB AA =⋅-⋅+-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2122AB ==u u u r所以,11cos ,2AC A B =u u u r u u u r 又,所以, 10,πAC A B ≤≤u u u r u u u r 1π,3AC A B =u u u r u u u r 所以异面直线AC 与所成角的大小为. 1A B π319.如图,已知三棱柱的高为2,底面ABC 是边长为2的正三角形.111ABC A B C -(1)求四棱锥的体积;111A BBCC -(2)若,求证:侧面为矩形.11A B A C =11B BCC 【答案】(2)证明见解析【分析】(1)三棱柱可分割成三棱锥和四棱锥两部分,因此用三111ABC A B C -1A ABC -111A B BCC -棱柱的体积减三棱锥的体积就能得到四棱锥的体积; 111ABC A B C -1A ABC -111A B BCC -(2)由棱柱定义知,四边形为平行四边形,因此只需借助空间中直线、平面的垂直关系,11B BCC 证明其中一个角为直角即可.【详解】(1)三棱柱可分割成三棱锥和四棱锥两部分,111ABC A B C -1A ABC-111A B BCC -三棱柱的体积, 111ABC A B C -1111=22sin 6022ABC A B CABC V S h -=⨯⨯⨯︒⨯= 三棱锥的体积 1A ABC -11=3A ABC ABC VS h -= ∴四棱锥的体积. 111A B BCC -1111111A B BCC ABC A B C A ABC V V V ---=-==(2)取中点,连接,, BC M AM 1A M ∵是等边三角形,是边上的中线,ABC AM BC ∴也是边上的高,即,AM BC AM BC ⊥又∵,∴是等腰三角形,11A B A C =1A BC ∴是边上的中线,也是边上的高,即,1A M BC BC 1A M BC ⊥又∵,平面,平面,1AM A M M ⋂=AM ⊂1AMA 1A M ⊂1AMA ∴平面,BC ⊥1AMA ∵平面,1AA ⊂1AMA ∴,1BC AA ⊥由棱柱定义知,,,111AA BB CC ∥∥111AA BB CC ==∴,四边形为平行四边形,1BC BB ⊥11B BCC ∴侧面四边形为矩形.11B BCC 20.掷黑、白两枚骰子.(1)设事件A 为:两枚骰子的点数和为7,事件B 为:白色骰子的点数是1.判断事件A 和事件B 是否独立,并说明理由;(2)设事件C 为:两枚骰子中至少有一枚的点数是1且两枚骰子点数之和不是7.求事件C 的概率.【答案】(1)是,理由见解析 (2)14【分析】(1)写出所有的基本事件,再求出A ,B 发生的概率,根据概率公式 ()()()·P AB P A P B =来判断A ,B 事件是否独立;(2)根据事件C 包含的基本事件数,按照古典概型概率计算公式可求出事件C 的概率.【详解】(1)投掷黑、白两枚骰子一次的点数记作,所有基本事件如下: (),x y ,()2:1,1 ,()()3:1,2,2,1 ,()()()4:2,2,1,3,3,1 ,()()()()5:1,4,4,1,2,3,3,2 ,()()()()()6:3,3,1,5,5,1,2,4,4,2 ,()()()()()()7:1,6,6,1,2,5,5,2,3,4,4,3 ,()()()()()8:4,4,2,6,6,2,3,5,5,3 ,()()()()9:3,6,6,3,4,5,5,4 ,()()()10:5,5,4,6,6,4 ,()()11:5,6,6,5 ,()12:6,6共36个,事件包含6个基本事件,即,A ()()()()()()1,6,6,1,2,5,5,2,3,4,4,3事件包含6个基本事件,即,B ()()()()()()1,1,2,1,3,1,4,1,5,1,6,1事件只包含,C ()6,1所以, ,所以A ,B 是独立事件; ()()()()()61611,,36636636P A P B P AB P A P B ======(2)根据(1)所列出的基本事件,事件包含9个基本事件,即C ,所以,. ()()()()()()()()()1,1,1,2,2,1,1,3,3,1,1,4,4,1,1,5,5,1()91364P C ==综上,A ,B 是独立事件, . ()14P C =21.如图,在四棱锥中,底面为直角梯形,,,P ABCD -ABCD AD BC ∥AB BC ⊥分别为棱中点.2AB AD BC AB E F ==,,、BC BP 、(1)求证:平面平面;AEF ∥DCP (2)若平面平面,直线与平面所成的角为,且,求二面角PBC ⊥ABCD AP PBC 45 CP PB ⊥的大小.P AB D --【答案】(1)证明见解析 (2)3π【分析】(1)证明平面,平面,即可证明结论;//EF PCD //AE PCD (2)根据面面垂直性质定理得,进而得,再根据题意证明平面可45APB ∠= AB PB =PC ⊥ABP 得为直角三角形,再根据几何关系得,进而根据是二面角的平PBC 60PBC ∠= PBC ∠P AB D --面角求解即可.【详解】(1)证明:因为分别为棱中点,E F 、BC BP 、所以,在中,,PBC //EF PC 因为平面,平面,EF ⊄PCD PC ⊂PCD 所以,平面,//EF PCD 因为,为棱中点.AD BC ∥2BC AB E =,BC 所以,,//,AD CE AD CE =所以,四边形是平行四边形,ADCE 所以,//CD AE 因为平面,平面,AE ⊄PCD DC ⊂PCD 所以,平面,//AE PCD 因为平面,,,AE EF E AE EF ⋂=⊂AEF 所以,平面平面AEF ∥DCP (2)解:因为平面平面,平面平面,,平面PBC ⊥ABCD PBC ⋂ABCD BC =AB BC ⊥AB ⊂,ABCD 所以,平面AB ⊥PBC 所以,是直线与平面所成的角,APB ∠AP PBC 因为,直线与平面所成的角为,AP PBC 45所以,,45APB ∠= 所以,AB PB =因为平面,,PC PB ⊂PBC 所以,,AB PC ⊥AB PB ⊥因为,,平面, CP PB ⊥AB BP B = ,AB BP ⊂ABP 所以平面,PC ⊥ABP 因为平面,PB ⊂ABP 所以,即为直角三角形,PC PB ⊥PBC所以,在中,由可得, PBC 22BC AB PB ==PC所以,, tan PC PBC PB∠==60PBC ∠= 因为,,AB PB ⊥AB BC ⊥所以,是二面角的平面角, PBC ∠P AB D --所以,二面角的大小为.P AB D --60。
2022-2023学年高二上学期12月月考语文试题及答案高二语文全卷满分150分,考试时间150分钟。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,17分)阅读下面的文字,完成1—5题。
材料一:山水之趣,是在物我双观视角下对山水的感知、理解和表达。
看山不是山,看水不是水,超越了有形的山水;看山还是山,看水还是水,是借助山水建构起有意味的审美范式,表达超脱于有形山水和无形山水的艺术形态。
王维的诗中有画,画中有诗,在于能够对山水景致进行艺术想象,将其中最有趣味、最有美感的景物组合起来,形成超越客观山水之长的情思意味。
他在《山水论》中描述了雨后、早晨、傍晚、春、夏、秋、冬不同时间下山水色彩的差异,用红日、蓝天、绿水、白云、青山等展现了山水中特有的美感,确立了诗歌和绘画中山水审美的范式,推动了山水审美的艺术化。
艺术审美,需要有一双能够滤汰原始物象的眼睛,将看似杂乱无章的远近、高低、大小、长短、粗细等物象组织起来,使之能够和谐共生,形成协调统一、自如自得的审美观感。
北宋画家郭熙在《林泉高致》言水色春绿、夏碧、秋青、冬黑,言天色春晃、夏碧、秋净、冬黯,是从艺术物象的视角观察山水的趣味;又言云气春融怡、夏猗郁、秋疏薄、冬黯淡,烟岚则春山澹冶而如笑,夏山苍翠而如滴,秋山明净而如妆,冬山惨淡而如睡,是从意境的角度理解山水间气韵的流动和情调的变化。
这些源自观察并经过艺术提纯后的山水审美,使得山水不再只是自然的客体,更是融合着艺术想象的审美范式。
元代画家黄公望汲取董源、巨然的用墨技法,所绘画面水墨纷披,苍率潇洒。
其晚年所绘的《富春山居图》,境界辽远开阔,雄秀苍莽,简洁清润,尺幅千里。
山峰的用墨或浓或淡,都以干枯的笔触勾皴,远山、河渚用淡墨抹出,笔痕隐约可见,独具匠心。
水纹先用浓墨枯笔勾勒,稍加淡墨复染,氤氲成趣。
树木的枝干多用浓墨写出,树叶点染而成,或横,或竖,或斜,或直,干湿相兼,放眼望去,生机苍郁。
这幅作品最能代表宋元山水审美的境界。
2022-2023学年山西省晋城市第二中学校高二上学期12月月考数学试题一、单选题1.抛物线28y x =的焦点到其准线的距离为( ) A .132B .116 C .18D .4【答案】B【分析】将抛物线方程转化为标准方程求解.【详解】解:抛物线的标准方程为218x y =, 所以焦点坐标为10,32F ⎛⎫⎪⎝⎭,其准线方程为132y =-,所以抛物线28y x =的焦点到其准线的距离为111323216d ⎛⎫=--= ⎪⎝⎭, 故选:B2.若直线1:20l x y -+=与直线2:230l x ay +-=平行,则实数a 的值为( ) A .2- B .1- C .2 D .1【答案】A【分析】解方程1(1)20a ⨯--⨯=即得解. 【详解】解:由题得1(1)20, 2.a a ⨯--⨯=∴=- 经检验,当2a =-时,满足题意. 故选:A3.已知直线3260x y --=经过焦点在坐标轴上的椭圆的两个顶点,则该椭圆的方程为( ) A .22194x y +=B .22419x y +=C .22194y x +=D .22419y x +=【答案】C【分析】求出直线3260x y --=与两坐标轴的焦点为()0,3-,()2,0.根据32->,可设椭圆的方程为22221y x a b+=,求出,a b 即可. 【详解】令0x =,可得=3y -;令0y =,可得2x =. 则由已知可得,椭圆的两个顶点坐标为()0,3-,()2,0.因为32->,所以椭圆的焦点在y 轴上. 设椭圆的方程为22221y x a b +=,则3a =,2b =,所以椭圆的方程为22194y x +=.故选:C.4.若方程222141x y m m-=-+表示焦点在y 轴上的双曲线,则实数m 的取值范围为( )A .()2-∞-,B .()21--,C .()22-,D .()11-,【答案】A【分析】原方程可变形为222141y x m m ---=-,根据已知有21040m m -->⎧⎨-+>⎩,解出即可. 【详解】因为方程222141x y m m -=-+表示焦点在y 轴上的双曲线, 222141x y m m -=-+可变形为222141y x m m ---=-. 所以有21040m m -->⎧⎨-+>⎩,即21040m m +<⎧⎨->⎩,解得2m <-. 故选:A. 5.数列262,4,,203--,…的一个通项公式可以是( ) A .()12nn a n =-⋅ B .()311n nn a n-=-⋅C .()1221n nn a n+-=-⋅D .()31n nn na n⋅-=-【答案】B【分析】利用检验法,由通项公式验证是否符合数列的各项结合排除法即可. 【详解】选项A :()331236a =-⨯⨯=-,不符合题意; 选项C :()212222132a +-=-⨯=不符合题意; 选项D :()222327122a -=-⨯=,不符合题意; 而选项B 满足数列262,4,,203--,故选:B6.在棱长为2的正方体1111ABCD A B C D -中,E 是1CC 的中点,则1AE BD ⋅=( )A .0B .1C .32D .2【答案】D【分析】建立空间直角坐标系,利用坐标法求解即可. 【详解】解:如图,建立空间直角坐标系, 则()()()()12,0,0,0,2,1,2,2,0,0,0,2A E B D , 所以,()()12,2,1,2,2,2AE BD =-=--, 所以,14422AE BD ⋅=-+=. 故选:D7.在数列{}n a 中,122,a a a ==,且132(2,N )n n a a n n n *+=-++≥∈,若数列{}n a 单调递增,则实数a 的取值范围为( ) A .(2,52)B .(2,3)C .(52,4)D .(2,4)【答案】C【分析】由递推关系,结合条件122,a a a ==,求出数列的通项公式,再结合数列的单调性,列不等式可求实数a 的取值范围.【详解】因为132(2,N )n n a a n n n *+=-++≥∈,所以()21312(N )n n a a n n *++=-+++∈,328a a =-+,所以23(2,N )n n a a n n *+=+≥∈,又2a a =, 328a a =-+,所以数列{}n a 的偶数项按项数从小到大排列可得一公差为3的等差数列,所以当n 为偶数时,332n a n a =+-, 当n 为大于等于3的奇数时,3722n a n a =+-, 因为数列{an }单调递增,所以1n n a a -≥(2,N )n n *≥∈,所以当n 为大于等于3的奇数时,()37313222n a n a +->-+-,化简可得4a <,当n 为大于等于4偶数时,()33731222n a n a +->-+-,解得52a >,由21a a >可得,2a >, 所以542a <<, 故选:C.8.已知椭圆()2222:10x y C a b a b +=>>的左,右顶点分别为A ,B ,且椭圆C,点P是椭圆C 上的一点,且1tan 4PAB ∠=,则tan APB ∠( )A .109-B .1110-C .1110D .109【答案】B【分析】设()00,P x y 是椭圆上的点,设11tan 4k PAB =∠=,2tan k PBA =-∠求出12k k ⋅为定值,从而能求出tan PBA ∠的值,然后根据()tan tan APB PAB PBA ∠=-∠+∠求解. 【详解】设()00,P x y 代入椭圆方程,则()22002210x y a b a b+=>>整理得:()2222002,b y a x a=-设11tan 4k PAB =∠=,2tan k PBA =-∠ 又010y k x a =+,020y k x a=-,所以 ()22222000122222000116y y y b a c k k e x a x a x a a a -⋅=⋅==-=-=--=-+-- 而11tan 4k PAB =∠=,所以22tan 3k PBA =-∠=-,所以2tan 3PBA ∠=()12tan tan 1143tan tan 121tan tan 10143PAB PBA APB PAB PBA PAB PBA +∠+∠∠=-∠+∠=-=-=--∠⋅∠-⨯ 故选:B二、多选题9.在等比数列{n a }中,262,32a a ==,则{n a }的公比可能为( ) A .1- B .2-C .2D .4【答案】BC【分析】根据等比数列的通项即可求解.【详解】因为在等比数列{n a }中,262,32a a ==,设等比数列的公比为q ,则54611216a a q q a q a ===,所以2q =±, 故选:BC .10.已知圆226430C x y x y +-+-=:,则下列说法正确的是( ) A .圆C 的半径为16B .圆C 截x 轴所得的弦长为C .圆C 与圆E :()()22621x y -+-=相外切D .若圆C 上有且仅有两点到直线340x y m ++=的距离为1,则实数m 的取值范围是()()19,2426,21⋃--【答案】BC【分析】先运用配方法将一般式方程化为标准方程,可确定其圆心个半径;根据点到弦的距离可求出弦长;圆心距和半径的关系可确定圆与圆的位置关系;圆心到直线的距离与半径之间的数量关系可确定圆C 上有且仅有两点到直线的距离为1【详解】A:将一般式配方可得:()()223216,4x y r -++=∴=,A 错;B :圆心到x 轴的距离为2,弦长为B 对;C:5,C E CE r r ===+外切,C 对;D: 圆C 上有且仅有两点到直线340x y m ++=的距离为111,35r d r ∴-<<+∴<<,解之: ()()14,2426,16m ∈⋃--,D 错;故选:BC11.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且151416S S S <<,则下列说法正确的是( ) A .0d > B .0d <C .300S >D .当15n =时,n S 取得最小值【答案】ACD【分析】根据题干条件利用()12n n n a S S n -=-≥可得到150a <,15160a a +>,160a >,然后即可根据三个结论依次判断四个选项的正误.【详解】因为151416S S S <<,所以1515140a S S =-<,1616150a S S =->,151616140a a S S +=->. 对于A 、B 选项,因为150a <,160a >,所以16150d a a =->,故选项A 正确,选项B 错误; 对于C ,因为15160a a +>,所以()()130301516301502a a S a a +==+>,故选项C 正确; 对于D ,因为150a <,160a >,可知10a <,0d >,等差数列{}n a 为递增数列,当15n ≤时,0n a <,当16n ≥时,0n a >,所以当15n =时,n S 取得最小值,故D 选项正确. 故选:ACD.12.已知抛物线C :212y x =,点F 是抛物线C 的焦点,点P 是抛物线C 上的一点,点(4,3)M ,则下列说法正确的是( ) A .抛物线C 的准线方程为3x =-B .若7PF =,则△PMF 的面积为32C .|PF PM -|D .△PMF 的周长的最小值为7【答案】ACD【分析】根据抛物线的标准方程可得准线方程为3x =-,即可判断A ,根据抛物线定义得到4P x =,故P 点可能在第一象限也可能在第三象限,分情况计算三角形面积即可判断B ,利用三角形任意两边之差小于第三边结合三点一线的特殊情况即可得到()max ||||PF PM F M -∴=,计算即可判断C ,三角形PMF 的周长PM MF PF PM PF =++=+||||PM PF +的最小值,即得到周长最小值.【详解】212y x =,6p ∴=,()3,0F ∴,准线方程为3x =-,故A 正确; 根据抛物线定义得372P P pPF x x =+=+=,4P x =,()4,3M ,//PM y ∴轴,当4x =时,y =±若P 点在第一象限时,此时(4,P ,故433PM =-,PMF △的高为1,故()1343312322PMFS=⨯-⨯=-, 若点P 在第四象限,此时()4,43P -,故433PM =+,PMF △的高为1,故()1343312322PMFS=⨯+⨯=+,故B 错误; ||||PF PM MF -≤,()()()22max 433010||||M P F PF M ∴+--==-=,故C 正确;(连接FM ,并延长交于抛物线于点P ,此时即为||||PF PM -最大值的情况, 图对应如下)过点P 作PD ⊥准线,垂足为点D ,PMF △的周长1010PM MF PF PM PF PM PD =++=++若周长最小,则PM PD +长度和最小,显然当点,,P M D 位于同一条直线上时,PM MF +的和最小,此时7PM MF PD +==,故周长最小值为710D 正确. 故选:ACD.三、填空题13.在各项均为正数的等比数列{}n a 中,121916a a =,则28223log log a a +=___________. 【答案】4【分析】由条件,结合等比数列性质可得82316a a =,再对数运算性质求28223log log a a +即可.【详解】因为数列{}n a 为等比数列,所以3122198a a a a =, 又121916a a =,所以82316a a =, 所以2822328234log log log a a a a ==+, 故答案为:4.14.已知向量(2,4,)m a =,(1,,3)n b =-,若n m λ=,则 ||n m -=___________.【答案】【分析】根据n m λ=,列出1243b a λλλ-=⎧⎪=⎨⎪=⎩,分别求出,,a b λ,然后得到,m n ,进而计算,可求出||n m -的值.【详解】n m λ=,故1243b a λλλ-=⎧⎪=⎨⎪=⎩,解得1226b a λ⎧=-⎪⎪=-⎨⎪=-⎪⎩,故(2,4,6)m =-,(1,2,3)n =--,(3,6,9)n m -=--,则||(3)n m -=-=故答案为:15.在数列{}n a ,{}n b 中,112a =,3110a =,且11112(2)n n n n a a a -++=≥,记数列{bn }的前n 项和为Sn ,且122n n S +=-,则数列{}n n a b ⋅的最小值为___________.【答案】23【分析】可由题意构建1n a ⎧⎫⎨⎬⎩⎭为等差,求出n a 通项公式,{}n b 可由1n n S S --得出n b 的通项公式,再利用作差法求出新数列n n a b ⋅单调性即可求出最小值.【详解】由11112(2)n n nn a a a -++=≥可得111111n n n n a a a a +--=-,即数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设公差为d , 首项112a =,311121028d a a =-=-=,可得4d =,则12(1)442n n n a =+-⨯=-,即142n a n =-, 由122n n S +=-,可得当2n ≥时,11222n n nn n n b S S +-=-=-=,112b S ==,代入后符合2n n b =,即{}n b 的通项公式为2n n b =,设新数列{}n c ,242nn n n c a b n ==-,11122(23)24(1)242(21)(21)n n n n n n c c n n n n +-+--=-=+--+-,当10n n c c +->时,得 1.5n >,即2n ≥时,{}n c 是递增数列; 当10n n c c +-<时,得 1.5n <,即21c c <,综上所述223c =是最小值,即数列{}n n a b ⋅的最小值为23,故答案为:2316.已知双曲线2322100x y C a b a b -=>>:(,)的右焦点为F ,离心率为102,点A 是双曲线C 右支上的一点,O 为坐标原点,延长AO 交双曲线C 于另一点B ,且AF BF ⊥,延长AF 交双曲线C 于另一点Q ,则||||QF BQ =___________. 【答案】22【分析】在1Rt F AF △中,由勾股定理可求得||AF 、1||AF 用含有a 的代数式表示,在1Rt F AQ △中,由勾股定理可求得||QF 用含有a 的代数式表示,在Rt BFQ △中,由勾股定理可求得||BQ 可用含有a 的代数式表示,进而求得结果. 【详解】如图所示,∵22101c b e a a ==+ ,则2252c a = ,2232b a =,由双曲线的对称性知:OA OB =,1OF OF = , 又∵AF BF ⊥,∴四边形1AFBF 为矩形,设||0AF m => ,则由双曲线的定义知:1||2AF a m =+,在1Rt F AF △中,22211||||||F F AF AF =+,即:2224(2)c a m m =++ ,整理得:22230m am a +-=,即:()(3)0m a m a -+= , ∵0m >,∴m a = , ∴1||3AF a =设||0QF n => ,则由双曲线的定义知:1||2QF a n =+,在1Rt F AQ △中,22211||||||F Q AQ AF =+,即:222(2)(3)()a n a a n +=++,解得:3n a = ,即:||3QF a =, 又∵1||||3BF AF a ==,∴在Rt BFQ △中,||BQ ==∴||||2QF BQ =四、解答题17.已知等差数列{}n a 的前n 项和为258,224,100n S a a S +==. (1)求{an }的通项公式; (2)若+11n n n b a a =,求数列{n b }的前n 项和Tn . 【答案】(1)31n a n =- (2)2(32)n nT n =+【分析】(1)由等差数列的通项公式以及等差数列的前n 项和公式展开可求得结果; (2)由裂项相消求和可得结果.【详解】(1)设等差数列{}n a 的公差为d ,由题意知,1112()4248(81)81002a d a d a d +++=⎧⎪⎨⨯-+=⎪⎩解得:123a d =⎧⎨=⎩ ∴1(1)23(1)31n a a n d n n =+-=+-=-. 故{}n a 的通项公式为31n a n =-. (2)∵1111()(31)(32)33132n b n n n n ==--+-+111111111111()()()()325358381133132111111111 ()325588113132111 =()3232=2(32)n T n n n n n nn =⨯-+⨯-+⨯-++--+=⨯-+-+-++--+⨯-++即:{}n b 的前n 项和2(32)n nT n =+.18.已知圆22:10C x y mx ny ++++=,直线1:10l x y --=,2:20l x y -=,且直线1l 和2l 均平分圆C . (1)求圆C 的标准方程(2)0y a ++-=与圆C 相交于M ,N 两点,且120MCN ∠=,求实数a 的值. 【答案】(1)()()22214x y -+-= (2)1a =或3a =-【分析】(1)根据直线1l 和2l 均平分圆C ,可知两条直线都过圆心,通过联立求出两条直线的交点坐标,由此得到圆心坐标即可得到圆的标准方程.(2)根据120MCN ∠=,及MCN △为等腰三角形可得到30CMN ∠=,可得圆心到直线的距离sin d r CMN =∠,再根据点到直线的距离公式即可求出实数a 的值.【详解】(1)因为直线1l 和2l 均平分圆C ,所以直线1l 和2l 均过圆心C ,因为1020x y x y --=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,所以直线1l 和2l 的交点坐标为()2,1,所以圆心C 的坐标为()2,1,因为圆22:10C x y mx ny ++++=,所以圆心坐标为,22m n ⎛⎫-- ⎪⎝⎭,所以2212m n ⎧-=⎪⎪⎨⎪-=⎪⎩,解得42m n =-⎧⎨=-⎩,所以圆C 的方程为224210x y x y +--+=,即()()22214x y -+-=, 所以圆C 的标准方程为()()22214x y -+-=.(2)由(1)得圆C 的标准方程为()()22214x y -+-=,圆心()2,1C ,半径2r =,因为120MCN ∠=,且MCN △为等腰三角形,所以30CMN ∠=, 因为CM CN r ==,所以圆心C 到直线3230x y a ++-=的距离sin 2sin301d r CMN =∠==, 根据点到直线的距离公式()222312311231a a d ++-+===+, 即12a +=,解得1a =或3a =-, 所以实数a 的值为1a =或3a =-.19.如图,在四棱锥P —ABCD 中,四边形ABCD 是菱形.1202DAB PA AD ∠===,,22PC PD ==,点E 是棱PC 的中点.(1)证明:PC ⊥BD .(2)求平面P AB 与平面BDE 所成角的余弦值. 【答案】(1)证明见解析 3【分析】(1)首先根据线面垂直的判定定理证明PA ⊥平面ABCD ,然后建立空间直角坐标系,通过空间向量垂直的判定条件证明PC BD ⊥即可;(2)通过第(1)问的空间直角坐标系,根据二面角夹角公式进行求解即可. 【详解】(1)120DAB ∠=,四边形ABCD 为菱形, 60CAD ∴∠=,又60ADC ∠=,ACD ∴为等边三角形,2AD =,2AC CD ∴==,2PA =,22=PC222PA AC PC +=,PA AC ∴⊥, 222PA AD PD +=,PA AD ∴⊥,ACAD A =,AC ⊂平面ABCD ,AD ⊂平面ABCD ,PA ∴⊥平面ABCD .过点A 作AF BC ⊥,则PA AF ⊥,AF AD ⊥,PA AD ⊥,∴分别以AF ,AD ,AP 所在直线为x ,y ,z 轴如图建立空间直角坐标系.2AB =,cos603AF AB ∴=⋅=,1BF =,2BC =,1FC ∴=.)3,0,0F∴,()002P ,,,)3,1,0C,()3,1,0B-,()0,2,0D ,()3,1,2PC ∴=-,()3,3,0BD =-,(33130PC BD ⋅=-⨯=,PC BD ∴⊥.(2)()0,0,2P ,)3,1,0C,E 为PC 中点,31,12E ⎫∴⎪⎪⎝⎭,设平面PAB 的法向量为()1111,,n x y z =,()0,0,2PA =-,()3,1,0AB =-,1112030z x y -=⎧⎪∴⎨-=⎪⎩,()11,3,0n ∴=.设平面BDE 的法向量为()2222,,n x y z =,()3,3,0BD =-,33,122DE ⎛⎫=- ⎪ ⎪⎝⎭,222223303302x y y z ⎧-+=⎪∴⎨-+=⎪,()23,1,0n ∴=, 设平面PAB 与平面BDE 夹角为θ, 则121213313cos n n n n θ⋅⨯+⨯==⋅∴平面PAB 与平面BDE 320.已知抛物线C :22y px =(0p >)的焦点F 关于抛物线C 的准线的对称点为()9,0P -. (1)求抛物线C 的方程;(2)过点F 作倾斜角为θ的直线l ,交抛物线C 于A ,B 两点,O 为坐标原点,记OAB 的面积为S ,求证:18sin S θ=. 【答案】(1)212y x = (2)证明见解析【分析】(1)根据抛物线的简单几何性质得到抛物线的焦点坐标和准线方程,结合条件得到()19222p p ⎡⎤⨯+-=-⎢⎥⎣⎦,即可求解. (2)设直线:3l x my =+,且cos sin m θθ=(()0,πθ∈),()11,A x y ,()22,B x y ,联立抛物线的方程结合韦达定理计算得到12y y -,结合图形得到1212OFA OFB S S S OF y y =+=⨯⨯-△△,即可求证.【详解】(1)由题意得:抛物线C 的焦点,02p F ⎛⎫⎪⎝⎭,准线方程0l :2p x =-,因为焦点,02p F ⎛⎫⎪⎝⎭关于准线0:2p l x =-的对称点为()9,0P -,则()19222p p ⎡⎤⨯+-=-⎢⎥⎣⎦,解得:6p , 所以抛物线C 的方程为:212y x =. (2)由(1)知,焦点()3,0F ,如图:过点F 作倾斜角为θ的直线l ,交抛物线C 于A ,B 两点, ∴直线l 的倾斜角θ不为0,则()0,πθ∈,即sin 0θ>,则设直线:3l x my =+,且cos sin m θθ=(()0,πθ∈),()11,A x y ,()22,B x y , 联立2312x my y x=+⎧⎨=⎩,得:212360y my --=,由()2124360m ∆=+⨯>,得:12121236y y m y y +=⎧⎨=-⎩,则12y y -==又222cos 111sin sin m θθθ⎛⎫+=+= ⎪⎝⎭,所以121212sin y y θ-=(()0,πθ∈), 又1212111222OFA OFB S S S OF y OF y OF y y =+=⨯⨯+⨯⨯=⨯⨯-△△,即1121832sin sin S θθ=⨯⨯=. 综上:OAB 的面积18sin S θ=,得证. 【点睛】方法点睛:(1)解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.21.已知双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为yx =,且过点(3,.(1)求双曲线C 的标准方程;(2)若双曲线C 的右焦点为F ,点()0,4P -,过点F 的直线l 交双曲线C 于,A B 两点,且PA PB =,求直线l 的方程.【答案】(1)2213x y -=(2)0y =,或1233y x =-或2y x =-+.【分析】(1)根据题意得22921b a a b ⎧=⎪⎪⎨⎪-=⎪⎩,进而解方程即可得答案;(2)由题知()2,0F ,进而先讨论直线l 的斜率不存在不满足条件,再讨论l 的斜率存在,设方程为()2y k x =-,设()()1122,,,A x y B x y ,进而与双曲线方程联立得线段AB 中点为22262,1313k k E k k ⎛⎫-- ⎪--⎝⎭,再结合题意得PE AB ⊥,进而再分0k =和0k ≠两种情况讨论求解即可.【详解】(1)解:因为双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为y=,且过点(3,, 所以,22921b a a b ⎧=⎪⎪⎨⎪-=⎪⎩,解得221,3b a ==所以,双曲线C 的标准方程为2213x y -=(2)解:由(1)知双曲线C 的右焦点为()2,0F ,当直线l 的斜率不存在时,方程为:2l x =,此时,2,A A ⎛⎛ ⎝⎭⎝⎭,PA PB =≠= 所以,直线l 的斜率存在,设方程为()2y k x =-,所以,联立方程()22213y k x x y ⎧=-⎪⎨-=⎪⎩得()222213121230k x k x k -+--= 所以()()422214441331212120k k k k ∆=----=+>,且2130k -≠,所以,k ≠设()()1122,,,A x y B x y ,则2212122212123,1313k k x x x x k k --+=-=-- 所以()3121222124441313k ky y k x x k k k k+=+-=--=---, 所以,线段AB 中点为22262,1313k k E k k ⎛⎫-- ⎪--⎝⎭, 因为PA PB =,所以,点()0,4P -在线段AB 的中垂线上, 所以PE AB ⊥,所以,当0k =时,线段AB 中点为()0,0E ,此时直线l 的方程为0y =,满足题意;当0k ≠时,22222222424122613,66313PEAB kk k k k k k k k k k k k -+-+--+--====----, 所以,222613PE AB k k k k k k -+-⋅=⋅=--,整理得23210k k +-=,解得13k =或1k =-,满足k ≠综上,直线l 的方程为0y =,或1233y x =-或2y x =-+.22.已知椭圆2222:1(0x y C a b a b +=>>0x y -=相切.(1)求椭圆C 的标准方程;(2)若直线l :1y kx =+与椭圆C 交于,A B 两点,点P 是y 轴上的一点,过点A 作直线PB 的垂线,垂足为M ,是否存在定点P ,使得PB PM ⋅为定值?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)22164x y += (2)存在,1(0,)4P【分析】(1)根据题意得,a b ==,由C与直线0x y --=相切,联立方程得22c =,即可解决;(2)1122(0,),(,),(,)P t A x y B x y ,结合韦达定理得PB PM PB PA ⋅=⋅222292(1)(312)23t t k k -+-+-=+,即可解决.【详解】(1)由题知,,c a b a ==, 所以椭圆C 为2222132x y c c+=,即2222360x y c +-=,因为C与直线0x y --=相切,所以22223600x y c x y ⎧+-=⎪⎨-=⎪⎩,消去y得22223(60x x c +-=,所以2253060x c -+-=,所以236045(306)0c ∆=-⨯⨯-=,得22c =,所以椭圆C 的标准方程为22164x y +=; (2)设1122(0,),(,),(,)P t A x y B x y ,由221641x y y kx ⎧+=⎪⎨⎪=+⎩,得22222(23)690,3636(23)144720,k x kx k k k ++-=∆=++=+> 所以12122269,2323k x x x x k k +=-=-++, 所以()PB PM PB PA AM PB PA PB AM PB PA ⋅=⋅+=⋅+⋅=⋅1122(,)(,)x y t x y t =-⋅-1212(1)(1)x x kx t kx t =++-+- 221212(1)(1)()(1)k x x k t x x t =++-++-222296(1)()(1)()(1)2323kk k t t k k=+-+-⋅-+-++ 222292(1)(312)23t t k k -+-+-=+,所以2231292(1)32t t --+-=,解得14t =, 所以存在点1(0,)4P ,使得PB PM ⋅为定值.。
山东省烟台第二中学2023-2024学年高二上学期12月月考数
学试题
学校:___________姓名:___________班级:___________考号:___________
四、解答题
15.已知:等差数列{n a }中,4a =14,前10项和10185S =.
(Ⅰ)求n a ;
(Ⅱ)将{n a }中的第2项,第4项,…,第2n 项按原来的顺序排成一个新数列,求此数列
的前n 项和n G .
16.设()()2
56ln f x a x x =-+()R a Î,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于
点()0,6,求函数()f x 的极值.
17.数列{}n
a 的前n 项和为n S ,11a =,12(),n n
a S n N *+=Î,
(1)求数列{}n a 的通项n a ;
(2)求数列{}n
na 的前n 项和n T .
18.已知函数()()2e x f x x ax b -=++在1x =处取得极值.
(1)求b
的值;
(2)讨论函数()f x 的单调性.
19.一个仓库由上下两部分组成:上部分形状是正四棱锥P- A 1B 1C 1D 1,下部分形状是正四
棱柱1111ABCD A B C D -(如图所示),并且正四棱柱的高1OO 是正四棱锥的高PO 1的4倍.
(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?
(2)若正四棱锥的侧棱长为6m,当PO1为多少时,仓库的容积最大?。
2023_2024学年四川省广安市高二上学期12月月考化学模拟测试题可能用到的相对原子质量:H-1 O-16 P-31 Al-27 Cl-35.5 Na-23一、单选题(每题3分,总分42分)1.电化学在现代的生产生活中有着很广泛的应用,越来越影响着我们的生活.下列关于电化学的叙述正确的是( )A.工业上通过电解MgCl₂溶液来冶炼Mg单质B.氯碱工业电解池中使用的离子交换膜是阴离子交换膜C.在铁制品上镀银时,铁制品与电源负极相连D.电动自行车使用的铅酸蓄电池的比能量较高,所以生活中使用很普遍2. 下列实验装置(部分夹持装置已略去)可以达到对应实验目的的是( )A. AB. BC. CD. D3. 一定条件下向某密闭容器中加入0.3 mol A、0.1 mol C和一定量的B三种气体,图甲表示各物质的物质的量浓度随时间的变化,图乙表示反应速率随时间的变化,t2、t3、t4、t5时刻后各改变一种条件.若t4时刻改变条件是压强,则下列说法错误的是( )A. 若t 1=15 s,则前15 s 的平均反应速率v (C)=0.004 mol·L -1·s -1B. 该反应的化学方程式为3A(g) B(g)+2C(g)C. t 2、t 3、t 5时刻改变的条件分别是升高温度、加入催化剂、增大反应物浓度D. B 的起始物质的量为0.04 mol4. 对室温下pH 相同、体积相同的氨水与氢氧化钠两种稀溶液,分别采取下列措施,有关叙述正确的是( )A. 温度均升高20℃,两溶液的pH 均不变B. 与足量的氯化铁溶液反应,产生的氢氧化铁沉淀一样多C. 加水稀释100倍后,氨水中c(OH -)比氢氧化钠溶液中的小D. 加入适量氯化铵固体后,两溶液的pH 均减小5. 电离常数是研究电解质在水溶液中的行为的重要工具.现有、和三种酸,各HX 2H Y 2H Z 酸及其盐之间不发生氧化还原反应,它们的电离常数如下表所示.下列说法正确的是( )酸电离常数(25℃)HX9.2a K 10-=2H Y6.4a1K 10-=10.3a2K 10-=2H Z1.9a1K 10-=7.2a2K =10-A. 在水溶液中结合的能力:B.NaHY 溶液显酸性H +22Y Z --<10.1mol L NaX-⋅C.溶液与过量反应的离子方程式:2Na Y HX 2HX Y HY X ---+=+D. 25℃时,浓度均为的和溶液的:10.1mol L -⋅2H Y 2H Z pH 22H Y H Z<6. 时,用溶液分别滳定的盐酸和醋酸溶液、25℃10.100mol L NaOH -⋅120.00mL0.100mol L -⋅滴定曲线如图所示.下列说法正确的是( )A. 时,电离常数25℃3CH COOH 3a K 1.010-=⨯B. a 点时混合溶液中()()()()3c Na c CH COO c H c OH +-+->>>C. d 点时,曲线Ⅰ与曲线Ⅱ消耗NaOH 的体积为曲线Ⅰ>曲线ⅡD. a 、b 、c 三点溶液中由水电离出的大小顺序为()c H +c a b>>7. 以下图像对应的叙述正确的是( )A. 图甲:A 的平衡转化率为50%B. 图乙:t 1时刻改变的条件只能是加入催化剂C. 图丙:对图中反应升高温度,该反应平衡常数减小D. 图丁:该正向反应在任何温度下都能自发进行8、某温度下,Fe(OH)3(s)、Cu(OH)2(s)分别在溶液中达到沉淀溶解平衡后,改变溶液的pH,金属阳离子的浓度变化如图所示.下列判断错误的是( )A .K sp [Fe(OH)3]<K sp [Cu(OH)2]B .加适量NH 4Cl 固体可使溶液由a 点变到b 点C .c 、d 两点代表的溶液中c (H +)与c (OH -)乘积相等D .Fe(OH)3、Cu(OH)2分别在b 、c 两点代表的溶液中达到饱和9. 催化剂Ⅰ和Ⅱ均能催化反应,反应历程如图所示,M 为中间产物.其他条件相同()()R g P g 时,下列说法不正确的是( )A. 使用Ⅰ和Ⅱ,不影响P 的平衡体积百分含量B. 反应达平衡时,升高温度,R 的浓度增大C. 使用Ⅰ时,反应体系更快达到平衡D. 使用Ⅱ时,反应过程中M 所能达到的最高浓度更大10.下列对四个常用电化学装置的叙述中,正确的是( )图I 碱性锌锰电池图Ⅱ铅酸蓄电池图III 电解精炼铜图Ⅳ纽扣式银锌电池A.图I 所示电池中,的作用是催化剂MnO₂B.图Ⅱ所示电池,为了增强电解质溶液的导电能力,通常使用 98%的浓硫酸C.图Ⅲ所示装置工作过程中,电解质溶液中Cu 2+浓度始终不变D.图Ⅳ所示电池中,Ag 2O 是氧化剂, 电池工作过程中被还原为Ag11、已知25 ℃时部分弱电解质的电离平衡常数数据如表所示,物质的量浓度均为0.1 mol·L -1的几种溶液:①CH 3COOH ②HClO ③NaClO ④H 2CO 3 ⑤Na 2CO 3 ⑥NaHCO 3 ⑦CH 3COONa,pH 由小到大排列的顺序是( )化学式CH 3COOHH 2CO 3HClO电离平衡常数K=1.8×10-5K1=4.3×10-7,K2=5.6×10-11 K=3.0×10-8 A.④①②⑦⑤⑥③ B.①④②⑦⑥③⑤C.④①②⑦⑥⑤③D.①④②⑦③⑥⑤12.水系锌离子电池的工作原理如图所示, 已知ZnMn2O4难溶于水,下列相关说法正确的是()A.放电时电子流向: Q→电解质溶液→P→a→b→QB.充电一段时间后,溶液质量不变2MnO₂+Zn²⁺−2e⁻=ZnMn₂O₄C.放电时P 极反应为D.充电时Q 极发生氧化反应关于此实验说法错误的是()A.A中试剂为热水,长玻璃管可平衡压强,便于观察是否出现堵塞.原子结构示意图:C .原子核外能量最高的原子轨道是哑铃形D .原子的轨道表示式:二、非选择题(每空2分,总分58分)15.(14分) Ⅰ、CH 4和CO 2重整制取合成气CO 和H 2,在减少温室气体排放的同时,可充分利用碳资源.该重整工艺主要涉及以下反应:反应a : 422CH (g)CO (g)2CO(g)2H (g)++ 1H 0∆>反应b : 222CO (g)H (g)CO(g)H O(g)++ 2H 0∆>反应c :42CH (g)C(s)2H (g)+ 30H ∆>反应d :22CO(g)C(s)CO (g)+ 4H 0∆<(1)重整时往反应体系中通入一定量的水蒸气,可在消除积碳的同时生成水煤气,反应为,该反应的△H =_______(用含有、、一个22C(s)H O(g)CO(g)H (g)++ 1H 0∆>2H 0∆>30H ∆>代数式表示).(2)关于CH 4和CO 2重整,下列说法正确的是_______(填编号).A .CH 4的物质的量保持不变时,反应体系达到平衡状态B .a 反应需要低温才能自发进行 C .加入反应c 的催化剂,该反应的平衡常数K 增大 D .降低反应温度,反应d 的v 正>v 逆 E .恒容时通入N 2增大压强,CO 2的平衡转化率减小(3)一定压强下按照甲烷与二氧化碳物质的量之比2:1投料,甲烷与二氧化碳发生重整反应,达到平衡时各组分的物质的量分数如图所示:则n 表示的是__________(填CO 2、H 2、CO).16. (14分)物质在水中存在电离平衡、水解平衡.请根据所学知识回答:(1)次磷酸()是一种精细化工产品,向10mL 溶液中加入20mL 等物质的量浓32H PO 32H PO 度的NaOH 溶液后,所得的溶液中只有、两种阴离子.22H PO -OH -①写出溶液与足量NaOH 溶液反应后形成的正盐的化学式:___________.32H PO ②常温下,,0.1mol/L 的溶液在加水稀释过程中,下列表达式的()2a 32K H PO =5.910-⨯32H PO 数据一定变小的是___________(填序号).A .B .C .()c H +()()32+c H PO c H ()()()2232c H PO c H c H PO -+⋅(2)25℃时,HF 的电离常数为;的电离常数为,4a K 3.610-=⨯34H PO 3a1K =7.510-⨯,.在溶液加入过量NaF 溶液的离子反应方程式为8a2K =6.210-⨯13a3K 4.410-=⨯34H PO(3)盐碱地(含较多、NaCl)不利于植物生长,盐碱地呈碱性的原因:23Na CO (用离子方程式说明);已知25℃时,H 2CO 3的K a1= 4.3×10-7,K a2 = 5×10-11 ,则当溶液中23Na CO 时,溶液的pH=___________.()()233c HCO :c CO =2:1--(4)某温度下,水的离子积常数.该温度下,将pH=1的HCl 溶液与pH=10的12w K =110-⨯NaOH 溶液混合并保持恒温,忽略混合前后溶液体积的变化.欲使混合溶液pH=3,则盐酸溶液与NaOH 溶液的体积比为___________.(5)相同物质的量浓度的五种溶液:①、②氨水、③、④()442NH SO 44NH HSO 、⑤,由大到小顺序是(用序号4NH Cl ()()4422NH Fe SO ()4c NH +表示).17.(14分) MnO 2是重要的化工原料,软锰矿制备MnO 2的一种工艺流程如图:资料:①软锰矿的主要成分为MnO 2,主要杂质有Al 2O 3和SiO 2②金属离于沉淀的pHFe 3+Al 3+Mn 2+Fe 2+开始沉淀时 1.5 3.4 5.8 6.3完全沉淀时2.84.77.88.3③该工艺条件下,MnO 2与H 2SO 4反应.(1)溶出①溶出前,软锰矿需研磨.目的是 .②溶出时,Fe 的氧化过程及得到Mn 2+的主要途径如图所示:i.步骤II 是从软锰矿中溶出Mn 2+的主要反应,反应的离子方程式是 .ii.若Fe 2+全部来自于反应Fe+2H +=Fe 2++H 2↑,完全溶出Mn 2+所需Fe 与MnO 2的物质的量比值为2.而实际比值(0.9)小于2,原因是.(2)纯化.已知:MnO 2的氧化性与溶液pH 有关.纯化时先加入MnO 2,目的是,后加入NH3·H2O,调节溶液pH的区间是:.(3)电解Mn2+纯化液经电解得MnO2.生成MnO2的电极反应式是.(4)写出铁原子26Fe的电子排布式:.18.(16分) 利用电化学装置可消除氮氧化物(如NO、NO2-、NO3-尿素等)污染,变废为宝.(1)下图为电解NO制备NH4NO3的装置.该装置中阴极的电极反应式为;“反应室”中发生反应的离子方程式为.(2)化学家正在研究尿素[CO(NH2)2]动力燃料电池直接去除城市废水中的尿素,既能产生净化的水, 又能发电,尿素燃料电池结构如图所示:甲电极的电极反应式为;乙电极的电极反应式为.理论上每净O₂化1mol尿素, 消耗的体积约为L(标准状况).((3)工业上用电解法治理亚硝酸盐NO2-具有强氧化性)对水体的污染,模拟工艺如下图所示,写出电解时铁电极的电极反应式:. 随后, 铁电极附近有无色气体产生,可能原因是.CO32-— 11 —选择题答案: CACDC DABDD BBAC【15答案】: (14分)(每空2分)Ⅰ、(1) (2)AD (3)①CO123H H H ∆-∆-∆ Ⅱ、(1)玻璃搅拌器 (2)H +(aq)+ OH ﹣(aq)=H 2O(l) △H =—57.3kJ/mol(3) 不变 (4)AC【16答案】:(14分)(每空2分)(1)①. ②. AB (2)22NaH PO --3222H PO +F =H PO HF +(3)①. ②. 10 (4)1:9 (5)⑤①③④②2-323CO +H O HCO OH --+ 【17答案】: (14分)(每空2分)(1)①. 增大反应速率,提高浸出率 ②. MnO 2+4H ++2Fe 2+Mn 2++2Fe 3++2H 2OΔ二氧化锰能够氧化单质铁为Fe 2+(2)将Fe2+氧化为Fe3+ 4.7-5.8(3) Mn 2+-2e -+2H 2O=MnO 2+4H +(4)1s 22s 22p 63s 23p 63d 64s 2【18答案】:(16分)(每空2分)(1)NO+5e -+6H +=NH 4++H 2O NH 3+H +=NH 4+(2)CO(NH 2)2-6e -+H 2O =CO 2↑+N 2↑+6H + O 2+4e -+4H +=2H 2O 33.6 (3)Fe-2e -=Fe 2+ 生成的亚铁离子将溶液中的NO 2-还原成N 2(4)3:4。
浙江省强基联盟2023-2024学年高二上学期12月月考英语试卷学校:___________姓名:___________班级:___________考号:___________一、听力题1、When does the rainy season start?A. In January.B. In February.C. In November.2、How does the woman's food taste?A. Salty.B. Hot.C. Sweet.3、What is the relationship between the speakers?A. Teacher and student.B. Father and daughter.C. School friends.4、Which room has the man finished decorating?A. The bathroom.B. The kitchen.C. The living room.5、What does the woman probably do?A. A doctor.B. A coach.C. An athlete.听下面一段材料,回答以下小题。
6、What does Miyako want to do?A. Make a call.B. Send a card.C. Hold a party.7、What is the man doing?A. Making an apology.B. Giving an explanation.C. Sharing an experience.听下面一段材料,回答以下小题。
8、What did David do last night?A. He played volleyball.B. He watched television.C. He read the newspaper.9、What time will the match on Saturday afternoon start?A. At 2:30.B. At 3:00.C. At 3:30.10、What will Lisa do first?A. Talk with her mom.B. Give avia ā call.C. Take a piano lesson.听下面一段材料,回答以下小题。
2023北京高二12月月考物理(答案在最后)班级___________姓名___________学号___________本试卷共3页,共100分。
考试时长60分钟。
考生务必将答案写在答题纸上,在试卷上作答无效。
一、单项选择题(本题共8个小题,每小题4分,共32分,把正确答案涂写在答题卡上相应的位置。
)1.下列现象中,属于电磁感应现象的是()A.通电线圈在磁场中转动B.闭合线圈在磁场中运动而产生电流C.磁铁吸引小磁针D.小磁针在通电导线附近发生偏转2.指南针静止时,其位置如图中虚线所示.若在其上方放置一水平方向的导线,并通以恒定电流,则指南针转向图中实线所示位置.据此可能是()A.导线南北放置,通有向北的电流B.导线南北放置,通有向南的电流C.导线东西放置,通有向西的电流D.导线东西放置,通有向东的电流3.如图所示为洛伦兹力演示仪的结构示意图,演示仪中有一对彼此平行且共轴的励磁圆形线圈,通入电流I后,能够在两线圈间产生匀强磁场;玻璃泡内有电子枪,通过加速电压U对初速度为零的电子加速并连续发射。
电子刚好从球心O点正下方的S点水平向左射出,电子通过玻璃泡内稀薄气体时能够显示出电子运动的径迹。
则下列说法正确的是()A.若要正常观察电子径迹,励磁线圈的电流方向应为逆时针(垂直纸面向里看)B.若保持U不变,增大I,则圆形径迹的半径变大C.若同时减小I和U,则电子运动的周期减小D.若保持I不变,减小U,则电子运动的周期将不变4.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频电源的两极相连接的两个D形金属盒,两盒间的狭缝中有周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,则下列说法中正确的是()A.只增大狭缝间的加速电压,可增大带电粒子射出时的动能B.只增大狭缝间的加速电压,可增大带电粒子在回旋加速器中运动的时间C.只增大磁场的磁感应强度,可增大带电粒子射出时的动能D.用同一回旋加速器可以同时加速质子(11H)和氚核(31H)5.一种用磁流体发电的装置如图所示。
武汉市2025届高二12月考英语试卷(答案在最后)第一部分听力(共两节,满分30分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What does the man care most about the phone?A.Its price.B.Its design.C.Its model.2.How does the man prefer to go to the airport?A.By taxi.B.By subway.C.By bus.3.Where does the conversation take place?A.In a restaurant.B.In an office.C.In a store.4.What will the woman do to cool down?A.Go outside.B.Open the window.C.Turn on the air conditioner.5.What are the speakers mainly talking about?A.A robot.B.A zoo.C.A hotel.第二节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听下面一段对话,回答第6和第7小题。
6.Why is John calling Maria?A.To ask for a ride.B.To discuss a meeting.C.To borrow her car.7.When will the speakers meet?A.At7:10.B.At7:30.C.At7:40.听下面一段对话,回答第8至第10三个小题。
2022-2023学年山东省菏泽第一中学高二上学期12月月考数学试题一、单选题1.抛物线的焦点坐标是( )22y x =A .B .C .D .1,02⎛⎫ ⎪⎝⎭1,08⎛⎫ ⎪⎝⎭10,2⎛⎫ ⎪⎝⎭10,8⎛⎫ ⎪⎝⎭【答案】D【分析】先把抛物线化为标准方程,直接写出焦点坐标.【详解】抛物线的方程为,所以焦点在轴22y x =212x y=y 由,122p =所以焦点坐标为.10,8⎛⎫⎪⎝⎭故选:D .2.设为等差数列的前项和,已知,,则( )n S {}n a n 311a =1060S =5a=A .7B .8C .9D .10【答案】A【详解】设等差数列的公差为d ,由题意建立方程,即可求出,d ,再根据等差数列的通项{}n a 1a 公式,即可求出结果.【分析】设等差数列的公差为d ,由题意可知,解得,,{}n a 11211 104560a d a d +=⎧⎨+=⎩115a =2d =-所以.5141587a a d =+=-=故选:A3.设点是关于坐标平面的对称点,则( )B (2,3,5)A xOy ||=AB A .BC .D1038【答案】A【分析】根据空间直角坐标系的坐标特点得点坐标,根据空间中两点间的距离公式计算即可得B .||AB【详解】解:因为点是关于坐标平面的对称点,所以B (2,3,5)A xOy (2,3,5)B -所以.10AB AB ===故选:A.4.已知向量,且与互相平行,则( )()()1,1,0,1,0,=-=a b m ka b + 2a b -k =A .B .C .D .114-153512-【答案】D【分析】由空间向量平行的条件求解.【详解】由已知,,(1,,)ka b k k m +=-2(3,1,2)a b m -=-- 因为与平行,ka b + 2a b -若,则,,0m =131k k-=-12k =-若,则,无解.0m ≠1312k k mm -==--k 综上,,12k =-故选:D .5.设向量,,不共面,空间一点P 满足,则A ,B ,C ,P 四点OA OB OCOP xOA yOB zOC =++ 共面的一组数对是( )(,,)x y z A .B .111(,,)432131(,,)442-C .D .(1,2,3)-121(,,)332-【答案】B【分析】由题设条件可知,A ,B ,C ,P 四点共面等价于,由此对选项逐一检验即可.1x y z ++=【详解】因为向量,,不共面,,OA OB OCOP xOA yOB zOC =++ 所以当且仅当时,A ,B ,C ,P 四点共面,1x y z ++=对于A ,,故A 错误;1111432++≠对于B ,,故B 正确;1311442-++=对于C ,,故C 错误;1231-+≠对于D ,,故D 错误.1211332-++≠故选:B.6.已知数列中,且,则为( ){}n a 11a =()133nn n a a n a *+=∈+N 16a A .B .C .D .16141312【答案】A【分析】采用倒数法可证得数列为等差数列,根据等差数列通项公式可推导得到,代入1n a⎧⎫⎨⎬⎩⎭n a 即可.16n =【详解】由得:,又,133n n n a a a +=+1311133n n n n a a a a ++==+111a =数列是以为首项,为公差的等差数列,,∴1n a ⎧⎫⎨⎬⎩⎭113()1121133nn n a +∴=+-=,.32n a n ∴=+1616a ∴=故选:A.7.已知三个数,,成等比数列,则圆锥曲线的离心率为( )1a92212xy a +=A BC D【答案】D【详解】椭圆、双曲线的方程简单性质,等比数列的性质,分类讨论,由已知求得值,然后分类a 讨论求得圆锥曲线的离心率解决即可.2212x y a +=【解答】因为三个数,,成等比数列,1a 9所以,则.29a=3a =±当时,曲线方程为,表示椭圆,3a =22132x y +=,1当时,曲线方程为,表示双曲线,3a=-22123y x -=.=故选:D 8.若数列是等差数列,首项,公差,则使数列的前项{}n a 10a >()2020201920200,0d a a a <+<{}n a n 和成立的最大自然数是( )n S >n A .4039B .4038C .4037D .4036【答案】B【分析】根据等差数列的单调性,结合等差数列前项和公式进行求解即可.n 【详解】因为,所以等差数列是递减数列,0d <{}n a 因为,()2020201920200a a a +<所以,且,,201920200,0a a ><20192020a a >201920200a a +>()1403920192020403920204038201920204039()40390,403820190,22a a a a S a S a a ++===⨯=+所以使数列的前项和成立的最大自然数是4038.{}n a n 0n S >n 故选:B二、多选题9.下列结论错误的是( )A .过点,的直线的倾斜角为()1,3A ()3,1B -30︒B .若直线与直线平行,则2360x y -+=20ax y ++=23a =-C .直线与直线240x y +-=2410x y ++=D .已知,,点在轴上,则的最小值是5()2,3A ()1,1B -P x PA PB+【答案】AC【分析】对于A ,即可解决;对于B ,由题意得即可解决;对于C ,平行线间距tan AB k α=231a -=离公式解决即可;对于D ,数形结合即可.【详解】对于A ,,即,故A 错误;131tan 312AB k α-===--30α≠︒对于B ,直线与直线平行,所以,解得,故B 正确;2360x y -+=20ax y ++=123a =-23a =-对于C ,直线与直线(即)之间的距离为240x y +-=2410x y ++=1202x y ++=,故C错误;d 对于D ,已知,,点在轴上,如图()2,3A ()1,1B -Px 取关于轴的对称点,连接交轴于点,此时()1,1B -x ()1,1B '--AB 'x P,5=所以的最小值是5,故D 正确;PA PB+故选:AC.10.已知数列的前项和为,,则下列说法不正确的是( ){}n a n n S 25n S n n =-A .为等差数列B .{}n a 0n a >C .最小值为D .为单调递增数列n S 254-{}n a 【答案】BC【分析】根据求出,并确定为等差数列,进而可结合等差数列的性质以及前项和分析求n S n a {}n a n 解.【详解】对于A ,当时,,2n ≥()()221515126n n n a S S n n n n n -⎡⎤==-----=-⎣⎦-时满足上式,所以,1n =114a S ==-26,N n a n n *=-∈所以,()()1216262n n a a n n +-=+---=所以为等差数列,故A 正确;{}n a 对于B ,由上述过程可知,26,N n a n n *=-∈,故B 错误;12340,20,0a a a =-<=-<=对于C ,因为,对称轴为,25n S n n =-52.52=又因为,所以当或3时,最小值为,故C 错误;N n *∈2n =n S 6-对于D ,由上述过程可知的公差等于2,{}n a 所以为单调递增数列,故D 正确.{}n a 故选:BC.11.在正方体中,E ,F ,G 分别为BC ,的中点,则下列结论中正确的1111ABCD A B C D -11CC BB ,是( )A .1D D AF⊥B .点G 到平面的距离是点C 到平面的距离的2倍AEF AEF C .平面1//A G AEFD .异面直线与1A G EF 【答案】BC【分析】对于选项:由以及与不垂直,可知错误;对于选项:利用等体积A 11//DD CC 1CC AF A B 法,可求得结果,进而判断选项正确;对于选项:取的中点,A GEF G AEF A CEF C AEF V V V V ----==B C 11B C ,根据面面平行的性质即可得出平面,可知选项正确; 对于选项:根据线面垂M 1//A G AEF C D 直的判定定理和性质,结合二面角的定义可知错误;D 【详解】对于选项:因为,所以不是等腰三角形,所以与不垂直,因为A 1AC AC ≠1ACC △1CC AF ,所以与不垂直,故选项错误;11//DD CC 1DD AF A 对于选项:设正方体的棱长为2,设点到平面的距离与点到平面的距离分别为B G AEFC AEF ,则,12,h h 11133A GEF GEF G AEF AEF V AB S V h S --=⋅==⋅ ,21133A CEF CEF C AEF AEFV AB S V h S --=⋅==⋅所以,故选项正确;12121221112GEFCEFS h h S ⨯⨯===⨯⨯△△B 对于选项:取的中点,连接,C 11B C M 11,,GM A MBC 由题意可知:,因为,所以,1//GM BC 1//BC EF //GM EF 平面, 平面,所以平面,GM ⊄AEF EF ⊂AEF //GM AEF 因为,平面, 平面,所以平面,1A M AE ∥1A M ËAEF AE ⊂AEF 1//A M AEF 因为平面,所以平面平面,11,,A M GM M A M GM =⊂ 1A GM AEF //1A GM 因为平面,所以平面,故选项正确;1A G ⊂1A GM 1//A G AEF C 对于选项:因为,所以异面直线与所成的角为(或其补角),D 111//,//AD EF A G D F 1A G EF 1AD F ∠设正方体的棱长为2,则,113AD D F AF ===在中,由余弦定理可得:1AD F △错误,22211111cos 2AD D F AF AD F AD D F +-∠===⋅D 故选:.BC 12.下列命题中,正确的命题有( )A .是,共线的充要条件a b a b +=- a b B .若,则存在唯一的实数,使得//a b λa bλ=C .对空间中任意一点和不共线的三点 ,,,若,则,,,O A B C 243OP OA OB OC =-+P A B 四点共面C D .若为空间的一个基底,则构成空间的另一个基底{},,a b c{},2,3a b b c c a+++ 【答案】CD【分析】对A ,向量、同向时不成立;a b a b a b+=- 对B , 为零向量时不成立;b对C ,根据空间向量共面的条件判定;对D ,根据能成为基底的条件判定.【详解】对A ,向量、同向时,,只满足充分性,不满足必要性,A 错误; a b a b a b+≠- ∴∴对B ,应该为非零向量,故B 错误;b对C ,由于得,,243OP OA OB OC =-+ 1324PB PA PC =+若共线,则三向量共线,故,,三点共线,与已知矛盾,,PA PC,,PA PC PB A B C 故不共线,由向量共面的充要条件知共面,而过同一点 ,所以,,PA PC,PB PA PC ,,PB PA PC ,P P ,,四点共面,故C 正确;A B C 对D ,若为空间的一个基底,则,,不共面,{},,a b cab c 假设,,共面,设,a b + 2b c + 3c a + ()()23a b x b c y c a +=+++所以 ,无解,故,,不共面,13102yxx y =⎧⎪=⎨⎪=+⎩a b +2b c + 3c a + 则构成空间的另一个基底,故D 正确.{},2,3a b b c c a+++ 故选: CD .三、填空题13.等比数列中,,,则______.{}n a 39a =-114a =-7a =【答案】6-【分析】由等比数列的性质计算.【详解】因为是等比数列,所以,又的所有奇数项同号,所以.{}n a 2731136a a a =={}n a 76a =-故答案为:.6-14.直线被圆截得的弦长____________230x y +-=()()22214x y -++=【分析】首先求出圆心坐标与半径,再利用点到直线的距离公式求出圆心到直线的距离,最后利用勾股定理与垂径定理计算可得;【详解】圆的圆心为,半径,()()22214x y -++=()2,1-2r =圆心到直线的距离()2,1-d所以直线被圆截得弦长为==.15.已知数列.的前项和为,且.若,则{}n a n n S ()*2120N n n n a a a n +++-=∈11151912a a a ++=______.29S =【答案】116【分析】先判断出数列是等差数列,然后运用等差数列的性质可得答案.【详解】为等差数列,(){}*211220N ,2,n n n n n n n a a a n a a a a +++++-=∈∴=+∴ 111912915111519152,12,4,a a a a a a a a a ∴+=+=++=∴= .129291529292941162a a S a +∴=⨯==⨯=故答案为:116.四、双空题16.如图,在棱长为1的正方体中,M 为BC 的中点,则 与所成角的余ABCD A B C D-''''AM D B''弦值为___________;C 到平面的距离为___________.DA C ''【答案】【分析】第一空根据向量法即可求得异面直线之间的夹角.第二空利用等体积法即可求得.【详解】由已知连接,如图所示建立空间直角坐标系,BD 则,,,()0,0,1A 1,1,12M ⎛⎫ ⎪⎝⎭()0,1,0B '()1,0,0D ' 1,1,02AM ⎛⎫= ⎪⎝⎭ ()1,1,0D B ''=-cos ,AM D B '' 与AM D B ''如图所示设C 到平面的距离为DA C ''d 因为C A DC A DCC V V'''--=1111sin 601113232d d ⨯⋅=⨯⨯⨯⨯⇒=五、解答题17.已知等差数列的前项和为,等比数列的前项和为,.{}n a n n S {}n b n n T 11221,1,2a b a b =-=+=(1)若,求的通项公式;335a b +={}n b (2)若,求.321T =3S 【答案】(1);(2)当时,.当时,.12n n b -=5q =-321S =4q =36S =-【分析】设的公差为d ,的公比为q ,{}n a {}n b (1)由条件可得和,解方程得,进而可得通项公式;3d q +=226d q +=12d q =⎧⎨=⎩(2)由条件得,解得,分类讨论即可得解.2200q q +-=5,4q q =-=【详解】设的公差为d ,的公比为q ,则,.{}n a {}n b 1(1)n a n d =-+-1n n b q -=由得.①222a b +=3d q +=(1)由得②335a b +=226d q +=联立①和②解得(舍去),30d q =⎧⎨=⎩12d q =⎧⎨=⎩因此的通项公式为.{}n b 12n n b -=(2)由得.131,21b T ==2200q q +-=解得.5,4q q =-=当时,由①得,则.5q =-8d =321S =当时,由①得,则.4q =1d =-36S =-【点睛】本题主要考查了等差数列和等比数列的基本量运算,属于基础题.18.如图,平行六面体的底面是菱形,且,1111ABCD A B C D -1160C CB C CD BCD ∠=∠=∠=︒.12CD CC ==(1)求的长;1AC (2)求异面直线与所成的角.1CA 1DC【答案】(1)1AC =(2)90°.【分析】(1)因为三组不共线,则可以作为一组基底,用基底表示向量,平方即求1,,CD CB CC 1AC 得模长.(2) 求出两条直线与的方向向量,用向量夹角余弦公式即可.1CA 1DC 【详解】(1)设,,,构成空间的一个基底.CD a = CB b = 1CC c = {},,a b c 因为,()11()AC CC CD CB c a b =-+=-+ 所以()22211AC AC c a b ⎡⎤==-+⎣⎦ 222222c a b a c b c a b=++-⋅-⋅+⋅ ,12222cos 608=-⨯⨯⨯︒=所以1AC =(2)又,,1CA a b c =++ 1DC c a =- 所以()()11CA DC a b c c a ⋅=++⋅- 220c a b c a b =-+⋅-⋅= ∴11CA DC ⊥ ∴异面直线与所成的角为90°.1CA 1DC 19.已知等差数列的前n 项和为.{}n a 258,224,100n S a a S +==(1)求{an }的通项公式;(2)若,求数列{}的前n 项和Tn .+11n n n b a a =n b 【答案】(1)31n a n =-(2)2(32)n nT n =+【分析】(1)由等差数列的通项公式以及等差数列的前n 项和公式展开可求得结果;(2)由裂项相消求和可得结果.【详解】(1)设等差数列的公差为d ,由题意知,{}n a 解得:1112()4248(81)81002a d a d a d +++=⎧⎪⎨⨯-+=⎪⎩123a d =⎧⎨=⎩∴.1(1)23(1)31n a a n d n n =+-=+-=-故的通项公式为.{}n a 31n a n =-(2)∵1111((31)(32)33132n b n n n n ==--+-+111111111111()()()(325358381133132111111111 ()325588113132111 =(3232=2(32)n T n n n n n n n =⨯-+⨯-+⨯-++--+=⨯-+-+-++--+⨯-++ 即:的前n 项和.{}n b 2(32)n nT n =+20.如图,在直三棱柱中,,,,交于点111ABC A B C -2AB AC ==14AA =AB AC ⊥1BE AB ⊥1AA E ,D 为的中点.1CC(1)求证:平面;BE ⊥1AB C (2)求直线与平面所成角的正弦值.1B D 1AB C 【答案】(1)证明见解析;【分析】(1)先证明,从而可得平面,进而可得,再由线面垂直1AA AC ⊥AC ⊥11AA B B AC BE ⊥的判定定理即得;(2)建立空间直角坐标系,利用线面角的向量求法即得.【详解】(1)因为三棱柱为直三棱柱,111ABC A B C -所以平面,又平面,1AA ⊥ABC AC ⊂ABC 所以,1AA AC ⊥又,,平面,平面,AC AB ⊥1AB AA A ⋂=AB ⊂11AA B B 1AA ⊂11AA B B 所以平面,AC ⊥11AA B B 因为平面,BE ⊂11AA B B 所以,AC BE ⊥又因为,,平面,平面,1BE AB ⊥1AC AB A ⋂=AC ⊂1AB C 1AB ⊂1AB C 所以平面;BE ⊥1AB C (2)由(1)知,,两两垂直,如图建立空间直角坐标系,AB AC 1AA A xyz -则,,,,,()0,0,0A ()12,0,4B ()0,2,0C ()2,0,0B ()0,2,2D 设,,,,()0,0,E a ()12,0,4AB = ()2,0,BE a =- ()0,2,0AC = 因为,1AB BE⊥ 所以,即,则,440a -=1a =()2,0,1BE =- 由(1)平面的一个法向量为,1AB C ()2,0,1BE =- 又,()12,2,2B D =-- 设直线与平面所成角的大小为,则1B D 1AB C π20θθ⎛⎫≤≤ ⎪⎝⎭,111sin cos ,BE B D BE B D BE B D θ⋅====⋅ 因此,直线与平面1B D 1AB C 21.已知数列{}1221,2,5,43.++===-n n n n a a a a a a (1)令,求证:数列是等比数列;1n n n b a a +=-{}n b (2)若,求数列的前项和.n n c nb ={}n c n n S 【答案】(1)见解析(2)11133244n n S n +⎛⎫=-+ ⎪⎝⎭【分析】(1)根据递推公式证明为定值即可;2113n n n n a a a a +++--(2)利用错位相减法求解即可.【详解】(1)证明:因为,所以,即,2143n n n a a a ++=-()2113n n n n a a a a +++-=-13n n b b +=又,1213b a a -==所以数列是以3为首项,3为公比的等比数列;{}n b (2)解:由(1)得,11333n n n n a a +--=⋅=,3n n n c nb n =⋅=则,23323333n n S n =+⨯+⨯++⋅ ,23413323333n n S n +=+⨯+⨯++⋅ 两式相减得,()2311131313233333331322n n n n n n S n n n +++-⎛⎫-=++++-⋅=-⋅=-- ⎪-⎝⎭ 所以.11133244n n S n +⎛⎫=-+ ⎪⎝⎭22.如图,在多面体ABCDEF 中,梯形ADEF 与平行四边形ABCD 所在平面互相垂直,.1//12AF DE DE AD AD BE AF AD DE AB ⊥⊥====,,,,(1)求证:BF ∥平面CDE ;(2)求二面角的余弦值;B EF D --(3)判断线段BE 上是否存在点Q ,使得平面CDQ ⊥平面BEF ?若存在,求出的值,若不存在,BQBE 说明理由.【答案】(1)详见解析(3)存在点;Q 17BQ BE =【分析】(1)根据线面平行的判断定理,作辅助线,转化为证明线线平行;(2)证得,,两两垂直,从而建立以D 点为原点的空间直角坐标系,求得平面DA DB DE 和平面的一个法向量,根据法向量的夹角求得二面角的余弦值;DEF BEF (3)设,求得平面的法向量为,若平面平面,()[]()0,,20,1BQ BE λλλλ==-∈ CDQ u CDQ ⊥BEF 则,从而解得的值,找到Q 点的位置.0m u =⋅ λ【详解】(1)取的中点,连结,,DE M MF MC 因为,所以,且,12AF DE =AF DM =AF DM =所以四边形是平行四边形,所以,且,ADMF //MF AD MF AD =又因为,且,所以,,//AD BD AD BC =//MF BC MF BC =所以四边形是平行四边形,所以,BCMF //BF CM 因为平面,平面,BF ⊄CDE CM ⊂CDE 所以平面;//BF CDE(2)因为平面平面,平面平面,,ADEF ⊥ABCD ADEF ABCD AD =DE AD ⊥所以平面,平面,则,故,,两两垂直,所以以DE ⊥ABCD DB ⊂ABCD DE DB ⊥DA DB DE ,,所在的直线分别为轴、轴和轴,如图建立空间直角坐标系,DA DB DE x y z 则,,,,,,()0,0,0D ()1,0,0A ()0,1,0B ()1,1,0C -()0,0,2E ()1,0,1F 所以,,为平面的一个法向量.()0,1,2BE =- ()1,0,1EF =- ()0,1,0n = DEF 设平面的一个法向量为,BEF (),,m x y z =由,,得,0m BE ⋅= 0m EF ⋅= 200y z x z -+=⎧⎨-=⎩令,得.1z =()1,2,1m →=所以.cos ,m n m n m n →→→→→→⋅===如图可得二面角为锐角,B EF D --所以二面角.BEF D --(3)结论:线段上存在点,使得平面平面.BE Q CDQ ⊥BEF 证明如下:设,()[]()0,,20,1BQ BE λλλλ==-∈ 所以.(0,1,2)DQ DB BQ λλ=+=- 设平面的法向量为,又因为,CDQ (),,u a b c =()1,1,0DC =- 所以,,即,0u DQ ⋅= 0u DC ⋅= (1)200b c a b λλ-+=⎧⎨-+=⎩若平面平面,则,即,CDQ ⊥BEF 0m u =⋅ 20a b c ++=解得.所以线段上存在点,使得平面平面,[]10,17λ=∈BE Q CDQ ⊥BEF 且此时.17BQ BE =。
2023-2024学年高二年级12月三校联合调研测试数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知等比数列{}n a 中,11a =,48a=−,则公比q =( )A. 2B. 4−C. 4D. 2−【答案】D 【解析】【分析】根据等比数列的知识求得正确答案.【详解】依题意33418,2a a q q q ===−=−. 故选:D2. 已知过(,2),(,1)A m B m m −−两点的直线的倾斜角是45 ,则,A B 两点间的距离为( )A. 2B.C. D. 【答案】C 【解析】【分析】利用倾斜角求出1m =,然后利用两点间距离公式即可得出答案. 【详解】由题知,12tan 451m m m−−=°=−−, 解得1m =,故(1,2),(1,0)A B −,则,A B 故选:C3. 直线320x my m +−=平分圆C :22220x x y y ++−=,则m =( )A.32B. 1C. -1D. -3【答案】D 【解析】【分析】求出圆心,结合圆心在直线上,代入求值即可.【详解】22220x x y y ++−=变形为()()22112x y ++−=,故圆心为()1,1−,由题意得圆心()1,1−在320x my m +−=上,故320m m −+−=,解得3m =−.故选:D4. 设双曲线()222210,0x y a b a b−=>>的虚轴长为2,焦距为 )A. y =B. 2y x =±C. y x =±D. 12y x =±【答案】C 【解析】【分析】根据题意得到1b =,c =a =.【详解】由题意得22b =,2c =1b =,c =故a故双曲线渐近线方程为b y x x a=±. 故选:C5. 椭圆22192x y +=中以点()21M ,为中点的弦所在直线斜率为( ) A. 49−B.12C.D. −【答案】A 【解析】【分析】先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率. 【详解】设弦的两端点为()11A x y ,,()22B x y ,,代入椭圆得22112222192192x y x y += += , 两式相减得()()()()12121212092x x x x y y y y −+−++=,即()()()()1212121292x x x x y y y y −+−+=−,即()()1212121229x x y y y y x x +−−=+−, 即12122492y y x x −×−=×−, 即121249y y x x −=−−,∴弦所在的直线的斜率为49−, 故选:A .6. 已知()1,0F c −,()2,0F c 是椭圆()2222:10x yC a b a b+=>>的左、右焦点,若椭圆C 上存在一点P 使得212PF PF c ⋅=,则椭圆C 的离心率e 的取值范围是( )A.B.C.D.【答案】B 【解析】 【分析】设点P .【详解】设()00,P x y ,则()22002210x ya b a b +=>>,∴2220021x y b a=−, 由212PF PF c ⋅=,∴()()20000,,c x y c x y c −−−⋅−−=, 化为2222x c y c −+=,∴22220212x x b c a+−=, 整理得()2222023a x c a c=−, ∵220x a ≤≤,∴()2222203a c a a c≤−≤,e ≤≤,故选:B7. 过动点(),P a b (0a ≠)作圆C:(223x y +−=的两条切线,切点分别为A ,B ,且60APB ∠=°,则ba的取值范围是( )A.B.C. , −∞+∞D.(),−∞∪+∞【答案】D 【解析】【分析】求出PC =,确定动点(),P a b 的轨迹方程,从而结合ba表示圆(2212x y +−=上的点与坐标原点连线的斜率,利用距离公式列出不等式,即可求得答案. 【详解】由题意知圆C:(223x y +−=因为A ,B 分别为两条切线PA ,PB 的切点,且60APB ∠=°,则30APC BPC ∠=∠=°,所以2PC AC ==,所以动点(),P a b在圆(2212x y +−=上且0a ≠,b a表示圆(2212x y +−=上的点与坐标原点连线的斜率, 设bk a=,则直线y kx =与圆(2212x y +−=有公共点,≤,解得k ≤k ≥,即ba的取值范围是(),−∞∪+∞, 故选:D8. 已知数列{}n a 满足()2123111N 23n a a a n n na n +++++=+∈ ,设数列{}nb 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若()N 1n nT n n λ+<∈+恒成立,则实数λ的取值范围为( ) A. 1,4+∞B. 1,4+∞C. 3,8∞+D. 38 +∞,【答案】D 【解析】【分析】首先利用递推关系式求出数列的通项公式,进一步利用裂项相消法求数列的和,最后利用函数的单调性求出结果.【详解】数列{}n a 满足212311123n a a a a n n n++++=+ ,① 当2n ≥时,()2123111111231n n a a a a n n −++++−−=+− ,②①−②得,12n a n n=,故22n a n =, 则()()2222121211114411n n n n n b a a n n n n +++===− ++, 则()()22222211111111114223411n T n n n=−+−++−=− ++,由于()N 1n nT n n λ+<∈+恒成立,故()2111411nn n λ −< ++, 整理得:()21144441n n n λ+>=+++,因()11441n ++随n 的增加而减小, 所以当1n =时,()11441n ++最大,且38, 即38λ>. 故选:D二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分.)为9. 下列说法正确的是( )A. 直线20x y −−=与两坐标轴围成的三角形的面积是2 B. 点()0,2关于直线1y x =+的对称点为()1,1 C. 过()()1122,,,x y x y 两点的直线方程为112121y y x x y y x x −−=−− D. 已知点()1,2P,向量()m =,过点P 作以向量m为方向向量的直线为l ,则点()3,1A 到直线l的距离为1【答案】ABD 【解析】【分析】由直线方程,求得在坐标轴上的截距,利用面积公式,可判定A 正确;根据点关于直线的对称的求法,求得对称点的坐标,可判定B 正确;根据直线的两点式方程的条件,可判定C 错误;根据题意,求得直线l 的方程,结合点到直线的距离公式,可判定D 正确.【详解】对于A 中,令0x =,可得=2y −,令0y =,可得2x =,则直线20x y −−=与两坐标轴围成三角形的面积12222S =××=,所以A 正确; 对于B 中,设()0,2关于直线1y x =+对称点坐标为(),m n ,则212122n mn m − =−+ =+ ,解得1,1m n ==,所以B 正确; 对于C 中,直线的两点式使用的前提是1212,x x y y ≠≠,所以C 错误;对于D中,以向量()m =为方向向量的直线l的斜率k =,则过点P 的直线l的方程为)12y x −+,即10x +−−=, 则点()3,1A 到直线l的距离1d −,所以D 正确. 故选:ABD .的10. 已知椭圆221259x y +=上一点P ,椭圆的左、右焦点分别为12,F F ,则( )A. 若点P 的横坐标为2,则1325PF = B. 1PF 的最大值为9C. 若12F PF ∠为直角,则12PF F △的面积为9D. 若12F PF ∠为钝角,则点P的横坐标的取值范围为 【答案】BCD 【解析】【分析】对A ,可直接解出点P 坐标,求两点距离; 对B ,1PF 最大值为a c +对C ,设1PF x =,则210PF x =-,列勾股定理等式,可求面积;对D ,所求点P 在以原点为圆心,4c =为半径的圆内,求出椭圆与该圆的交点横坐标即可判断.【详解】椭圆的长半轴为5a=,半焦距为4=c ,∴()()124,0,4,0F F −对A ,2x =时,代入椭圆方程得,=,1175PF ==,A 错; 对B ,1PF 的最大值为9a c +=,B 对;对C ,12F PF ∠为直角,设1PF x =,则210PF x =-,则有()222210810180x x x x +-=⇒-+=,则12PF F △的面积为()11810922x x −==,C 对; 对D ,以原点为圆心,4c =为半径作圆,则12F F 为圆的直径,则点P 在圆内时,12F PF ∠为钝角,联立2222125916x y x y += +=,消y得x =,故点P的横坐标的取值范围为 ,D 对. 故选:BCD11. 已知数列{}n a 满足12a =,12,2,n n na n a a n ++ = 为奇数,为偶数,设2n n b a =,记数列{}n a 的前2n 项和为2n S ,数列{}n b 的前n 项和为n T ,则( )A. 520a =B. 32nn b =×C. 12632n n T n +=−−+×D. 2261232n n S n +=−−+×【答案】ACD 【解析】【分析】分析1n a +与n a 的递推关系,根据数列{}n a 的奇数项、偶数项以及分组求和法求得2,n n T S .【详解】依题意,2132435424,28,210,220a a a a a a a a =+====+===,A 选项正确. 112432b a ==≠×,所以B 选项错误.当n 为偶数时,2111222n n n n a a a a ++++==+=+,所以()2222n n a a ++=+,而226a +=,所以1122262,622nn nn a a −−+=×=×−,所以12242662622nn nT a a a n − ++++×++×−()16122263212n n n n +−=−=−−+×−,所以C 选项正确.当n 为奇数时,()211122224n n n n n a a a a a ++++++,所以()2424n n a a ++=+,而146a =,所以11122462,624n n nn a a +−−+=×=×−,所以1213521662624n n a a a a n −−+++++×++×−()16124463212n n n n +−=−=−−+×−,所以()()11224632263261232n n n n S n n n +++=−−+×+−−+×=−−+×,所以D 选项正确.故选:ACD【点睛】求解形如()11n n a pa q p +=+≠的递推关系式求通项公式的问题,可考虑利用配凑法,即配凑为()1n n a p a λλ++=+的形式,再结合等比数列的知识来求得n a .求关于奇数、偶数有关的数列求和问题,可考虑利用分组求和法来进行求解.12. 画法几何的创始人——法国数学家蒙日发现:在椭圆()2222:10x y C a b a b+=>>中,任意两条互相垂直的切线的交点都在同一个圆上,它的圆心是椭圆的中心,半径等于长、短半轴平方和的算术平方根,这个圆就称为椭圆C 的蒙日圆,其圆方程为2222x y a b +=+.已知椭圆C,点A ,B 均在椭圆C 上,直线:40l bx ay +−=,则下列描述正确的为( ) A. 点A 与椭圆C 的蒙日圆上任意一点的距离最小值为bB. 若l 上恰有一点P 满足:过P 作椭圆C 的两条切线互相垂直,则椭圆C 的方程为2213x y +=C. 若l 上任意一点Q 都满足0QA QB ⋅>,则01b <<D. 若1b =,椭圆C 的蒙日圆上存在点M 满足MA MB ⊥,则AOB【答案】BCD 【解析】【分析】根据椭圆上点到原点最大距离为a ,蒙日圆上的点到椭圆上点的距离最小值为半径减去a 可判断A ,利用相切列出方程即可求得椭圆的方程,可判断B ,分析可得点Q 应在蒙日圆外,解不等式从而判断C ,依据题意表示出面积表达式并利用基本不等式即可求出面积最大值,可判断D.【详解】由离心率c e a ==,且222a b c =+可得223a b , 所以蒙日圆方程2224x y b +=; 对于A ,由于原点O 到蒙日圆上任意一点的距离为2b ,原点O到椭圆上任意一点的距离最大值为a ,所以椭圆C 上的点A 与椭圆C的蒙日圆上任意一点的距离最小值为(2b −,即A 错误;对于B ,由蒙日圆定义可知:直线:40l bx ay +−=与蒙日圆2224x y b +=相切, 则圆心到直线l422b b=,解得1b =; 所以椭圆C 的方程为2213x y +=,即B 正确;对于C ,根据蒙日圆定义可知:蒙日圆上的点与椭圆上任意两点之间的夹角范围为π0,2,若若l 上任意一点Q 都满足0QA QB ⋅>,可知点Q 应在蒙日圆外,所以此时直线l 与蒙日圆2224x y b +=422b b >,解得11b −<<, 又0a b >>,所以可得01b <<,即C 正确.对于D ,易知椭圆C 的方程为2213x y +=,即2233x y +=,蒙日圆方程为224x y +=, 不妨设()0,Mx y ,因为其在蒙日圆上,所以22004xy +=,设()()1122,,,A x y B x y ,又MA MB ⊥,所以可知,MA MB 与椭圆相切,此时可得直线MA 的方程为1133x x y y +=,同理直线MB 的方程为2233x x y y +=; 将()00,M x y 代入,MA MB 直线方程中可得101020203333x x y y x x y x +=+= ,所以直线AB 的方程即为0033x x y y +=, 联立00223333x x y y x y +=+=,消去y 整理可得()2222000036990x y x x x y +−+−=; 由韦达定理可得200121222220000699,33x y x x x x x y x y −+==++, 所以()20202122y AB y +=+, 原点O 到直线AB的距离为d,因此AOB 的面积()2020********AOBy S AB d y +=⋅=×=+333222==≤=;,即201y =时等号成立, 因此AOBD 正确; 故选:BCD的【点睛】方法点睛:在求解椭圆中三角形面积最值问题时,经常利用弦长公式和点到直线距离公式表示出三角形面积的表达式,再利用基本不等式或函数单调性即可求得结果.三、填空题(本大题共4小圆,每小题5分,共20分)13. 在等差数列{}n a 中,n S 为前n 项和,7825a a =+,则11S =_________. 【答案】55 【解析】【分析】根据下标和性质求出6a ,再根据等差数列前n 项和公式及下标和性质计算可得.【详解】在等差数列{}n a 中7825a a =+,又7862a a a =+,所以65a =, 所以()111611611112115522a a a S a +×====. 故答案为:5514. 已知点P 为椭圆C :22195x y +=上一点,点1F ,2F 分别为椭圆C 的左、右焦点,若122PF PF =,则12PF F △的内切圆半径为_____【解析】【分析】首先求12,PF PF 的值,再求12PF F △的面积,再利用三角形内切圆的半径表示面积,即可求解.【详解】因为12||||26PF PF a +==,12||2||PF PF =,所以12||4,||2PF PF ==, 212954,||24c F F c −====,则121||||4F F PF ==,等腰12PF F △边2PF 上的高h =,所以12122PF F S =×= ,设22PF F 的内切圆半径为r ,则121211(||||||)1022PF PF F F r r ++×=××=所以r =15. 已知圆M经过((()2,,1,0,A C B −.若点()3,2P ,点Q 是圆M 上的一个动点,则MQ PQ ⋅的最小值为__________.【答案】4−【解析】【分析】先利用待定系数法求出圆的方程,再利用数量积的运算律转化结合数量积的定义求出. 【详解】设圆M 的一般方程为220x y Dx Ey F ++++=,由于圆经过(2,A,(B ,()1,0C −,所以有72072010D F D F D F ++=++=−+=,解得203D E F =− = =− , 所以圆M 的一般方程为22230x y x +−−=,即标准方程为()2214x y −+=. 则圆M 的圆心()1,0M ,半径2==r MQ ,且=MP,因为()2424 ⋅=⋅−=−⋅≥−×=−MQ PQ MQ MQ MP MQ MQ MP ,当且仅当MQ 与MP同向时,等号成立,所以MQ PQ ⋅的最小值为4−.故答案为:4−.16. 已知双曲线C :()222210,0x y a b a b−=>>的左、右焦点分别为1F ,2F ,过点1F 作倾斜角为30 的直线l 与C 的左、右两支分别交于点P ,Q ,若()2222220F P F Q F P F Q F P F Q+⋅−=,则C 的离心率为______.【解析】【分析】由()2222220F P F Q F P F Q F P F Q+⋅−=,2PF Q ∠的平分线与直线PQ 垂直,结合图像,根据双曲线的定义,找出各边的关系,列出等式,求解.【详解】依题意,由()2222220F P F Q F P F Q F P F Q+⋅−=, 得22220F P F Q QP F P F Q+⋅=,即2PF Q ∠的平分线与直线PQ 垂直, 如图,设2PF Q ∠的平分线2F D 与直线PQ 交于点D ,则22PF D QF D ∠=∠,2290F DP F DQ ∠=∠= ,又22DF DF =, 所以22PDF QDF ≌△△2QF .由题得()1,0F c −,()2,0F c ,设2DF h =,2QF s =,1PF t =,在12Rt DF F △中,1290F DF ∠=,1230DF F ∠=,则h c =,1DF =,由双曲线的性质可得122122QF QF PQ t s a PF PF s t a −=+−=−=−= ,解得4PQ a =,则2PDQD a ==,所以在2Rt QDF△中,s=又12t DF PD a =−=−,2s t a −=)22a a −−=,,整理得222ac =,所以cea==四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17. 已知数列{}n a 满足:122,4a a ==,数列{}n a n −为等比数列. (1)求数列{}n a 的通项公式;(2)求和:12nn S a a a =++⋅⋅⋅+. 【答案】(1)12n n −+ (2)2112122n n n ++− 【解析】【分析】(1)首先求出11a −,22a −,即可求出等比数列{}n a n −的通项公式,从而求出{}n a 的通项公式;(2)利用分组求和法计算可得. 【小问1详解】因为12a =,24a =,数列{}n a n −为等比数列,所以111a −=,222a −=2=,即{}n a n −是以1为首项,2为公比等比数列, 所以12n n a n −−=,则12n n a n −=+. 【小问2详解】12n n S a a a =++⋅⋅⋅+01211222322n n −=++++++++()()01211232222n n −=+++++++++()2112112121222n n n n n n +−=+=++−−. 18. 已知圆()()22:121M x y ++−=,直线l 过原点()0,0O . (1)若直线l 与圆M 相切,求直线l 的方程;(2)若直线l 与圆M 交于P ,Q 两点,当MPQ 的面积最大时,求直线l 的方程.的【答案】(1)0x =或34y x =− (2)y x =−或7y x =−.【解析】【分析】(1)根据直线l 的斜率是否存在进行分类讨论,结合圆心到直线的距离等于半径来求得直线l 的方程.(2)设出直线l 的方程,由点到直线的距离公式、弦长公式求得三角形PQM 面积的表达式,结合二次函数的性质求得MPQ 的面积最大时直线l 的方程. 【小问1详解】①当直线l 的斜率不存在时,直线l 为0x =,显然符合直线与圆相切, ②当斜率存在时,设直线为y kx =,圆M 的圆心坐标()1,2-,圆心到直线的距离d由题意得:直线l 与圆M1,解得:34k =−,所以直线l 的方程为:34y x =−, 综上所述,直线l 的方程为:0x =或34y x =− 【小问2详解】直线l 的斜率不存在时,直线l 为0x =与圆相切,不符合题意,故直线l 斜率必存在, 设直线l 的方程为:y mx =, 圆心到直线的距离d,弦长PQ ==,所以12PQM S PQ d =⋅⋅=△当212d =时,面积S 最大,12=,整理得2870m m ++=,解得7m =−,或1m =−,所以直线l 的方程:y x =−或7y x =−.19.如图,已知A ,(0,0)B ,(12,0)C,直线:(20l k x y k −−=.(1)证明直线l 经过某一定点,并求此定点坐标; (2)若直线l 等分ABC 的面积,求直线l 的一般式方程;(3)若P ,李老师站在点P 用激光笔照出一束光线,依次由BC (反射点为K )、AC (反射点为I )反射后,光斑落在P 点,求入射光线PK 的直线方程. 【答案】(1)证明见解析,定点坐标为(2,; (2170y +−=; (3)2100x −=. 【解析】【分析】(1)整理得到(2))0k x y −+−=,从而得到方程组,求出定点坐标; (2)求出定点P 在直线AB 上,且||8AM =,由12AMD ABC S S =得到3||||94AD AC ==,设出00(,)D x y ,由向量比例关系得到D 点坐标,得到直线方程;(3)作出辅助线,确定P 关于BC 和AC 的对称点1,P 2P ,得到12P P k =由对称性得PK k =写成直线方程. 【小问1详解】直线:(20l k x y k +−−=可化为(2))0k x y −+−=,令200x y −= −=,解得2x y = = l经过的定点坐标为(2,;【小问2详解】因为A ,(0,0)B ,(12,0)C ,所以||||||12ABAC BC ===, 由题意得直线AB方程为y =,故直线l经过的定点M 在直线AB 上,所以||8AM ==,设直线l 与AC 交于点D ,所以12AMD ABC S S =,即111||||sin ||||sin 222AM AD A AB AC A =××,所以3||||94AD AC ==, 设00(,)D x y ,所以34AD AC = ,即003(6,(6,4x y −−=−,所以0212x =,0y =D ,将D 点坐标代入直线l的方程,解得k =, 所以直线l 170y+−=; 【小问3详解】设P 关于BC 的对称点1(2,P −,关于AC 的对称点2(,)P m n , 直线AC12612x −=−,即)12y x −,直线AC的方程为12)y x −,所以(12122m =−+ =− ,解得14,m n ==2P , 由题意得12,,,P K I P四点共线,12P P k =PK k =, 所以入射光线PK的直线方程为2)y x −−,即2100x +−=.20.已知两定点()()12,2,0F F ,满足条件212PF PF −=的点P 的轨迹是曲线E ,直线1y kx =−与曲线E 交于A ,B (1)求曲线E 的方程; (2)求实数k 的取值范围;(3)若||AB =AB 的方程. 【答案】20. ()2210x y x −=<21. ()1−22.10x y ++= 【解析】【分析】(1)由双曲线的定义得其方程为()2210x y x −=<;(2)由于直线和双曲线相交于左支,且有两个交点,故联立直线的方程和双曲线的方程,消去y 后得到关于x 的一元二次方程的判别式大于零,且韦达定理两根的和小于零,两根的积大于零,由此列不等式组,求解k 的取值范围; (3)由AB =,利用弦长公式,结合韦达定理列出关于k 的方程,解方程即可得结果. 【小问1详解】由双曲线定义可知,曲线E是以()1F,)2F为焦点的双曲线的左支,且c =由2122PF PF a −==,所以1a =,1b ,所以曲线E 的方程为()2210x y x −=<.故曲线E 的方程为:()2210x y x −=<.【小问2详解】设()11,A x y ,()22,B x y ,由题意联立方程组2211x y y kx −= =− ,消去y 得()221220k x kx −+−=, 又因为直线与双曲线左支交于两点,有()()222122122102810201201k k k k x x k x x k −≠ ∆=+−> − +=< −− => −,解得1k <<−. 故k的取值范围为()1−. 【小问3详解】因为2AB x =−====,整理化简得422855250k k −+=,解得257k =或254k =, 因为1k<<−,所以k =AB 10x y ++=. 故直线AB 10x y ++=. 的【点睛】关键点睛:(2)(3)中根据直线与曲线联立后利用韦达定理,再结合弦长公式从而求解. 21. 设数列{}n a 的前n 项和为n S ,且122n n n S a +=−,数列{}n b 满足2log 1nn a b n =+,其中*N n ∈. (1)证明2n n a为等差数列,求数列{}n a 的通项公式;(2)求数列21n a n+的前n 项和为n T ;(3)求使不等式1321111111n m b b b −+⋅+⋅⋅⋅⋅⋅+≥n 都成立的最大实数m 的值.【答案】(1)证明见解析;(1)2nn a n =+⋅ (2)188(4)4339n n T n =+⋅− (3【解析】【分析】(1)根据数列递推式可得122nn n a a −−=,整理变形结合等差数列定义即可证明结论,并求得数列的通项公式;(2)利用错位相减法即可求得答案; (3)将原不等式化为()111111321n+++≥ −调性,将不等式恒成立问题转化为函数最值问题,即可求得答案. 【小问1详解】当1n =时,11124a S a ==−,则14a =, 当2n ≥时,11,22nn n n n n a S S a a −−∴=−−=,即11122n n n n a a −−−=,即2n n a 是以122a =为首项,公差为1的等差数列, 故(1,22)1n n n n a n a n =++⋅∴= 【小问2详解】由(1)可得2(1)41n n a n n =+⋅+, 故22434(1)4n n T n =×+×+++⋅ ,故231424344(1)4n n n T n n +=×+×++⋅++⋅ ,则231324444(1)4n n n T n +−=×++++−+⋅14(14)884(1)4(4)41433n n n n n +−=+−+⋅=−+⋅−, 故188(4)4339n n T n =+⋅−; 【小问3详解】22log log 21n n n a b n n ===+,则1321111111n m b b b − +⋅+⋅⋅⋅⋅⋅+≥即()111111321n+++≥ −即11321n m −≤对任意正整数n 都成立,令()11111?·1321n f n +++−=则()111111?·11321211n n f n ++++−++故()()11f n f n +=>, 即(),N f n n +∈随着n 的增大而增大,故()()1f n f ≥m ≤, 即实数m【点睛】关键点睛:第三问根据数列不等式恒成立问题求解参数的最值问题时,要利用分离参数法推得111111321n m +++−≤ 对任意正整数n 都成立,之后的关键就在于构造函数,并判断该函数的单调性,从而利用最值求得答案.22. 已知椭圆C 的中心在坐标原点,两焦点12,F F 在x 轴上,离心率为12,点P 在C 上,且12PF F △的周长为6.(1)求椭圆C 的标准方程;(2)过点()4,0M 的动直线l 与C 相交于A ,B 两点,点B 关于x 轴的对称点为D ,直线AD 与x 轴的交点为E ,求ABE 的面积的最大值. 【答案】(1)22143x y += (2【解析】【分析】(1)根据题意得到22212226c a a c a b c = +==+,再解方程组即可. (2)首先设出直线l 的方程,联立直线与椭圆方程,根据韦达定理、点,B D 关于x 轴对称、,,A E D 三点共线得到()1,0E ,从而得到ABES = ,再利用换元法求解最值即可. 【小问1详解】由题知:2221222261c a a a c b a b c c == +=⇒ =+=, 所以椭圆22:143x y C += 【小问2详解】如图所示:设直线():40l x ty t =+≠,()()1122,,,A x y B x y . ()222243424360143x ty t y ty x y =+ ⇒+++= += . ()()2224434360t t ∆−+×>,解得24t >.1222434t y y t −+=+,1223634y y t =+. 因为点,B D 关于x 轴对称,所以()22,D x y −. 设()0,0E x ,因为,,A E D 三点共线,所以AE DE k k =. 即121020y y x x x x −=−−,即()()120210y x x y x x −=−−. 解得()()()12211212122101212124424y ty y ty ty y y y y x y x x y y y y y y ++++++===+++ 2364124t t×=−+=. 所以点()1,0E 为定点,3EM =.1212ABE AME BME S S S EM y y =−=⋅−=令0m =>,则()22181818163163443ABE m m S m m m m===≤++++△ 当且仅当163m m =,即m =时取等号. 所以ABE。
四川省成都市第七中学2023-2024学年高二上学期12月月考
数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
A.23B.22
6.如图是某个闭合电路的一部分,每个元件的可靠性是
通的概率为()
二、多选题
A .1EF AD ⊥C .EF 与1BD 异面
11.已知抛物线2
:2C y px =2x =-上一点,过点P 作抛物线
三、填空题
四、解答题
(1)求这部分学生成绩的中位数、平均数(同组数据用该组区间的中点值作代表)(2)为了更好的了解学生对太空知识的掌握情况,学校决定在成绩高的第层抽样的方法抽取5名学生,进行第二轮面试,市太空知识竞赛,求90分(包括9020.如图所示,在四棱锥P ABCD -中,1
12
BC CD AD ==
=、PA PD =,E 、(1)证明:平面PAD ⊥平面ABCD ;
(2)若PC 与AB 所成角为45 ,求二面角21.已知抛物线C :28y x =,点(M B 两点.
(1)若P 为抛物线C 上的一个动点,当线段的顶点处,求a 的取值范围;
(2)当a 为定值时,在x 轴上是否存在异于点
(1)求r的取值范围;
(2)过点P作圆C的两条切线,切点为PB与椭圆E的另一个交点为
ST的最大值,并计算出此时圆。
2023—2024学年度第一学期高二年级12月月考英语试卷(答案在最后)时限:120分钟满分:150分第一部分:听力(共两节,满分30分)第一节:(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Why did the police officer stop the woman?A.Because of the driving speed.B.Because of the license problem.C.Because of the broken tail light.2.How does the man feel?A.Confident.B.Nervous.C.Excited.3.What is the woman telling the man?A.She likes him.B.She forgot him.C.She remembers him.4.What will happen in the speakers’company?A.The office building will change.B.Many employees will lose their jobs.C.All employees will earn more money.5.What does the man suggest?A.Buying a phone.ing his phone.C.Charging the phone.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
二:单项选择(15分)21.By the middle of the 21st century, the vast majority of the world’s population _____ in cities rather than in the country.A. are livingB. will be livingC. have livedD. will have lived22.Only_______ stand-up comedians have become famous as television and film actors later on in life._______ person is Billy Crystal.A. a few; One suchB. some; A suchC. few; Such aD. fewer; Such one 23.The moment the people of London heard that their city had won the bid for the 30th Olympic Games, they ________ cheers.A. burst inB. burst outC. burst intoD. burst with24.______ yourself with positive people, and you will keep focused on what you can do instead of what you can’t.A. SurroundB. SurroundingC. SurroundedD. Have surrounded25.Those who continuously acquire new knowledge that they can ______ their work are more likely to succeed.A. apply toB. adapt toC. contribute toD. respond to26.---Why was the young lady taken away by the police?---- She happened _______ something in the supermarket.A. to catch stealingB. to catch to stealC. to be caught stealingD. to be caught to steal 27.The hard life in the mountainous area he has adapted to ____ a real challenge to anyone.A. meanB. meansC. meantD. meaning28.________ to the hospital, the badly injured woman was immediately operated on so that she could be saved.A. RushingB. RushedC. Having rushed C. To be rushed29.________ arouses his interest can be found in the school library and that is why he goes there ________ happens.A. No matter what; whateverB. Whatever; no matter whatC. Anything; no matter whatD. Anything; whatever30.— Do you think I should join the singing group, Mary?— ________ If I were in your shoes, I certainly would.A. None of your business.B. It depends.C. Why not?D. I don't think so.31.I have reached a point in my life ________ I am supposed to make decisions of my own.A. whichB. whereC. howD. why32.— Did you remember to give Mary the money you owed her?— Yes, I gave it to her ________ I saw her.A. constantlyB. directlyC. suddenlyD. supposedly33.Armed with rich knowledge you have learnt, you can _____ to have an interview for the manager’s job.A. set asideB. set outC. set aboutD. set off34.He ran off the stage as fast as possible, ________ people and things on the way out.A. running overB. ran intoC. ran overD. running into35.The news that he has won the first prize makes his parents _________ him.A. proud ofB. proud inC. be proud ofD. be proud in三:完形填空Whenever we do something wrong, Jesus Christ sees it. He loves us and doesn’t say it. Perhaps he’s wondering how long we’ll keep our mind suffering. A little boy named Johnny was visiting his grandparents on their farm and he was given a slingshot(弹弓) to play with out in thewoods. He 36 for some time but he could never hit the target he had set for himself. Getting a little 37 , he walked back to the farmhouse for dinner. As he was _ 38 back, he saw Grandpa’s pet duck. Just out of39 , he let the slingshot fly , hitting it in the head ,and killed it. In a panic, he 40 the dead duck in the woodpile, only to see his sister Sally 41 be watching him. Sally had seen all this, but she said _ 42 _ . After lunch that day Grandma said, ―Sally, it’s your turn to wash the dishes.‖ But Sally said, ―Grandma, Johnny told me he wanted to help in the kitchen.‖ And then she spoke _ 43 to him, ―Remember the duck?‖ So Johnny did the dishes. Later that day, Grandpa asked if 44 wanted to go fishing, but Grandma said, ―I’m sorry but I need Sally to help me make supper.‖ But Sally just smiled and said, ―Well, that’s all right because Johnny told me he was too 45 to help you. And she whispered again, ―Remember the duck?‖ So Sally went fishing and Johnny 46 to help make supper. After several days of doing both his 47 and Sally’s, Johnny finally couldn’t 48 it any longer. He came to his Grandma and told her that he had killed the duck .Grandma smiled and gave him a big __ 49 . ―Sweetheart, I know. You see, I was watering the flowers at the window 50 I saw you shoot my duck with the slingshot, and I saw the whole thing. But because I love you, I 51 you. I was just wondering how long you would let Sally 52 _ of you.‖In reality, no matter how 53 __ or how uncomfortable it is to admit our wrongdoing, we should always choose to 54 it and work it through instead of running away from it. Hard as it is, it 55 us and makes us who we are.36.A. promoted B. exercised C. practiced D. consumed37.A. delighted B. upset C. amazed D. scared38.A. running B. rushing C. heading D. leaving39.A. sympathy B. pride C. impulse D. politeness40.A. hung B. presented C. protected D. hid41.A. should B. shall C. must D. might42.A. nothing B. everything C. something D. anything43.A. loudly B. softly C. guiltily D. innocently44.A. Sally B. Johnny C. the children D. Grandma45.A. reluctant B. willing C. curious D. cautious46.A. kept up B. held back C. left behind D. stayed behind47.A. chores B. homework C. games D. sports48.A. accept B. stand C. withdraw D. allow49.A. hug B. blow C. reward D. award50.A. whereas B. as C. while D. when51.A. appreciate B. admire C. forgive D. Force52.A. put the blame B. make friends C. put pressure D. make a slave53.A. doubtful B. grateful C. harmful D. painful54.A. reject B. control C. face D. witness55.A. develops B. shapes C. ruins D. prepares四:阅读理解ADear Mr. Watson,CLAIM AL54323432–-STORM DAMAGE TO ROOFI received a cheque for $623 dated 26 January in payment of my recent claim(索赔). However, I wish to tell you how upset I have been by the way your Claims Assessor, Mr. Michael Tan, handled this claim.When Mr. Tan first called me, he specifically told me that he believed I had been overcharged, and he would expect to pay that price for work on a double garage, rather than a single garage like mine. Mr. Tan suggested that I neither use nor recommend this contractor again. He continued to tell me it was unlikely for me to receive full payment. Never during this conversation did he mention that the reason for not receiving full payment was because of the nature of my insurance policy.Consequently, I wrote to Mr. Lance Ashe to complain about his pricing, stating that I was very upset thinking that he could have taken advantage by overcharging a 73-year-old woman. Mr. Ashe telephoned me immediately and explained his charges in detail. He later reported back to me that Mr. Tan explained that I would not receive full payment because of the type of policy I hold, which does not cover wear and tear. This was the first time this issue had been brought to my attention, so you can imagine my surprise.Wh en I received Mr. Tan’s letter of 2 February, this situation was explained. If this had been explained in the first place I would have accepted it and would not have questioned Mr. Ashe’s charges. Instead, by telling me initially that I had been overcharged for this work, he caused a great deal of upset, not only for me but also for Mr. Ashe.I believed this claim was handled badly by Mr. Tan from the beginning. Therefore, a great deal of embarrassment has been caused over this issue.I felt you should know how disappointed and upset I am. I trust you will look into this and ensure that such claims are handled more appropriately in the future.Yours sincerely,Mrs. Richard56.The author writes th is letter to ______.A. inform the manager of a paymentB. complain about a mishandled caseC. demand an apology from Mr. WatsonD. require the manager to fire Mr. Tan57.The underlined words ―the contractor‖ in Para.2 refer to ______.A. Mr. TanB. Mrs. RichardC. Mr. AsheD. Mr. Watson58.The author could not receive full payment because _______.A. her policy doesn’t cover some of the itemsB. the contractor overcharged her for the workC. Mr. Watson doesn’t t ake the matter seriouslyD. she spent too much money fixing her garage59.We can learn from the passage that Mr. Tan works in a/an _______.A. welfare organizationB. nursing houseC. local affairs officeD. insurance companyBMore than half of rich Americans have not shown their full wealth to their children, a new survey showed last Tuesday.The survey, published by the Bank of America, studied the rich with $ 3 million or more in assets. It found that ―surprisingly few of those surveyed have well-developed plans to preserve and pass on their assets to their children‖.The majority of the 457 people surveyed are self-made, first-generation rich. Fifty-two percent of parents have chosen not to tell their children just how wealthy they are, and 15 percent have given away nothing about the family wealth. One in three parents said they had never thought to do it.They are worried that their children would become lazy, spend money freely, make bad decisions and even become a target for gold diggers.Only 34 percent strongly agreed that their children would be able to handle any inheritance(遗产) they plan to leave them.―There is an expectation about the wealthy parents that they have a responsibility to pass down their fortune to the next generation,‖ said Sallie Krawcheck, president of the Bank of America Globai Wealth and Investment Manage ment. ―Our research, however, uncovered changing views of what one generation owes the next.‖The trend is led by the world’s richest man Bill Gates, who promised in 2008 that he would leave his $58 billion fortune to the charity started by him and his wife, the Bill and Melinda Gates Foundation(基金会), and not to his children.―We want to give it back to society in the way that it will have the most positive impact,‖ he said.Of his plans for his children, Gates said: ―I will give the kids some money but not a meaningful percentage… they will need to work but they will feel reasonably taken care of.‖60. We can learn from the passage that .A.rich parents may not know how to manage their inheritanceB.rich parents don’t equal rich kids, at least in the USC.American children don’t get to inherit their parents’ wealthD.poor children don’t expect themselves to be as rich as their parents61. According to the survey, most rich Americans .A.think they owe their children nothingB.think it best to give their money back to societyC.doubt their children’s ability to handle wealthD.are confident of their children’s ability to handle wealth62. The underlined word ―they‖ in Paragraph 6 refers to.A.responsible children B.Bill Gates and his wifeC.first-generation rich D.rich parentsCIn the face of tragedy,you must of course let yourself feel: Cry without holding back, shake with fear, yell out in anger, accept and follow your feelings. This is part of the wise approach to tragedy: The Upward Path — the feeling of emotions, the acceptance of them, and the coupling of the emotional mind with wisdom. Along this path, you'll take the experience — no matter how sad or upsetting — as a learning event, just as a11 other points on your journey will prove to be. While tragic, you must recognize this is still a chance for all involved to grow. You should let both sadness and joy, fear and courage, dark and light fill your world, and learn to find your steady, calm center in the midst of the opposing forces. This is the Upward Path. Use the event as a chance to gain balance and discover wisdom —the wisdom of love and of letting go, of non-attachment and non-resistance, and using this experience to eventually help others in need of guidance.Being able to relate to others who have also experienced tragedy and inspire in them hope — of recovery, and of moving forward — is perhaps the greatest gift you can receive from tragedy. Turn the negative into positive, the pain into connection. After you've taken appropriate time to be sad, to feel your own pain, you should make it your work,your goal, your purpose to connect with others who need help. Show them how you've experienced feelings, achieved balance,and gained wisdom that you would never have otherwise had the chance to learn.FEEL, but do not FEED on tragedy. Rather, let it inspire you to go beyond the person who you were before. With demise comes renewal, so let this loss be also your rebirth. No matter how hopeless it seems, no matter how difficult this becomes, you have the power to transform yourselfinto someone greater than you ever knew you could be.63.When following the Upward Path, the person facing tragedy should _______.A. free his emotionsB. hold back his feelingsC. fill his world with positive ideasD. give in to tragedy and all opposing forces 64.According to the author,the greatest gift one gets from tragedy is being able to _______.A. seek solutions from othersB. forgive others and move onC. stay calm and resist changeD. understand and help others65.The purpose of the passage is to _______.A. analyze the causes of tragedyB. suggest a way of dealing with tragedyC. tell people how to prevent tragedyD. encourage people to build friendship after tragedy第二卷一:单词拼写(每小题1分,共计10分)1. Doctors and medical supplies were __________ (紧急送往) to the scene of the accident.2. Her local doctor couldn’t tell what was wrong, so he sent her to see a s______________.3. He is j_____________ to me in the company, though he is older than me.4. It is high time that we ____________(主张,提倡) solving international conflicts by negotiation,instead of appealing to arms.5. Try your best to give a v____________ description of what you have seen in the picture.6. He's __________________ (无法忍受的) when he is in a bad temper.7. If you're going out for a walk, I'll come along and keep you c______________.8. Thinking in this way gives me the ___________ (动机,动力) to work hard now so that I can enjoy my future life.9. He is a very naughty boy, but he usually b__________ himself when his parents are absent.10. We cannot __________ (保证) that our flights will never be delayed.二:动词填空(写出所给的动词的适当形式)(共5小题;每小题1分,满分5分)1.Seventy-two hours passed . More than one hundred workers remained _____________(trap) in the coal mine, though fifty had been saved.2._____________________(determine) to get a seat for the concert, he didn’t mind standing in a queue all night.3.The bad weather is reported _____________________(contribute) to the passenger plane crash in Iran on January 9.4.__________________ (experience) many failures, I have the courage to meet all challenges. 5._________________ (examine) twice a year, whether it is a car or a bus or a truck, is the rule that every driver shall obey in this city.三:任务型阅读There are so many good reasons to send a child to camp.When children go to camp, they are on their own, sometimes for the very first time in their lives. They have to decide what to wear, what to eat and which activities to participate in. As a result they develop confidence and independence.As self-respect develops from learning to be on their own, children continue to try new activities. Also it is possible that they will engage in what they are unfamiliar with. In school, children do not experience success in the same way. Camp can be a school without failure because just having fun makes them a success.One of the greatest benefits of a camp experience is that children develop social skills. In a camp setting, a good counselor will make sure that every camper is included in the activity and that each child interacts with the others in a positive way. They learn the give and take, and they learn how to work and cooperate. Something as simple as clean-up, is not only there to get thecabin clean, but to promote a team atmosphere of working together which in turn results in friendship.The obvious benefit of camp is that campers make long lasting friendships. These friendships can often be unique and special because campers are living with each other and see the true personalities. Children learn to see others from a different viewpoint. Children tend to be accepted for who they are and do not have to be concerned about what they wear, what they are good at and how they look. This is because in a camp setting, respect and caring finally win out over materialistic objectives.In a word, camp does give children fun, friends and fulfillment.四:书面表达(20分)根据新闻报道,每年全国在餐馆里被倒掉的食物估计可养活2亿人。