因式分解经典题型
- 格式:doc
- 大小:148.50 KB
- 文档页数:2
14.3 因式分解因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.题型1:因式分解的概念1.下列各式从左到右的变形中,是因式分解且完全正确的是( )A.(x+2)(x﹣2)=x2﹣4B.x2﹣2x﹣3=x(x﹣2)﹣3C.x2﹣4x+4=(x﹣2)2D.x3﹣x=x(x2﹣1)【变式1-1】下列各式的变形中,属于因式分解的是( )A.(x+1)(x−3)=x2−2x−3B.x2−y2=(x+y)(x−y)C.x2−xy−1=x(x−y)D.x2−2x+2=(x−1)2+1【变式1-2】下列各式从左到右的变形中,属于因式分解的是( )A.a(x+y)=ax+ay B.a2−4=(a+2)(a−2)题型2:找公因式2.代数式 15a 3b 3(a−b) , 5a 2b(b−a) , −120a 3b 3(a 2−b 2) 中的公因式是( )A .5a 2b(b−a)B .5a 2b 2(b−a)C .5ab(b−a)D .120a 3b 3(b 2−a 2)提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法。
注意:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.题型3:提公因式法分解因式3.(1)分解因式:a 2-3a ; (2)分解因式:3x 2y-6xy 2.m m题型4:提公因式法与整体思想4.已知xy=-3,满足x+y=2,求代数式x2y+xy2的值.题型5:平方差公式法分解因式5.因式分解:m2(1)a2-9;(2)25−14题型6:完全平方公式法分解因式6.因式分解:(1)x2-4x+4.(2)16m2-8mn+n2.(3)4x2+20x+25;7.因式分解:(1)x2-3x+2;(2)x2-2x-15(3)x2-7x+12.题型8:分组分解法分解因式8.因式分解:(1)x2+4x-a2+4.(2)9-x2+2xy-y2.题型9:利用因式分解简便运算9.计算:(1)2022+202×196+982(2)652-352;10.已知多项式2x-x+m有一个因式(2x+1),求m的值.题型11:利用因式分解求代数式的值11.已知a+b=5,ab=3,求代数式a3b+2a2b2+ab3的值.题型12:利用因式分解解决整除问题12.求证:对于任意自然数n,(n+7)2-(n-5)2都能被24整除.题型13:因式分解与几何问题13.如图,边长为a、b的矩形,它的周长为14,面积为10,计算a2b+2ab+ab2的值.a2+4ab+3b2因式分解.【变式13-2】如图,长为m,宽为x(m>x)的大长方形被分割成7 小块,除阴影A,B 外,其余5 块是形状、大小完全相同的小长方形,其较短一边长为y.记阴影A 与B 的面积差为S.(1)分别用含m,x,y的代数式表示阴影A,B 的面积;(2)先化简S,再求当m=6,y=1 时S的值;(3)当x取任何实数时,面积差S 的值都保持不变,问m 与y应满足什么条件?题型14:因式分解与三角形问题14.△ABC的三边长分别为a,b,c,且2a+ab=2c+bc,请判断△ABC是等边三角形、等腰三角形,还是直角三角形?并说明理由.【变式14-1】若△ABC的三边长分别为a、b、c,且b2+2ab=c2+2ac,判断△ABC的形状.【变式14-2】已知在△ABC中,三边长分别为a,b,c,且满足等式a2+bc−ac−b2=0,请判断△ABC的形状,并写出你的理由.【变式14-3】已知三角形的三边长分别为a,b,c,且满足等式a2+b2+c2=ab+bc+ac,试猜想该三角形的形状,并证明你的猜想.一、单选题1.同学们把多项式2x2−4xy+2x提取公因式2x后,则另一个因式应为( )A.x−2y B.x−2y+1C.x−4y+1D.x−2y−12.下列多项式中不能用公式进行因式分解的是( )A.a2+a+ 1B.a2+b2-2ab C.−a2+25b2D.−4−b243.把多项式3m(x﹣y)﹣2(y﹣x)2分解因式的结果是( )A.(x﹣y)(3m﹣2x﹣2y)B.(x﹣y)(3m﹣2x+2y)C.(x﹣y)(3m+2x﹣2y)D.(y﹣x)(3m+2x﹣2y)4.如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为( )A.2560B.490C.70D.495.计算-22021+(-2)2020所得的结果是( )A.-22020B.-2 2021C.22020D.-26.若c2﹣a2﹣2ab﹣b2=10,a+b+c=﹣5,则a+b﹣c的值是( )A.2B.5C.20D.97.已知n是正整数,则下列数中一定能整除(2n+3)2−25的是()A.6B.3C.4D.58.观察下列分解因式的过程:x2−2xy+y2−16=(x−y)2−16=(x−y+4)(x−y−4),这种分解因式的方法叫分组分解法.利用这种分组的思想方法,已知a,b,c满足a2−b2−ac+bc=0,则以a,b,c为三条线段首尾顺次连接围成一个三角形,下列描述正确的是( )A.围成一个等腰三角形B.围成一个直角三角形C.围成一个等腰直角三角形D.不能围成三角形二、填空题9.下列因式分解正确的是 (填序号)①x2−2x=x(x−2);②x2−2x+1=x(x−2)+1;③x2−4=(x+4)(x−4);④4x2+4x+1=( 2x+1)210.分解因式:ax2﹣4axy+4ay2= .11.已知:m+n=5,mn=4,则:m2n+mn2= .12.因式分解:1-a2+2ab-b2= .13.边长为a、b的长方形,它的周长为14,面积为10,则a2b+a b2的值为 .14.若△ABC 的三条边a ,b ,c 满足关系式:a 4+b 2c 2﹣a 2c 2﹣b 4=0,则△ABC 的形状是 .15.甲、乙两个同学分解因式x 2+ax +b 时,甲看错了b ,分解结果为(x +2)(x +4);乙看错了a ,分解结果为(x +1)(x +9),则多项式x 2+ax +b 分解因式的正确结果为 .三、解答题16.因式分解:(1)a 3−36a(2)14x 2+xy +y 2(3)(a 2+4)2−16a 217.把下列各式因式分解:(1)x 2(y ﹣2)﹣x (2﹣y )(2)25(x ﹣y )2+10(y ﹣x )+1(3)(x 2+y 2)2﹣4x 2y 2(4)4m 2﹣n 2﹣4m+1.18.已知二次三项式x 2+px+q 的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.19.给出三个多项式:12x 2+2x ﹣1,12x 2+4x+1,12x 2﹣2x .请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.四、综合题20.已知 a 2−3a +1=0 ,求(1)a 2+1a 2的值。
初中因式分解经典题型精选第一组:基础题1、a²b+2ab+b2、2a²-4a+23、16-8(m-n)+(m-n)²4、a²(p-q)-p+q5、a(ab+bc+ac)-abc【答案】1、a²b+2ab+b=b(a²+2a+1)=b(a+1)²2、2a²-4a+2=2(a²-2a+1)=2(a-1)²3、16-8(m-n)+(m-n)²然后运用完全平方公式=4²-2*4*(m-n)+(m-n)²=[4-(m-n)] ²=(4-m+n) ²4、a²(p-q)-p+q=a²(p-q)-(p-q)=(p-q)(a²-1)=(p-q)(a+1)(a-1)5、a(ab+bc+ac)-abc=a[(ab+bc+ac)-bc]=a(ab+bc+ac-bc)bc与-bc 抵消=a(ab+ac)提取公因式a=a²(b+c)第二组:提升题6、(x-y-1)²-(y- x-1)²7、a3b-ab38、b4-14b²+19、x4+x²+2ax+1﹣a²10、a5+a+1【答案】6、(x-y-1)²-(y- x-1)²用平方差公式=[(x-y-1)+(y-x-1)][(x-y-1)-(y-x-1)]去括号,合并同类项=(-2)(2x-2y)提取2= -4(x-y)7、a3b-ab3提取公因式ab=ab(a²-b²)用平方差公式=ab(a+b)(a-b)8、b4-14b²+1将-14b²拆分为:+2b²-16b²=b4+2b²-16b²+1将-16b²移到最后=b4+2b²+1-16b²将前三项结合在一起=(b4+2b²+1)-16b²=( b²+1)²-(4b)²用平方差公式=[( b²+1)+4b][( b²+1)-4b] =( b²+4b+1)( b²-4b+1)9、x4+x²+2ax+1﹣a²将+x²拆分为:+2x²- x²=x4+2x²- x² +2ax+1﹣a²将x4、+2x²、+1结合,将-x²、+2ax、﹣a²结合=(x4+2x²+1)+(-x²+2ax﹣a²)提取-1=( x²+1)² -(x²-2ax+a²)=( x²+1)²-( x-a)²用平方差公式=[(x²+1)+(x-a)][(x²+1)-(x-a)]=(x²+x-a+1)(x²-x+a+1)10、a5+a+1在式子中添加:-a²+a²=a5 - a²+ a²+a+1将前两项结合,后面三项结合=(a5-a²)+(a²+a+1)提取公因式a²=a²(a3-1)+(a²+a+1)用立方差公式=a²(a-1)(a²+a+1)+(a²+a+1)提取公因式(a²+a+1)=(a²+a+1)[a²(a-1)+1]=(a²+a+1)(a3-a²+1)第三组:进阶题11、x4-2y4-2x3y+xy312、(ac-bd)²+(bc+ad)²13、x²(y-z)+y²(z-x)+z²(x-y)14、x²-4ax+8ab-4b²15、xy² +4xz -xz²-4x【答案】11、x4-2y4-2x3y+xy3x4与xy3结合,-2y4与-2x3y结合=(x4+xy3)+(-2y4-2x3y)x-2y,=x(x3+y3)-2y(x3+y3)提取公因式(x3+y3)=(x3+y3)(x-2y)=(x+y)(x2-xy+y2)(x-2y)12、(ac-bd)²+(bc+ad)²去括号展开= a²c² - 2abcd + b²d²+b²c² +2abcd + a²d²- 2abcd与+2abcd 抵消=a²c² + b²d² +b²c² + a²d²a²c²与b²c²结合,b²d²与a²d²结合=(a²c²+b²c²)+( b²d²+a²d²)c², d ²,=c²(a²+b²)+d²(a²+b²)提取公因式(a²+b²)=(a²+b²)(c²+d²)13、x²(y-z)+y²(z-x)+z²(x-y)=x²(y-z)+y²z -y²x +z²x -z²yy²z与-z²y结合,z²x 与-y²x=x²(y-z)+(y²z -z²y)+(z²x-y²x)提取公因式zy提取公因式=x²(y-z)+ zy(y-z)+x(z²-y²)提取公因式(y-z),=(y-z)(x²+zy)+x(z+y)(z-y)y-z),后一项 +x则变为 -x =(y-z)[(x²+zy)-x(z+y)]=(y-z)(x²+zy-xz-xy)14、x²-4ax+8ab-4b²²与-4b²结合,-4ax与+8ab结合=(x²-4b²)+(-4ax+8ab)-4a=(x+2b)(x-2b)-4a(x-2b)x-2b),=(x-2b)[(x+2b)-4a]=(x-2b)(x+2b-4a)15、xy² +4xz -xz²-4xx,=x(y²+4z -z²-4)=x[y²+(4z -z²-4)]-1,=x[y²-(z²-4z+4)]用完全平方公式进行分解,=x[y²-(z-2)²]=x[y+(z-2))][y-(z-2)]=x(y+z-2)(y-z+2)第四组:经典题16、a6(a²-b²)+b6(b²-a²)17、4m3-31m+1518、a3+5a²+3a-919、x4(1- y)²+2x²(y²-1)+(1+ y)²20、2x4 -x3-6x²- x+ 2【答案】16、a6(a²-b²)+b6(b²-a²)-1=a6(a²-b²)-b6(a²-b²)提取公因式(a²-b²)=(a²-b²)(a6-b6)=(a²-b²)(a²-b²)(a4+a²b²+b4)=(a²-b²)²(a4+a²b²+b4)=(a+b)²(a-b)²(a4+a²b²+b4)17、4m3-31m+15-31m拆分为:-m-30m=4m3-m-30m+15=(4m3-m)+(-30m+15)m-15=m(4m²-1)-15(2m-1)=m(2m+1)(2m-1)-15(2m-1)(2m-1),=(2m-1)[m(2m+1)-15]=(2m-1)(2m²+m-15)=(2m-1)(2m-5)(m+3)18、a3+5a²+3a-93a拆分为:-6a+9a =a3+5a²-6a+9a-9=(a3+5a²-6a)+(9a-9)a9=a(a²+5a-6)+9(a-1)=a(a+6)(a-1)+9(a-1)提取公因式(a-1)=(a-1)[a(a+6)+9]=(a-1)(a²+6a+9)=(a-1)(a+3)²19、x4(1- y)²+2x²(y²-1)+(1+ y)²-1=x4(1- y)² - 2x²(1-y²)+(1+ y)²=[x²(1-y)]² -2x²(1-y)(1+y)+(1+ y)²=(x²-yx²-1- y)²20、2x4 -x3-6x²- x+ 2-x拆分为:3x-4x =2x4 -x3-6x²+3x-4x+ 2=(2x4 -x3)+(-6x²+3x)+(-4x+ 2)=(2x-1)(x3-3x-2)第五组:精选题21、a3+2a2+3a+222、x4-6x²+123、x3+3x+424、2a2b2+2a2c2+2b2c2+a4+b4+c425、a3-3a-226、2x3+3x2-127、a2+3ab+2b2+2a+b-3【答案】21、a3+2a2+3a+23a拆分为:a+2a =a3+2a2+a+2a+2=(a3+2a2+a)+(2a+2)=a(a2+2a+1)+2(a+1)=a(a+1)2+2(a+1)a+1)=(a+1)[a(a+1)+2]=(a+1)(a2+a+2)22、x4-6x²+1-6x2拆分为:-2x2-4x2 =x4-2x²-4x²+1-4x2移到最后=x4-2x²+1-4x²=(x4-2x²+1)-4x²=(x2-1)2-(2x)2=[(x2-1)+2x][(x2-1)-2x] =(x2+2x-1)(x2-2x-1)23、x3+3x+44拆分为:3+1=x3+3x+3+1x3与1结合,3x与3结合=(x3+1) + (3x+3)3=(x+1)(x2-x+1)+3(x+1)x+1)=(x+1)[(x2-x+1)+3]=(x+1)(x2-x+4)24、2a2b2+2a2c2+2b2c2+a4+b4+c4=(a4+b4+2a2b2)+(2a2c2+2b2c2)+c4 =(a2+b2)2+2c2(a2+b2)+c4=[(a2+b2)+c2]2=(a2+b2+c2)225、a3-3a-2-3a拆分为:-a-2a=a3-a-2a-2=(a3-a)+(-2a-2)=a(a2-1)-2(a+1)=a(a+1)(a-1)-2(a+1)a+1)=(a+1)[a(a-1)-2]=(a+1)(a2-a-2)=(a+1)(a+1)(a-2)=(a+1)2(a-2)26、2x3+3x2-13x2拆分为:2x2+x2 =2x3+2x2+x2-1=(2x3+2x2)+(x2-1)=2x2(x+1)+(x+1)(x-1)x+1)=(x+1)[2x2+(x-1)]=(x+1)(2x2+x-1)=(x+1)(2x-1)(x+1)=(x+1)2(2x-1)27、a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3 =(a+b)(a+2b)+(2a+b)-3 =[(a+b)-1][(a+2b)+3] =(a+b-1)(a+2b+3)十字叉乘法故:x2+6x+5=(x+1)(x+5)故:2x2+5x+2=(2x+1)(x+2)故:4x2+5x-3=(2x-1)(2x+3)黄勇权2019-7-14。
因式分解的经典题(共五套)第二部分:习题大全经典一:一、填空题1. 把一个多项式化成几个整式的_______的形式,叫做把这个多项式分解因式。
32分解因式:m-4m= .223.分解因式:x-4y= __ _____.2 x 4x 4=___________ ______。
4、分解因式:5.将x-yn分解因式的结果为(x+y)(x+y)(x-y),则n的值为 . n222222x y 5,xy 6xy xy2x 2y6、若,则=_________,=__________。
二、选择题7、多项式15mn 5mn 20mn的公因式是( )A、5mnB、5mnC、5mnD、5mn8、下列各式从左到右的变形中,是因式分解的是( ) ***-*****3a 3 a 3 a2 9a2 b2 ab a b A、B、3 m2 2m 3 m m 2 a 4a 5 a a4 5m C、D、210.下列多项式能分解因式的是()*****(A)x-y (B)x+1 (C)x+y+y (D)x-4x+4211.把(x-y)-(y-x)分解因式为()A.(x-y)(x-y-1)B.(y-x)(x-y-1)C.(y-x)(y-x-1)D.(y-x)(y-x+1)12.下列各个分解因式中正确的是()222A.10abc+6ac+2ac=2ac(5b+3c)222B.(a-b)-(b-a)=(a-b)(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)2D.(a-2b)(3a+b)-5(2b-a)=(a-2b)(11b-2a)213.若k-12xy+9x是一个完全平方式,那么k应为()22 A.2 B.4 C.2y D.4y三、把下列各式分解因式:22 14、nx ny 15、4m 9n16、18、m m n n n m 17、a 2ab ab 322 x2 4 16x*****(m n) 16(m n) 19、;五、解答题20、如图,在一块边长a=6.67cm的正方形纸片中,挖去一个边长b=3.33cm的正方形。
初二数学培优训练-------因式分解 一、填空题:(每小题2分,共24分)1、 把下列各式的公因式写在横线上:①y x x 22255-= ; ②n n x x 4264--= ()n x 232+ 2、 填上适当的式子,使以下等式成立: (1))(222⋅=-+xy xy y x xy (2))(22⋅=+++n n n n a a a a3、 在括号前面填上“+”或“-”号,使等式成立: (1)22)()(y x x y -=-; (2))2)(1()2)(1(--=--x x x x 。
4、 直接写出因式分解的结果: (1)=-222y y x ;(2)=+-3632a a 。
5、 若。
=,,则b a b b a ==+-+-01222 6、 若()22416-=+-x mx x ,那么m=________。
7、 如果。
,则=+=+-==+2222,7,0y x xy y x xy y x 8、 简便计算:。
-=2271.229.7 9、 已知31=+a a ,则221aa +的值是 。
10、如果2a+3b=1,那么3-4a-6b= 。
11、若n mx x ++2是一个完全平方式,则n m 、的关系是 。
12、已知正方形的面积是2269y xy x ++ (x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式 。
二、选择题:(每小题2分,共20分)1、下列各式从左到右的变形中,是因式分解的为( ) A 、bx ax b a x -=-)(B 、222)1)(1(1y x x y x ++-=+-C 、)1)(1(12-+=-x x xD 、c b a x c bx ax ++=++)(1.如果))((2b x a x q px x ++=+-,那么p 等于 ( )A .abB .a +bC .-abD .-(a +b )2.如果305)(22--=+++⋅x x b x b a x ,则b 为 ( )A .5B .-6C .-5D .62、一个多项式分解因式的结果是)2)(2(33b b -+,那么这个多项式是( )A 、46-bB 、64b -C 、46+bD 、46--b3、下列各式是完全平方式的是( )A 、412+-x x B 、21x +C 、1++xy xD 、122-+x x4、把多项式)2()2(2a m a m -+-分解因式等于( )A ))(2(2m m a +-B ))(2(2m m a --C 、m(a-2)(m-1)D 、m(a-2)(m+1) 5、2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是( )A 、2)5(b a -B 、2)5(b a +C 、)23)(23(b a b a +-D 、2)25(b a -6、下列多项式中,含有因式)1(+y 的多项式是( )A 、2232x xy y --B 、22)1()1(--+y yC 、)1()1(22--+y yD 、1)1(2)1(2++++y y7、分解因式14-x 得( )A 、)1)(1(22-+x xB 、22)1()1(-+x xC 、)1)(1)(1(2++-x x xD 、3)1)(1(+-x x 8、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )A 、1,3-==c bB 、2,6=-=c bC 、4,6-=-=c bD 、6,4-=-=c b9、c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是()A 、直角三角形B 、等腰三角形C 、等腰直角三角形D 、等边三角形10、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b )。
十字相乘法分解因式(1)对于二次项系数为1方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例1、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习2、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式—— c bx ax ++2条件:(1)21a a a = 1a 1c (2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析: 1 -2(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习3、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)多字母的二次多项式例3、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
用因式分解法求解一元二次方程 (6种题型)【知识梳理】一、用因式分解法解一元二次方程的步骤 ①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程; ④解这两个一元一次方程,它们的解就是原方程的解. 二、常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0; (3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【考点剖析】题型1利用提公因式法例1.解关于x 的方程(因式分解方法):(1)230x =; (2)7(3)39x x x −=−.【答案】(1)120x x ==, (2)12337x x ==,.【解析】(1)(30x x = (2)7(3)3(3)x x x −=−①0x = ②30x 7(3)3(3)0x x x −−−=∴120x x ==, (3)(73)0x x −−= ① 30x −= ②730x −=∴12337x x ==,. 【总结】本题考查了因式分解法解一元二次方程.【变式】(2023春·北京房山·八年级统考期末)方程224x x −=的解为:___________. 【答案】10x =,22x =−【分析】先移项,然后用分解因式法解方程即可.【详解】解:224x x −=,移项得:2240x x +=,分解因式得:()220x x +=,∴20x =或20x +=, 解得:10x =,22x =−. 故答案为:10x =,22x =−.【点睛】本题主要考查了一元二次方程的解法:因式分解法,是基础知识比较简单,解题的关键是分解因式.题型2利用平方差公式例2.用因式分解法解下列方程:(2x+3)2-25=0. 【答案与解析】(2x+3-5)(2x+3+5)=0,∴ 2x-2=0或2x+8=0,∴ x 1=1,x 2=-4.【变式】解关于x 的一元二次方程:22(2016)(2015)1x x −+−=. 【答案】1220162015x x ==,.【解析】移项,得:22(2016)1(2015)x x −=−−,2(2016)[1(2015)][1(2015)]x x x −=+−−−, 2(2016)(2014)(2016)x x x −=−−, 2(2016)(2014)(2016)0x x x −−−−=, (2016)(40302)0x x −−=,解得:1220162015x x ==,.【总结】本题考查了一元二次方程的解法,当系数比较大时,要注意寻找规律进行变型求解.题型3利用完全平方公式例3.解下列一元二次方程:(2x+1)2+4(2x+1)+4=0; 【答案与解析】(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0. 即, ∴ . 题型4十字相乘法因式分解例4.用合适的方法解下列关于x 的方程:(1)2(1(30x x −+=; (2)2(35)5(35)40x x +−++=;【答案】(1)121x x =, (2)124133x x =−=−,;【解析】(1)2(1(30x x −+=,[(11](0x x −=,解得:121x =−=, (2)2(35)5(35)40x x +−++=351354x x +−+−(351)(354)0x x +−+−=,解得:124133x x =−=−,;【总结】本题考查了一元二次方程的解法.题型5:选择合适的方法解一元二次方程例5.解关于x 的方程(合适的方法 ): (1)2110464x x −+=; (2)22((1x +=+. 【答案】(1)1218x x ==;(2)1211x x ==−−, 【解析】(1)因式分解法 (2)直接开方法2(23)0x +=1232x x ==−21()08x −= (1x +=±+108x −= ①1x + ②(1x =−∴1218x x ==; ∴1211x x ==−−, 【总结】本题考查了特殊一元二次方程的解法,注意重根的写法! 【变式1】解关于x 的方程(合适的方法):(1)236350x x +−=; (2)2(41)10(14)240x x −+−−=. 【答案】(1)1235136x x ==−,; (2)1213144x x ==−,. 【解析】(1)因式分解法 (2)把41x −看作一个整体,因式分解 (3635)(1)0x x −+= 2(41)10(14)240x x −−−−= ①36350x −= ②10x += (4112)(412)0x x −−−+= ∴1235136x x ==−,; (413)(41)0x x −+= ① 4130x −= ②410x +=∴1213144x x ==−,. 【变式2】用适当的方法解下列方程:(1)22((1x =; (2)2x x =;(3)(3)(1)5x x +−=; (4)2()()0()b a x a c x c b a b −+−+−=≠.【答案】(1)1211x x =−=−; (2)1201x x ==,; (3)1242x x =−=,; (4)121c bx x b a−==−,.【解析】(1)(1x =± (2)20x x −=① 1x +=− ②(1x =− , (1)0x x −=,解得:1211x x =−=−; 解得:1201x x ==,; (3)整理得:2235x x +−= (4)∵a b ≠原方程是一元二次方程,2280x x +−=, 2()()0()b a x a c x c b a b −+−+−=≠, (4)(2)0x x +−=,()()1b a xc b x −−−− 解得:1242x x =−=,; [()()](1)0b a x c b x −−−−=, 解得:121c bx x b a−==−,. 【总结】本题考查了一元二次方程的解法,注意方法的恰当选择.【答案】B【分析】根据题意进行分类讨论,当0x >时,可得2450x x −−=,求出x 的值即可;当0x <时,可得2250x x −−=求出x 的值即可.【详解】解:当0x >时,则0x x >>−, ∴{}2max ,35x x x x x −==−−,即2450x x −=,解得:125,1x x ==−(不符合题意,舍去),当0x <时,则0x x −>>,∴{}2max ,35x x x x x −=−=−−,即2250x x −−=,解得:11x =,21x =综上:x 的值是5或1 故选:B .【点睛】本题主要考查了新定义下的运算和解一元二次方程,解题的关键是正确理解题目所给新定义的运算法则,熟练掌握解一元二次方程的方法和步骤.【变式】在正数范围内定义运算“※”,其规则为2a b a b =+※,则方程()15x x +=※的解是( ) A .4x =或1x = B .2x =C .1x =或4x =−D .1x =【答案】D【分析】根据规则可得:()215x x ++=,再解此方程,即可求解.【详解】解:根据题意得:()()2115x x x x +=++=※,得2340x x +−=,得()()410x x +−=,故40x +=或10x −=,解得14x =−(舍去),21x =, 所以,原方程的解为1x =, 故选:D .【点睛】本题考查了新定义,一元二次方程的解法,理解题意,得到方程并求解是解决本题的关键.【答案】3【分析】先通过因式分解法解方程260x x −−=,求出12x x ,,根据新定义的运算规则,12x x ※的值为1x 和2x 中较大的那个数,由此可解.【详解】解:方程260x x −−=,分解因式得:()()320x x −+=,解得:3x =或=2x −, 则()12323x x =−=※※或()233−=※.故答案为:3.【点睛】本题考查新定义运算和解一元二次方程,读懂题意,理解新定义的运算规则是解题的关键. 题型7:因式分解综合应用(1)问梯子的长是多少?(2)若梯子的长度保持不变,梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等吗?为什么?请你利用学过的知识解答上面的问题. 【答案】(1)2.69m (2)有可能,理由见解析【分析】(1)根据梯子长度不变进而得出等式求出即可;(2)设梯子顶端从A 处下滑y 米,点B 向外也移动y 米代入(1)中方程,求出y 的值符合题意. 【详解】(1)解:设A C '的长是m x ,根据题意得出:2222A C B C BC AC ''+=+,2222(0.41)1(0.2)x x ∴++=++,解得: 2.3x =,2.69m AB ∴≈,答:梯子的长是2.69m ; (2)有可能.设梯子顶端从A 处下滑y 米,点B 向外也移动y 米,则有22(1)(2.5)7.25y y ++−=,解得:1 1.5y =或20y =(舍)∴当梯子顶端从A 处下滑1.5米时,点B 向外也移动1.5米,即梯子顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等.【点睛】本题考查的是勾股定理的应用,根据题意得出关于y 的一元二次方程是解答此题的关键. 【变式1】(2023·河北石家庄·统考二模)老师就式子39⨯+−,请同学们自己出问题并解答. (1)小磊的问题:若W 代表()22−,代表()31−,计算该式的值;(2)小敏的问题:若398⨯+−=□,W 代表某数的平方,代表该数与1的和的平方,求该数.【答案】(1)22 (2)0或1【分析】(1)根据代数式代入值进行计算即可; (2)设该数为a ,则()22391=8a a ⨯+−+,再进行求解即可.【详解】(1)解:由题意可得:原式()()233291=⨯−+−−()3491=⨯+−−22=;(2)解:设该数为a ,则()22391=8a a ⨯+−+,解得:10a =,21a =,∴求该数为0或1.【点睛】本题考查代数值求值、解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键. 【变式2】(2023·河北石家庄·校考一模)发现:存在三个连续整数使得这三个连续整数的和等于这三个连续整数的积;验证:连续整数1−,2−,3−______(填“满足”或“不满足”)这种关系; 连续整数2,3,4,______(填“满足”或“不满足”)这种关系; 延伸:设中间整数为n(1)列式表示出三个连续整数的和、积,并分别化简; (2)再写出一组符合“发现”要求的连续整数(直接写结果).【答案】验证:满足;不满足;(1)和为3n ,积为3n n −;(2)1−,0,1(答案不唯一)【分析】先分别计算123−−−和()()()123−⨯−⨯−的值,比较两组值是否相等;再分别计算234++和234⨯⨯的值,比较两组值是否相等即可;(1)设中间整数为n ,则三个连续整数可表示为:n 1−,n ,1n +,将n 1−,n ,1n +三数相加得其和;将n 1−,n ,1n +三数相乘得其积;(2)令(1)中的和等于积,解方程,求得n 的值,从而可得符合要求的连续整数.【详解】验证:解:1236−−−=−,()()()1236−⨯−⨯−=− ()()()123123∴−−−=−⨯−⨯−1∴−,2−,3−满足这种关系;2349++=,23424⨯⨯=,924≠, 234234∴++≠⨯⨯,∴2,3,4不满足这种关系.延伸:设中间整数为n ,则三个连续整数可表示为:n 1−,n ,1n +, (1)三个连续整数的和可表示为:()()113−+++=n n n n ,三个连续整数的积可表示为:()()311−⋅⋅+=−n n n n n ,(2)当33=−n n n 时,340−=n n ()()220∴+−=n n n解得:0n =,2n =−或2n =,∴符合要求的一组连续整数为:1−,0,1.【点睛】本题考查了探究某类数的规律性问题,其中涉及到了因式分解方法的运用,按照要求写出相关数或式子,按照规则计算,是解答本题的关键.【过关检测】一、单选题【答案】D【分析】变形后利用因式分解法解一元二次方程即可. 【详解】解:()()2131x x x −=−移项,得2(1)3(1)0x x x −−−=, 因式分解,得()()2310x x −−=,则10x −=或230x −=,解得2131,2x x ==.故选:D【点睛】此题考查了一元二次方程的解法,熟练掌握因式分解法是解题的关键. 2.(2023·全国·九年级假期作业)已知20x ax b +−=的解是11x =,24x =−,则方程()()223230x a x b +++−=的解是( )A .11x =−,2 3.5x =−B .11x =,2 3.5x =−C .11x =−,2 3.5x =D .11x =,2 3.5x =【答案】A【分析】由这两个方程结合整体思想,可得231x +=,234x +=−,解这两个一元一次方程即得方程()()223230x a x b +++−=的解.【详解】解:令23x y +=,∵方程20x ax b +−=的解是11x =,24x =−,∴方程20y ay b +−=的解是11y =,24y =−,∴对于方程方程()()223230x a x b +++−=而言,231x +=或234x +=−,解得=1x −或 3.5x =−,故选A .【点睛】本题考查了一元二次方程的解,整体思想解一元二次方程,关键是把方程()()22332340m x x +++−=中的23x +当作一个整体,则此方程与²340mx x +−=毫无二致.3.(2023·全国·九年级假期作业)方程29180x x −+=的两个根是等腰三角形的底和腰,则这个三角形是周长是( ) A .12 B .15 C .12或15 D .9或15或18【答案】B【分析】利用因式分解法求出方程的解得到x 的值,分类讨论腰与底,利用三角形边角关系判断即可确定出周长.【详解】解:29180x x −+=,(3)(6)0x x −−=,30x −=,60x −=,13x =,26x =,有两种情况:①三角形的三边为3,3,6,此时不符合三角形三边关系定理,②三角形的三边为3,6,6,此时符合三角形三边关系定理,此时三角形的周长为36615++=, 故选:B .【点睛】此题考查了因式分解法解一元二次方程,等腰三角形的定义,熟练掌握分解因式的方法是解本题的关键.【答案】C【分析】利用换元法求解即可.【详解】解:设33x m y +=,∵()()3333130x y x y +−++=,∴()()130m m −+=,∴10m −=或30m +=, 解得1m =或3m =−,∴331x y +=或333x y +=−,故选C .【点睛】本题主要考查了换元法解一元二次方程,熟知换元法是解题的关键.【答案】D【分析】利用因式分解法求出两个根,再从中找出较小的根即可.【详解】解:提公因式,得:331()()0442x x x −−+−=, 整理得:35()(2)044x x −−=,∴123548x x ==,, ∵3548>,∴较小的根是58,故选:D .【点睛】本题考查了因式分解法解一元二次方程,解题的关键是通过提取公因式将等号左边的式子进行因式分解.【答案】B【分析】由2212m m +=可得42210m m −+=,则有21m =,即1m =,然后问题可求解.【详解】解:∵2212m m +=,∴42210m m −+=,解得:21m =,∵0m >, ∴1m =,∴2251254m m −+=−+=;故选B .【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键. 7.(2023·全国·九年级假期作业)实数x 满足方程222()()20x x x x +++−=,则2x x +的值等于( ) A .2− B .1 C .2−或1 D .2或1−【答案】B【分析】运用换元法解方程,再根据根的判别式判断根的情况,由此即可求解.【详解】解:根据题意,设2x x M +=,则原式变形得220M M +−=,因式分解法解一元二次方程得,22(1)(2)0M M M M +−=−+=, ∴12M =−,21M =,当2M =−时,22x x +=−,变形得,220x x ++=,根据判别式24141270b ac ∆=−=−⨯⨯=−<,无实根;当1M =时,21x x +=,变形得,210x x +−=,根据判别式24141(1)50b ac ∆=−=−⨯⨯−=>,方程有两个实根;∴21x x +=,故选:B .【点睛】本题主要考查换元法解高次方程,掌握换元法解方程的方法,根的判别式判断根的情况等知识是解题的关键.8.(2023·全国·九年级假期作业)若关于x 的一元二次方程()230x k x k +++=的一个根是2−,则另一个根是( ) A .1 B .1−C .3−D .2【答案】A【分析】将2x =−代入方程得:()4230k k −++=,解得:2k =−,再把2k =−代入原方程求解.【详解】解:将2x =−代入方程得:()4230k k −++=,解得:2k =−,∴原方程为:220x x +−=,则()2(1)0x x +−=,解得:2x =−或1x =, ∴另一个根为1. 故选:A .【点睛】本题考查了一元二次方程的根,因式分解法解一元二次方程,属于基础题.【答案】D【分析】设221x y x −=,则原方程可变形为15y y +=,再化为整式方程即可得出答案.【详解】解:设221x y x −=,则原方程可变形为15y y +=,即2510y y −+=;故选:D.【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.10.(2023春·重庆合川·九年级重庆市合川中学校考阶段练习)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例.这个三角形给出了()()12345na b n +=⋯,,,,,的展开式的系数规律(其中,字母按a 的降幂排列,b 的升幂排列).例如,在三角形中第2行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第三行的的4个数1,3,3,1,恰好对应()3322333a b a a b ab b +=+++展开式中各项的系数;第4行的五个数1,4,6,4,1;恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数,有如下结论:①()3322333b a b a a ab b −−+=−; ②“杨辉三角”中第9行所有数之和1024; ③“杨辉三角”中第20行第3个数为190; ④32993993991+⨯+⨯+的结果是610;⑤当代数式4328243216a a a a ++++的值是1时,实数a 的值是1−或3−,上述结论中,正确的有( )A .2个B .3个C .4个D .5个【答案】C【分析】把()3322333a b a a b ab b +=+++中b 换成b −后可得,()()()()3233233a b a a b a b b −−+−⋅+−=+,由此即可判断①;观察并计算可以发现第n 行所有数字之和为2n,由此即可判断②;观察并计算可以发现第n 行(n 大于2)第三个数诶为()12n n −,由此即可判断③;991a b ==,时,()326399139939999110=+++=+⨯⨯,即可判断④;当2b =时,()443228243216a a a a a +=++++,再由4328243216a a a a ++++的值为1,得到()421a +=,解方程即可判断⑤.【详解】解:∵()3322333a b a a b ab b +=+++,∴把上述式子中的b 换成b −后可得,()()()()3233233a b a a b a b b −−+−⋅+−=+,∴()3322333b a b a a ab b −−+=−,故①正确;第1行的所有数字之和为11122+==,第2行的所有数字之和为212124++==,第3行的所有数字之和为3133128+++==,第4行的所有数字之和为414641216++++==,……,∴可以得到规律第n 行所有数字之和为2n,∴“杨辉三角”中第9行所有数之和92512=,故②错误;第2行第三个数为()22112⨯−=, 第3行第三个数为()33132⨯−=,第4行第三个数为()44162⨯−=,第5行第三个数为()551102⨯−=,……,∴第n 行(n 大于2)第三个数为()12n n −, ∴“杨辉三角”中第20行第3个数为()202011902−=,故③正确;∵()3322333a b a a b ab b +=+++,∴当991a b ==,时,()326399139939999110=+++=+⨯⨯,故④正确;∵()4432234464a b a a b a b ab b +=++++,∴当2b =时,()443228243216a a a a a +=++++,∵4328243216a a a a ++++的值为1,∴()421a +=, ∴()221a +=,∴21a +=±, ∴1213a a =−=−,,故⑤正确;故选C .【点睛】本题主要考查了多项式乘法中得规律探索,正确理解题意找到规律是解题的关键.二、填空题11.(2023·全国·九年级假期作业)若关于x 的一元二次方程230ax bx +−=(0a ≠)有一个根为5x =,则方程()213a x bx b −+−=必有一根为______. 【答案】6x = 【分析】把()213a x bx b−+−=化为()2(1)130,a xb x −+−−=再结合题意得到15,x −=解出即可.【详解】解:()213a x bx b−+−=,()2(1)130a xb x ∴−+−−=.令1x t −=,则230,at bt +−=∵方程230ax bx +−=(0a ≠)有一个根为5x =,∴方程230at bt +−=有一根为5t =,()2(1)130a xb x ∴−+−−=有一根为15x −=,15,x ∴−=6.x ∴=故答案为: 6.x =【点睛】本题主要考查了一元二次方程的根的含义,掌握利用整体未知数求解方程的根是解此题的关键. 12.(2023·全国·九年级假期作业)一元二次方程220x x +−=的解是________. 【答案】122,1x x =−= 【分析】原方程可转化为()()210x x +−=,再化为两个一次方程即可.【详解】解:∵220x x +−=,∴()()210x x +−=,∴20x +=或10x −=, 解得122,1x x =−=.故答案为:122,1x x =−=.【点睛】本题考查的是一元二次方程的解法,熟练的掌握因式分解的方法解一元二次方程是解本题的关键. 13.(2023·全国·九年级假期作业)一元二次方程()()23121x x =−−的解是________.【答案】12531,x x ==【分析】先移项,再提取公因式分解因式,把原方程化为两个一次方程,再解一次方程即可. 【详解】∵()()23121x x =−−,∴()()231201x x −−−=.∴()()13120x x −−−⎤⎣⎦=⎡.∴10x −=或()3120x −−=,解得12531,x x ==.故答案为:12531,x x ==.【点睛】本题考查的是一元二次方程的解法,熟练的利用因式分解的方法解方程是解本题的关键. 14.(2023·河南信阳·校考三模)小明在解方程2320x x −+=时,发现用配方法和公式法计算量都比较大,因此他又想到了另外一种方法,快速解出了答案: 方法如下: 2320x x −+=2220x x x −−+= 第①步222x x x −=− 第②步()22x x x −=− 第③步1x = 第④步老师看到后,夸小明很聪明,方法很好,但是有一步做错了,请问小明出错的步骤为________(填序号). 【答案】④ 【分析】由()22x x x −=−,()()120x x −−=,解得1x =或2x =,进而判断作答即可.【详解】解:()22x x x −=−,()()120x x −−=,解得1x =或2x =,∴第④步错误, 故答案为:④.【点睛】本题考查了解一元二次方程.解题的关键在于正确的解一元二次方程.15.(2023秋·湖南常德·九年级统考期末)若()()22222340x y x y +−+−=,则22x y +=______.【答案】4【分析】设22t x y =+,则0t >,根据换元法解一元二次方程,即可求解.【详解】解:设22t x y =+,则0t >,∴原方程可以化为2340t t −−=,解得:4t =或1t =−(舍去)即22x y +=4 故答案为:4.【点睛】本题考查了换元法解一元二次方程,掌握换元法解一元二次方程是解题的关键.16.(2022秋·甘肃平凉·九年级校考阶段练习)已知实数x 满足2220()(23)x x x x −−−−=,则代数式22020x x −+的值为_______.【答案】2023【分析】设2t x x =−,则原方程转化为关于t 的一元二次方程2230t t −−=,利用因式分解法解该方程即可求得t 的值;然后整体代入所求的代数式进行解答,注意判断方程的根的判别式0≥,方程有解.【详解】解:设2t x x =−,由原方程,得2230t t −−=,整理,得()()310t t −+=,所以3t =或1t =−.当3t =时,23−=x x ,则220202023x x −+=;当1t =−时,21x x −=−即210x x −+=时,()214110∆=−−⨯⨯<,方程无解,此种情形不存在.故答案是:2023.【点睛】本题考查了换元法解一元二次方程.换元的实质是转化,关键是构造元和设元,理论依据是等量代换.三、解答题17.(2023·江苏·九年级假期作业)用适当的方法解下列各一元二次方程: (1)(2)15x x −=;(2)23680x x +−=(用配方法); (3)2(2)10(2)210x x +−++=; (4)23520x x −+=;(5)22(2)(1)6x x ++−=. 【答案】(1)15a =,23a =−(2)11x =−,21x =−(3)15=x ,21x = (4)123x =,21x =(5)1x =,2x =【分析】(1)(4)用因式分解的十字相乘法求解比较简便;(2)先把常数项移到等号的另一边,把二次项系数化为1,配方,利用直接开平方法求解; (3)把(2)x +看成一个整体,利用因式分解的十字相乘法求解比较简便; (5)先整理方程,用公式法比较简便. 【详解】(1)解:(2)15x x −=,整理,得22150a a −−=,(5)(3)0a a ∴−+=.50a ∴−=或30a +=.15a ∴=,23a =−;(2)23680x x +−=(用配方法),移项,得2368x x +=,二次项系数化为1,得2823x x +=,配方,得211213x x ++=,211(1)3x ∴+=.1x ∴+=.11x ∴=−,21x =−;(3)2(2)10(2)210x x +−++=,[(2)7][(2)3]0x x ∴+−+−=,即(5)(1)0x x −−=.50x ∴−=或10x −=.15x ∴=,21x =;(4)23520x x −+=,(32)(1)0x x −−=,320x −=或10x −=,123x ∴=,21x =;(5)22(2)(1)6x x ++−=,方程整理,得22210x x +−=,x ===.1x ∴=,2x =. 【点睛】本题考查了解一元二次方程,掌握一元二次方程的直接开平方法、配方法、因式分解法、公式法是解决本题的关键.18.(2023·全国·九年级假期作业)已知()()22222150a b a b +++−=,求22a b +的值. 【答案】3【分析】先用换元法令22(0)a b x x +=>,再解关于x 的一元二次方程即可. 【详解】解:令22(0)a b x x +=>,则原等式可化为:(2)150x x +−=,解得:123,5x x ==−,0x >,3x ∴=,即223a b +=.22a b +的值为3.【点睛】本题考查了换元法、一元二次方程的解法,注意22a b +为非负数是本题的关键.【答案】2x = 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:2211x x x =+−方程两边同乘()()11x x +−, 得()12x x −=,整理得,220x x −−=,∴()()120x x +−=,解得:11x −=,22x =,检验:当=1x −时,()()110x x +−=,=1x −是增根, 当2x =时,()()1130x x +−=≠,∴原方程的解为2x =.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题关键.【答案】,21x −+【分析】先对分式进行化简,然后求出一元二次方程的解,进而代值求解即可.【详解】2222421121x x x x x x x −−−÷+−−+()()()()222121112x x x x x x x −−=−⋅++−−()21211x x x x −=−++, 2221x x x −+=+ 21x =+解方程220x x +−=得:2x =−或1x =,如果已知分式有意义,必须x 不等于2,1−,1,∵x 为方程220x x +−=的根,∴x 只能为2−,∴当2x =−时,原式2221−+==−.【点睛】本题主要考查分式的化简求值及一元二次方程的解法,解题的关键是熟练掌握各个运算方法. 21.(2023·陕西榆林·校考模拟预测)已知数字A 为负数,将其加6得到数字B ,若数字A 与数字B 的积为7,求数字A .【答案】7A =−【分析】根据题意得()67A A +=,解一元二次方程即可求解.【详解】解:由题意得6A B +=,7A B ⨯=,∴()67A A +=,∴2670A A +−=,即()()710A A +−=, 解得7A =−或1A =,∵数字A 为负数,∴7A =−.【点睛】本题考查了一元二次方程的应用,掌握“因式分解法”解一元二次方程是解题的关键.22.(2023·全国·九年级假期作业)阅读下面的材料:【答案】(1)1x =,2x =,3x ,4x =;(2)5【分析】(1)设2y x x =+,则2540y y −+=,整理,得(1)(4)0y y −−=,解关于y 的一元二次方程,然后解关于x 的一元二次方程即可求解;(2)设22x a b =+,则23100x x −−=,整理,得−+=(5)(2)0x x ,解一元二次方程即可求解.【详解】(1)解:设2y x x =+,则2540y y −+=,整理,得(1)(4)0y y −−=,解得11y =,24y =,当21x x +=即210x x +−=时,解得x = ;当24x x +=即240x x +−=时,解得x ;∴原方程的解为112x −=, 212x −=, 312x −=, 412x −=;(2)设22x a b =+,则23100x x −−=,整理,得−+=(5)(2)0x x ,解得15y =,2(2y =−舍去),225a b +=.【点睛】本题考查了换元法解一元二次方程,熟练掌握换元法是解题的关键.【答案】(1)1x =±(2)114x =−,21x =【分析】(1)设2x y =,则由已知方程得到:2560y y −=+,利用因式分解法求得该方程的解,然后解关于x 的一元二次方程;(2)设1x y x +=,则由已知方程得到:260y y +−=,利用因式分解法求得该方程的解,然后进行检验即可.【详解】(1)令2x y =∴2560y y −=+∴(6)(1)0y y +−=∴16y =−,21y =∴26x =−(舍去),21x =∴1x =±;(2)令1x y x += ∴610y y −+=∴260y y +−=∴(3)(2)0y y +−=∴13y =−,22y = ∴13x x +=−,12x x += ∴114x =−,21x = 经检验,114x =−,21x =为原方程的解.【点睛】本题主要考查了换元法解一元二次方程,分式方程,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.任务:(1)判断:方程2560x x −+= ______ “邻根方程”(填“是”或“不是”);(2)已知关于x 的一元二次方程()210(x m x m m +++=是常数)是“邻根方程”,求m 的值.【答案】(1)是(2)0m =或2m =【分析】(1)先利用因式分解法解一元二次方程,然后根据“邻根方程”的定义进行判断;(2)先利用因式分解法解一元二次方程得到1x m =,21x =−,再根据“邻根方程”的定义得到11m −=−或11+=−m ,然后解关于m 的方程即可.【详解】(1)解方程2560x x −+=得13x =,22x =, 3比2大1,∴方程是“邻根方程”;(2)()210x m x m +++=, ()()10x m x ∴++=, 0x m ∴+=或10x +=,1x m ∴=−,21x =−,方程()210(x m x m m +++=是常数)是“邻根方程”,11m ∴−−=−或11m −+=−,0m ∴=或2m =.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.【答案】14x =,214x =m =m =代入方程得22520m m −+=,求出m 的值,再求出x 即可.m .原方程化为:22520m m −+=,解得:12m =,212m =.当2m =2,解得:14x =;当12m =12=,解得:214x =. 【点睛】本题主要考查了解一元二次方程,解题的关键是正确理解题意,会根据题目所描述的换元法求解方程.。
初中因式分解经典题型精选第一组:基础题1、a²b+2ab+b2、2a²-4a+23、16-8(m-n)+(m-n)²4、a²(p-q)-p+q5、a(ab+bc+ac)-abc【答案】1、a²b+2ab+b=b(a²+2a+1)=b(a+1)²2、2a²-4a+2=2(a²-2a+1)=2(a-1)²3、16-8(m-n)+(m-n)²然后运用完全平方公式=4²-2*4*(m-n)+(m-n)²=[4-(m-n)] ²=(4-m+n) ²4、a²(p-q)-p+q=a²(p-q)-(p-q)=(p-q)(a²-1)=(p-q)(a+1)(a-1)5、a(ab+bc+ac)-abc=a[(ab+bc+ac)-bc]=a(ab+bc+ac-bc)bc与-bc 抵消=a(ab+ac)提取公因式a=a²(b+c)第二组:提升题6、(x-y-1)²-(y- x-1)²7、a3b-ab38、b4-14b²+19、x4+x²+2ax+1﹣a²10、a5+a+1【答案】6、(x-y-1)²-(y- x-1)²用平方差公式=[(x-y-1)+(y-x-1)][(x-y-1)-(y-x-1)]去括号,合并同类项=(-2)(2x-2y)提取2= -4(x-y)7、a3b-ab3提取公因式ab=ab(a²-b²)用平方差公式=ab(a+b)(a-b)8、b4-14b²+1将-14b²拆分为:+2b²-16b²=b4+2b²-16b²+1将-16b²移到最后=b4+2b²+1-16b²将前三项结合在一起=(b4+2b²+1)-16b²=( b²+1)²-(4b)²用平方差公式=[( b²+1)+4b][( b²+1)-4b] =( b²+4b+1)( b²-4b+1)9、x4+x²+2ax+1﹣a²将+x²拆分为:+2x²- x²=x4+2x²- x² +2ax+1﹣a²将x4、+2x²、+1结合,将-x²、+2ax、﹣a²结合=(x4+2x²+1)+(-x²+2ax﹣a²)提取-1=( x²+1)² -(x²-2ax+a²)=( x²+1)²-( x-a)²用平方差公式=[(x²+1)+(x-a)][(x²+1)-(x-a)]=(x²+x-a+1)(x²-x+a+1)10、a5+a+1在式子中添加:-a²+a²=a5 - a²+ a²+a+1将前两项结合,后面三项结合=(a5-a²)+(a²+a+1)提取公因式a²=a²(a3-1)+(a²+a+1)用立方差公式=a²(a-1)(a²+a+1)+(a²+a+1)提取公因式(a²+a+1)=(a²+a+1)[a²(a-1)+1]=(a²+a+1)(a3-a²+1)第三组:进阶题11、x4-2y4-2x3y+xy312、(ac-bd)²+(bc+ad)²13、x²(y-z)+y²(z-x)+z²(x-y)14、x²-4ax+8ab-4b²15、xy² +4xz -xz²-4x【答案】11、x4-2y4-2x3y+xy3x4与xy3结合,-2y4与-2x3y结合=(x4+xy3)+(-2y4-2x3y)x-2y,=x(x3+y3)-2y(x3+y3)提取公因式(x3+y3)=(x3+y3)(x-2y)=(x+y)(x2-xy+y2)(x-2y)12、(ac-bd)²+(bc+ad)²去括号展开= a²c² - 2abcd + b²d²+b²c² +2abcd + a²d²- 2abcd与+2abcd 抵消=a²c² + b²d² +b²c² + a²d²a²c²与b²c²结合,b²d²与a²d²结合=(a²c²+b²c²)+( b²d²+a²d²)c², d ²,=c²(a²+b²)+d²(a²+b²)提取公因式(a²+b²)=(a²+b²)(c²+d²)13、x²(y-z)+y²(z-x)+z²(x-y)=x²(y-z)+y²z -y²x +z²x -z²yy²z与-z²y结合,z²x 与-y²x=x²(y-z)+(y²z -z²y)+(z²x-y²x)提取公因式zy提取公因式=x²(y-z)+ zy(y-z)+x(z²-y²)提取公因式(y-z),=(y-z)(x²+zy)+x(z+y)(z-y)y-z),后一项 +x则变为 -x =(y-z)[(x²+zy)-x(z+y)]=(y-z)(x²+zy-xz-xy)14、x²-4ax+8ab-4b²²与-4b²结合,-4ax与+8ab结合=(x²-4b²)+(-4ax+8ab)-4a=(x+2b)(x-2b)-4a(x-2b)x-2b),=(x-2b)[(x+2b)-4a]=(x-2b)(x+2b-4a)15、xy² +4xz -xz²-4xx,=x(y²+4z -z²-4)=x[y²+(4z -z²-4)]-1,=x[y²-(z²-4z+4)]用完全平方公式进行分解,=x[y²-(z-2)²]=x[y+(z-2))][y-(z-2)]=x(y+z-2)(y-z+2)第四组:经典题16、a6(a²-b²)+b6(b²-a²)17、4m3-31m+1518、a3+5a²+3a-919、x4(1- y)²+2x²(y²-1)+(1+ y)²20、2x4 -x3-6x²- x+ 2【答案】16、a6(a²-b²)+b6(b²-a²)-1=a6(a²-b²)-b6(a²-b²)提取公因式(a²-b²)=(a²-b²)(a6-b6)=(a²-b²)(a²-b²)(a4+a²b²+b4)=(a²-b²)²(a4+a²b²+b4)=(a+b)²(a-b)²(a4+a²b²+b4)17、4m3-31m+15-31m拆分为:-m-30m=4m3-m-30m+15=(4m3-m)+(-30m+15)m-15=m(4m²-1)-15(2m-1)=m(2m+1)(2m-1)-15(2m-1)(2m-1),=(2m-1)[m(2m+1)-15]=(2m-1)(2m²+m-15)=(2m-1)(2m-5)(m+3)18、a3+5a²+3a-93a拆分为:-6a+9a =a3+5a²-6a+9a-9=(a3+5a²-6a)+(9a-9)a9=a(a²+5a-6)+9(a-1)=a(a+6)(a-1)+9(a-1)提取公因式(a-1)=(a-1)[a(a+6)+9]=(a-1)(a²+6a+9)=(a-1)(a+3)²19、x4(1- y)²+2x²(y²-1)+(1+ y)²-1=x4(1- y)² - 2x²(1-y²)+(1+ y)²=[x²(1-y)]² -2x²(1-y)(1+y)+(1+ y)²=(x²-yx²-1- y)²20、2x4 -x3-6x²- x+ 2-x拆分为:3x-4x =2x4 -x3-6x²+3x-4x+ 2=(2x4 -x3)+(-6x²+3x)+(-4x+ 2)=(2x-1)(x3-3x-2)第五组:精选题21、a3+2a2+3a+222、x4-6x²+123、x3+3x+424、2a2b2+2a2c2+2b2c2+a4+b4+c425、a3-3a-226、2x3+3x2-127、a2+3ab+2b2+2a+b-3【答案】21、a3+2a2+3a+23a拆分为:a+2a =a3+2a2+a+2a+2=(a3+2a2+a)+(2a+2)=a(a2+2a+1)+2(a+1)=a(a+1)2+2(a+1)a+1)=(a+1)[a(a+1)+2]=(a+1)(a2+a+2)22、x4-6x²+1-6x2拆分为:-2x2-4x2 =x4-2x²-4x²+1-4x2移到最后=x4-2x²+1-4x²=(x4-2x²+1)-4x²=(x2-1)2-(2x)2=[(x2-1)+2x][(x2-1)-2x] =(x2+2x-1)(x2-2x-1)23、x3+3x+44拆分为:3+1=x3+3x+3+1x3与1结合,3x与3结合=(x3+1) + (3x+3)3=(x+1)(x2-x+1)+3(x+1)x+1)=(x+1)[(x2-x+1)+3]=(x+1)(x2-x+4)24、2a2b2+2a2c2+2b2c2+a4+b4+c4=(a4+b4+2a2b2)+(2a2c2+2b2c2)+c4 =(a2+b2)2+2c2(a2+b2)+c4=[(a2+b2)+c2]2=(a2+b2+c2)225、a3-3a-2-3a拆分为:-a-2a=a3-a-2a-2=(a3-a)+(-2a-2)=a(a2-1)-2(a+1)=a(a+1)(a-1)-2(a+1)a+1)=(a+1)[a(a-1)-2]=(a+1)(a2-a-2)=(a+1)(a+1)(a-2)=(a+1)2(a-2)26、2x3+3x2-13x2拆分为:2x2+x2 =2x3+2x2+x2-1=(2x3+2x2)+(x2-1)=2x2(x+1)+(x+1)(x-1)x+1)=(x+1)[2x2+(x-1)]=(x+1)(2x2+x-1)=(x+1)(2x-1)(x+1)=(x+1)2(2x-1)27、a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3 =(a+b)(a+2b)+(2a+b)-3 =[(a+b)-1][(a+2b)+3] =(a+b-1)(a+2b+3)十字叉乘法故:x2+6x+5=(x+1)(x+5)故:2x2+5x+2=(2x+1)(x+2)故:4x2+5x-3=(2x-1)(2x+3)黄勇权2019-7-14。
专题07因式分解(4个知识点13种题型)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.提公因式法因式分解知识点2.公式法因式分解知识点3.十字相乘法法因式分解知识点4.分组分解法法因式分解【方法二】实例探索法题型1.因式分解的概念题型2.用提公因式法分解因式(公因式为单项式)题型3.用提公因式法分解因式(公因式为多项式)题型4.用提公因式法分解因式的简单应用题型5.利用平方差公式分解因式题型6.综合利用提公因式法与平方差公式分解因式题型7.完全平方式题型8.利用完全平方公式分解因式题型9.综合利用提公因式法与完全平方公式分解因式题型10.十字相乘法题型11.十字相乘法的灵活应用题型12.利用分组分解法分解因式题型13.分组分解法的灵活应用【方法三】成果评定法【倍速学习四种方法】【方法一】脉络梳理法知识点1.提公因式法因式分解一.因式分解的意义1、分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.例如:3、因式分解是恒等变形,因此可以用整式乘法来检验.二.公因式1、定义:多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.2、确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.三.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.知识点2.公式法因式分解1、如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:a 2﹣b 2=(a +b )(a ﹣b );完全平方公式:a 2±2ab +b 2=(a ±b )2;2、概括整合:①能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.②能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.3、要注意公式的综合应用,分解到每一个因式都不能再分解为止.知识点4.十字相乘法法因式分解十字相乘法:如果二次三项式2x px q ++中的常数项q 能分解成两个因式a 、b 的积,而且一次项系数p 又恰好是a b +,那么2x px q ++就可以进行如下的分解因式,即:()()()22x px q x a b x ab x a x b ++=+++=++要将二次三项式2x px q ++分解因式,就需要找到两个数a 、b ,使它们的积等于常数项q ,和等于一次项系数p ,满足这两个条件便可以进行如下分解因式,即:22()()()x px q x a b x ab x a x b ++=+++=++.由于把2x px q ++中的q 分解成两个因数有多种情况,怎样才能找到两个合适的数,通常要经过多次的尝试才能确定采用哪种情况来进行分解因式.知识点5.分组分解法法因式分解如何将多项式am an bm bn +++因式分解?分析:很显然,多项式am an bm bn +++中既没有公因式,也不好用公式法.怎么办呢?由于()am an a m n +=+,()bm bn b m n +=+而:()()()()a m n b m n m n a b +++=++.这样就有:()()()()()()am an bm bn am an bm bn a m n b m n m n a b +++=+++=+++=++将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.说明:如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.【方法二】实例探索法题型1.因式分解的概念1.(2022秋•闵行区校级期末)下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答即可.【解答】解:A.等式右边不是乘积形式,故选项错误,不合题意;B.等式右边不是乘积形式,故选项错误,不合题意;C.等式右边不是乘积形式,故选项错误,不合题意;D.符合定义,故选项正确,符合题意.故选:D.【点评】本题考查了因式分解,解题的关键是理解因式分解的定义.2.(2022秋•浦东新区校级期末)下列等式从左到右是因式分解,且结果正确的是()A.a2+8a+16=(a+4)2B.(a+4)2=a2+8a+16C.a2+8a+16=a(a+8)+16D.a2+8(a+2)=a2+8a+16【分析】根据因式分解的定义逐个判断即可.【解答】解:A.等式由左边到右边的变形属于因式分解,并且正确,故本选符合题意;B.等式由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.等式由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:A.【点评】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.题型2.用提公因式法分解因式(公因式为单项式)3.(2022秋•嘉定区期中)多项式6x3y2﹣3x2y2+12x2y3的公因式是.【分析】直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【解答】解:多项式6x3y2﹣3x2y2+12x2y3的公因式是3x2y2.故答案为:3x2y2.【点评】此题主要考查了公因式,正确把握确定公因式的方法是解题的关键.4.(2022秋•嘉定区期中)分解因式:3x3﹣9x2﹣3x=.【分析】提取公因式后即可因式分解.【解答】解:3x3﹣9x2﹣3x=3x(x2﹣3x﹣1),故答案为:3x(x2﹣3x﹣1).【点评】本题考查因式分解,熟练掌握提取公因式法因式分解的方法是解题的关键.5.(2022秋•宝山区校级期末)分解因式:4x2y﹣12xy=.【分析】直接提取公因式4xy进行分解因式即可.【解答】解:4x2y﹣12xy=4xy(x﹣3),故答案为:4xy(x﹣3).【点评】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.6.(2022秋•嘉定区校级期中)因式分解:﹣15a﹣10ab+5abc=.【分析】直接提取公因式﹣5a,进而分解因式即可.【解答】解:原式=﹣5a(3+2b﹣bc).故答案为:﹣5a(3+2b﹣bc).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.题型3.用提公因式法分解因式(公因式为多项式)7.(2022秋•徐汇区期末)分解因式:(x﹣5)(3x﹣2)﹣3(x﹣5)=.【分析】将原式的公因式(x﹣5)提出即可得出答案.【解答】解:(x﹣5)(3x﹣2)﹣3(x﹣5)=(x﹣5)(3x﹣2﹣3)=(x﹣5)(3x﹣5).故答案为:(x﹣5)(3x﹣5).【点评】本题考查因式分解﹣提公因式法,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.8.(2022秋•宝山区校级期中)分解因式:a(a﹣b)+b(b﹣a)=.【分析】首先把式子变形为:a(a﹣b)﹣b(a﹣b),再找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:a(a﹣b)+b(b﹣a)=a(a﹣b)﹣b(a﹣b)=(a﹣b)(a﹣b)=(a﹣b)2.故答案为:(a﹣b)2.【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.9.(2022秋•浦东新区校级期中)2m(a﹣c)﹣5(a﹣c).【分析】直接提取公因式a﹣c即可.【解答】解:原式=(a﹣c)(2m﹣5).【点评】此题主要考查了提公因式法分解因式,关键是正确找到公因式.10.(2022秋•嘉定区期中)因式分解:6(x+y)2﹣2(x+y)(x﹣y)【分析】直接提取公因式进而分解因式得出答案.【解答】解:6(x+y)2﹣2(x+y)(x﹣y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y).【点评】此题主要考查了提取公因式法分解因式,正确掌握公因式是解题关键.11.(2022秋•杨浦区期中)分解因式:a2(a+2b)﹣ab(﹣4b﹣2a).【分析】原式变形可得a2(a+2b)+2ab(a+2b),再提公因式a(a+2b)因式分解即可.【解答】解:a2(a+2b)﹣ab(﹣4b﹣2a)=a2(a+2b)+2ab(a+2b)=a(a+2b)(a+2b)=a(a+2b)2.【点评】本题考查了提公因式法因式分解,正确找出公因式是解答本题的关键.题型4.用提公因式法分解因式的简单应用12.(2022秋•嘉定区期中)当a=3,b=时,代数式﹣a2+4ab的值为.【分析】将原式变形为﹣a(a﹣4b),把a与b的值分别代入计算即可得到结果.【解答】解:当a=3,b=时,﹣a2+4ab=﹣a(a﹣4b)=﹣3×(3﹣4×)=﹣3×2=﹣6.故答案为:﹣6.【点评】此题考查了代数式求值和因式分解,熟练掌握运算法则是解本题的关键.题型5.利用平方差公式分解因式13.(2022秋•徐汇区期末)分解因式:x2﹣=.【分析】运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣=(x+)(x﹣).故答案为:(x+)(x﹣).【点评】本题考查因式分解.当被分解的式子只有两项平方项;符号相反,且没有公因式时,应首要考虑用平方差公式进行分解.14.(2022秋•嘉定区校级期中)因式分解:x4﹣16=.【分析】利用平方差公式:a2﹣b2=(a+b)(a﹣b),进行两次分解.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).【点评】此题主要考查了用公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.(2022秋•黄浦区期中)分解因式:﹣(a+b)2+1=.【分析】直接利用平方差公式分解因式,进而得出答案.【解答】解:原式=[1﹣(a+b)][1+(a+b)]=(1﹣a﹣b)(1+a+b).故答案为:(1﹣a﹣b)(1+a+b).【点评】此题主要考查了公式法分解因式,正确运用平方差公式分解因式是解题关键.16.(2022•黄浦区校级二模)分解因式:x2﹣4y2=.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4y2=(x+2y)(x﹣2y).故答案为:(x+2y)(x﹣2y).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.17.(2022秋•上海期末)分解因式:9a2﹣25(a+b)2.【分析】根据平方差公式因式分解即可.【解答】解:9a2﹣25(a+b)2=[3a﹣5(a+b)][3a+5(a+b)]=(﹣2a﹣5b)(8a+5b)=﹣(2a+5b)(8a+5b).【点评】本题考查了公式法进行因式分解,熟练掌握因式分解的方法是解题的关键.18.(2022秋•黄浦区期中)分解因式:25(m+n)2﹣9(m﹣n)2.【分析】直接利用平方差公式分解因式.【解答】解:25(m+n)2﹣9(m﹣n)2=[5(m+n)﹣3(m﹣n)][5(m+n)+3(m﹣n)]=(2m+8n)(8m+2n)=4(m+4n)(4m+n).【点评】本题考查了因式分解﹣公式法:掌握a2﹣b2=(a+b)(a﹣b)是解题的关键.题型6.综合利用提公因式法与平方差公式分解因式19.(2022秋•浦东新区校级期末)分解因式:4x2﹣16=.【分析】先提取公因式4,再对剩余项x2﹣4利用平方差公式继续进行因式分解.【解答】解:4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2).故答案为:4(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式继续进行二次因式分解,分解因式一定要彻底.20.(2022秋•青浦区校级期中)因式分解:3a(a+b)2﹣27ab2.【分析】先提取公因式,再套用平方差公式.【解答】解:原式=3a[(a+b)2﹣9b2]=3a(a+b+3b)(a+b﹣3b)=3a(a+4b)(a﹣2b).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.题型7.完全平方式21.(2022秋•青浦区校级期中)下列多项式中可以用完全平方公式进行因式分解的()A.x2+x+1B.x2﹣2x﹣1C.x2+2x+4D.x2﹣x+【分析】根据完全平方公式的结构特征逐项进行判断即可.【解答】解:A.x2+x+1,不能利用完全平方公式进行因式分解,因此选项A不符合题意;B.x2﹣2x﹣1,不能利用完全平方公式进行因式分解,因此选项B不符合题意;C.x2+2x+4,不能利用完全平方公式进行因式分解,因此选项C不符合题意;D.x2﹣x+=(x﹣)2,能利用完全平方公式进行因式分解,因此选项D符合题意;故选:D.【点评】本题考查了因式分解﹣运用公式法,掌握完全平方公式的结构特征是正确判断的前提.题型8.利用完全平方公式分解因式22.(2022秋•黄浦区期中)因式分解:(x2﹣4x)2+8(x2﹣4x)+16.【分析】直接利用完全平方公式分解因式,进而得出答案.【解答】解:原式=(x2﹣4x+4)2=(x﹣2)4.【点评】此题主要考查了公式法分解因式,正确运用完全平方公式是解题的关键.23.(2022秋•长宁区校级期中)(m+n)2+6(m2﹣n2)+9(m﹣n)2.【分析】首先利用平方差公式分解m2﹣n2,观察发现此题代数式符合完全平方公式,再利用完全平方公式进行分解即可.【解答】解:原式=(m+n)2+6(m﹣n)(m+n)+9(m﹣n)2,=[(m+n)+3(m﹣n)]2,=(4m﹣2n)2,=4(2m﹣n)2.【点评】此题主要考查了公式法分解因式,关键是掌握完全平方公式:a2±2ab+b2=(a±b)2.24.(2022秋•长宁区校级期中)分解因式:m(m﹣4)+4.【分析】先运用单项式乘以多项式法则将括号展开,再利用完全平方公式进行因式分解即可.【解答】解:m(m﹣4)+4=m2﹣4m+4=(m﹣2)2.【点评】本题主要考查了因式分解,熟练掌握完全平方公式(a2±2ab+b2=(a±b)2)是解答本题的关键.题型9.综合利用提公因式法与完全平方公式分解因式25.(2022秋•长宁区校级期中)因式分解:=.【分析】先提取公因式,再利用完全平方公式分解因式即可.【解答】解:原式=(m2﹣4m+4)=(m﹣2)2.故答案为:(m﹣2)2.【点评】本题考查的是多项式的因式分解,掌握“利用完全平方公式分解因式”是解本题的关键.26.(2022秋•长宁区校级期中)分解因式:﹣6x2y﹣3x3﹣3xy2.【分析】先提取公因式,再利用完全平方公式.【解答】解:﹣6x2y﹣3x3﹣3xy2=﹣3x(x2+2xy+y2)=﹣3x(x+y)2.【点评】本题考查了整式的因式分解,掌握因式分解的提公因式法和公式法是解决本题的关键.27.(2022秋•青浦区校级期中)因式分解:3a2+12ab+12b2.【分析】先提取公因式,再套用完全平方公式.【解答】解:3a2+12ab+12b2=3(a2+4ab+4b2)=3(a+2b)2.【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.题型10.十字相乘法28.(2022秋•青浦区校级期末)因式分解:2x2﹣6x﹣8=.【分析】原式先提取公因数2,再利用十字相乘法求出解即可.【解答】解:原式=2(x2﹣3x﹣4)=2(x﹣4)(x+1),故答案为:2(x﹣4)(x+1).【点评】本题考查了因式分解—十字相乘法,熟练掌握十字相乘的方法是解题的关键.29.(2022秋•虹口区校级期中)分解因式:x2﹣7xy﹣18y2=.【分析】由十字相乘法进行分解因式即可.【解答】解:x2﹣7xy﹣18y2=(x﹣9y)(x+2y).故答案是:(x﹣9y)(x+2y).【点评】本题考查因式分解,熟练掌握十字相乘法分解因式是解题的关键.30.(2022秋•宝山区期末)分解因式:2x2+6xy+4y2.【分析】先提公因式,再用十字相乘法因式分解即可.【解答】解:2x2+6xy+4y2=2(x2+3xy+2y2)=2(x+2y)(x+y).【点评】本题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解题的关键.31.(2022秋•奉贤区期中)分解因式:ax4﹣14ax2﹣32a.【分析】首先提取公因式a,再利用十字相乘法分解因式,再结合平方差公式分解因式即可.【解答】解:ax4﹣14ax2﹣32a=a(x4﹣14x2﹣32)=a(x2+2)(x2﹣16)=a(x2+2)(x+4)(x﹣4).【点评】此题主要考查了十字相乘法分解因式,正确运用公式是解题关键.32.(2022秋•虹口区校级期中)分解因式:(a2﹣a)2+2(a2﹣a)﹣8.【分析】先变形,局部逆用完全平方公式,再使用十字相乘法.【解答】解:(a2﹣a)2+2(a2﹣a)﹣8=(a2﹣a)2+2(a2﹣a)+1﹣9=(a2﹣a+1)2﹣9=(a2﹣a+4)(a2﹣a﹣2)=(a2﹣a+4)(a﹣2)(a+1).【点评】本题主要考查运用公式法、十字相乘法进行因式分解,熟练掌握公式法、十字相乘法是解决本题的关键.33.(2022秋•上海期末)分解因式:3x2﹣9x﹣30.【分析】先提取公因式,再利用十字相乘法分解.【解答】解:3x2﹣9x﹣30=3(x2﹣3x﹣10)=3(x﹣5)(x+2).【点评】本题考查了整式的因式分解,掌握提公因式法和十字相乘法是解决本题的关键.34.(2022秋•徐汇区期末)分解因式:(1)2ab2﹣6a2b2+4a3b2;(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24.【分析】(1)先提取公因式,再利用十字相乘法;(2)先利用十字相乘法,再利用公式法和十字相乘法.【解答】解:(1)2ab2﹣6a2b2+4a3b2=2ab2(1﹣3a+2a2)=2ab2(2a﹣1)(a﹣1);(2)(x2﹣4x)2﹣5(x2﹣4x)﹣24=(x2﹣4x﹣8)(x2﹣4x+3)=[(x2﹣4x+4)﹣12](x﹣3)(x﹣1)=[(x﹣2)2﹣12](x﹣3)(x﹣1)=(x﹣2+2)(x﹣2﹣2)(x﹣3)(x﹣1).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.35.(2021秋•金山区期末)分解因式:(x2﹣x)2﹣18(x2﹣x)+72.【分析】把(x2﹣x)看成一个整体,利用十字相乘法分解即可.【解答】解:(x2﹣x)2﹣18(x2﹣x)+72=[(x2﹣x)﹣6][(x2﹣x)﹣12]=(x﹣3)(x+2)(x﹣4)(x+3).【点评】本题考查了整式的因式分解,掌握十字相乘法和整体的思想是解决本题的关键.36.(2021秋•奉贤区期末)分解因式:(a2+a)2﹣8(a2+a)+12.【分析】因为﹣2×(a2+a)=﹣2(a2+a),﹣6×(a2+a)=﹣6(a2+a),所以可利用十字相乘法分解因式;得到的两个因式,还可以用十字相乘法分解因式.【解答】解:根据十字相乘法,(a2+a)2﹣8(a2+a)+12,=(a2+a﹣2)(a2+a﹣6),=(a+2)(a﹣1)(a+3)(a﹣2).【点评】本题考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察、体会它实质是二项式乘法的逆过程;并注意一定要分解完全.题型11.十字相乘法的灵活应用37.(2022秋•静安区校级期中)多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0B.10C.12D.22【分析】首先利用十字交乘法将77x2﹣13x﹣30因式分解,继而求得a,b,c的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选:C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c(a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).38.(2022秋•宝山区期末)分解因式:x2﹣9x+14=(x+□)(x﹣7),其中□表示一个常数,则□的值是()A.7B.2C.﹣2D.﹣7【分析】利用十字相乘法因式分解即可.【解答】解:x2﹣9x+14=(x﹣2)(x﹣7),∴□表示﹣2,故选:C.【点评】本题考查因式分解,熟练掌握利用十字相乘法进行因式分解是解题的关键.39.(2022秋•虹口区校级期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】∵4=﹣1×(﹣4),﹣1+(﹣4)=﹣5,∴可以用十字相乘法因式分解.【解答】解:当c=4时,x2﹣5x+c=x2﹣5x+4=(x﹣1)(x﹣4).故选:C.【点评】本题主要考查了因式分解﹣十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.40.(2021秋•普陀区期末)已知关于x的多项式x2+kx﹣3能分解成两个一次多项式的积,那么整数k的值为.【分析】把常数项分解成两个整数的乘积,k就等于那两个整数之和.【解答】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k=﹣3+1=﹣2或k=﹣1+3=2,∴整数k的值为:±2,故答案为:±2.【点评】本题考查了因式分解﹣十字相乘法,熟练掌握因式分解﹣十字相乘法是解题的关键.41.(2022秋•嘉定区校级期中)阅读下列文字,解决问题.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4解:x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.这样利用添项的方法,将原代数式中的部分(或全部)变形为完全平方的形式,这种方法叫做配方法.按照这个思路,试把多项式x4+3x2y2+4y4分解因式.【分析】把原式中的第二项的系数1变为4﹣1,化简后三项结合构成完全平方式,剩下的一项写出完全平方式,然后再利用平方差公式即可分解因式.【解答】解:x4+3x2y2+4y4=x4+4x2y2+4y4﹣x2y2=(x2+2y2)2﹣x2y2=(x2+2y2+xy)(x2+2y2﹣xy).【点评】此题考查学生阅读新方法并灵活运用新方法的能力,考查了分组分解法进行分解因式,是一道中档题.本题的思路是添项构成完全平方式.题型12.利用分组分解法分解因式42.(2022秋•徐汇区期末)分解因式:xy+(x+1)(y+1)(xy+1).【分析】根据分组法和十字相乘法因式分解即可.【解答】解:xy+(x+1)(y+1)(xy+1)=xy+(xy+x+y+1)(xy+1)=xy+[(xy+1)+(x+y)](xy+1)=(xy+1)2+(x+y)(xy+1)+xy=(xy+x+1)(xy+y+1).【点评】本题考查了分组法进行因式分解,熟练掌握分组法和十字相乘法是解题的关键.43.(2022秋•青浦区校级期末)因式分解:x2+4y﹣1﹣4y2.【分析】首先重新分组,进而利用完全平方公式以及平方差公式分解因式得出答案即可.【解答】解:x2+4y﹣1﹣4y2.x2﹣(﹣4y+4y2+1)=x2﹣(1﹣2y)2=(x﹣2y+1)(x+2y﹣1).【点评】此题主要考查了分组分解法以及公式法分解因式,正确分组是解题关键.44.(2022秋•浦东新区校级期末)分解因式:(1)m2﹣n2+6n﹣9;(2)(x+2y)x2+6(x+2y)x﹣7x﹣14y.【分析】(1)根据平方差公式和完全平方公式解答;(2)用提公因式法和十字相乘法解答.【解答】解:(1)原式=m2﹣(n2﹣6n+9)=m2﹣(n﹣3)2=(m﹣n+3)(m+n﹣3);(2)原式=(x+2y)x2+6(x+2y)x﹣7(x+2y)=(x+2y)(x2+6x﹣7)=(x+2y)(x﹣1)(x+7).【点评】本题考查了因式分解,熟悉乘法公式和提公因式法是解题的关键.45.(2022秋•闵行区校级期末)分解因式:2x3﹣2x2y+8y﹣8x.【分析】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).【点评】本题考查了平方差公式,分组分解法分解因式,要先把式子整理,再分解因式.对于一个四项式用分组分解法进行因式分解,难点是采用两两分组还是三一分组.46.(2022秋•闵行区校级期中)因式分解:a2﹣6ab+9b2﹣16.【分析】先分成两组,用完全平方公式,再用平方差公式分解因式.【解答】解:原式=(a2﹣6ab+9b2)﹣16=(a﹣3b)2﹣42=(a﹣3b+4)(a﹣3b﹣4).【点评】本题主要考查了因式分解﹣分组分解法,掌握因式分解﹣分组分解法的方法,先分组,再分解因式,完全平方公式和平方差公式的熟练应用是解题关键.47.(2022秋•青浦区校级期中)因式分解:2ac﹣6ad+bc﹣3bd.【分析】首先将前两项以及后两项提取公因式,进而分解因式得出即可.【解答】解:2ac﹣6ad+bc﹣3bd=2a(c﹣3d)+b(c﹣3d)=(c﹣3d)(2a+b).【点评】此题主要考查了分组分解法分解因式,正确分组得出是解题关键.48.(2022秋•宝山区校级期末)分解因式:b2﹣4a2﹣1+4a.【分析】利用分组分解法,将﹣4a2﹣1+4a分为一组,先利用完全平方公式,再利用平方差公式即可.【解答】解:原式=b2﹣(4a2+1﹣4a)=b2﹣(2a﹣1)2=[b+(2a﹣1)][b﹣(2a﹣1)]=(b+2a﹣1)(b﹣2a+1).【点评】本题考查分组分解法分解因式,掌握分组的原则和分组的方法是正确解答的前提,掌握完全平方公式、平方差公式的结构特征是解决问题的关键.49.(2022秋•嘉定区校级期末)因式分解:x2﹣4+4y2﹣4xy.【分析】直接将原式分组,再利用完全平方公式以及平方差公式分解因式得出答案.【解答】解:x2﹣4+4y2﹣4xy=x2+4y2﹣4xy﹣4=(x﹣2y)2﹣4=(x﹣2y+2)(x﹣2y﹣2).【点评】此题主要考查了分组分解法分解因式,正确运用公式是解题关键.50.(2022秋•宝山区期末)分解因式:m2﹣2m+1﹣4n2.【分析】先分组再利用平方差公式.【解答】解:m2﹣2m+1﹣4n2=(m﹣1)2﹣4n2=(m﹣1+2n)(m﹣1﹣2n).【点评】本题主要考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.51.(2022秋•闵行区校级期中)因式分解:x2+9xy+18y2﹣3x﹣9y.【分析】先把多项式按三、二分组,再分别因式分解,最后提取公因式.【解答】解:x2+9xy+18y2﹣3x﹣9y=(x2+9xy+18y2)﹣(3x+9y)=(x+3y)(x+6y)﹣3(x+3y)=(x+3y)(x+6y﹣3).【点评】本题考查了整式的因式分解,掌握因式分解的提公因式和十字相乘法是解决本题的关键.题型13.分组分解法的灵活应用52.(2022秋•静安区校级期中)已知x2﹣x﹣3=0,那么x3﹣2x2﹣2x+2022=.【分析】根据x2﹣x﹣3=0,得出x2=x+3,代入求值即可.【解答】解:∵x2﹣x﹣3=0,∴x2=x+3,x3﹣2x2﹣2x+2022=x(x+3)﹣2x2﹣2x+2022=﹣x2+x+2022=﹣(x2﹣x﹣3)+2019=2019,故答案为:2019.【点评】本题主要考查因式分解的应用,熟练掌握因式分解是解题的关键.53.(2022秋•闵行区校级期中)已知a2﹣a﹣1=0,则代数式a3﹣2a+6=.【分析】根据已知条件得到a2﹣a=1,将要求的代数式化简得到a(a2+a)﹣a2﹣2a+6,两次代入求解即可.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,a3﹣2a+6=a3﹣a2+a2﹣2a+6=a(a2﹣a)+a2﹣2a+6=a+a2﹣2a+6=a2﹣a+6,将a2﹣a=1代入原式=1+6=7.故答案为:7.【点评】本题考查因式分解的应用,合理利用已知条件是关键.【方法三】成功评定法一、单选题1.(2022秋·上海·七年级上海市民办新复兴初级中学校考期中)如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.5【分析】根据平方差公式逐项分析即可.【详解】解:A.()()x y x y +-22x y =-,故能用平方差公式计算;B.()()x y x y +-+22y x =-,故能用平方差公式计算;C.()()x y x y -+-222()2x y x xy y =--=-+-,故不能用平方差公式计算;D.()()x y x y -+--22x y =-,故能用平方差公式计算;故选:C .【点睛】此题主要考查了乘法公式,熟练掌握公式是解答本题的关键.完全平方公式是()2222a b a ab b ±=±+;平方差公式是()()22a b a b a b +-=-.二、填空题三、解答题【分析】利用平方差公式进行因式分解即可得出答案.【详解】解:224691x y y +--()224961x y y =--+()22431x y --=()()231231x y x y =+--+.【点睛】此题主要考查因式分解,解题的关键是掌握利用平方差公式进行因式分解.22.(2022秋·上海·七年级阶段练习)因式分解:221218a b ab b -+【答案】22(3)b a -.【分析】先提公因式2b ,再利用完全平方公式即可【详解】解:原式()2269=-+b a a 22(3)=-b a .【点睛】本题考查了综合提公因式法和公式法分解因式,熟练掌握方法是解题的关键23.(2022秋·上海·七年级校考阶段练习)因式分解:()()2222225225m n m n ---【答案】()()()2221m n m n m n +-+【分析】直接利用平方差公式分解因式即可.【详解】原式()()2222222252255225m n m n m n m n =-+---+()()22227733m n m n =-+()()222221m n m n =-+()()()2221m n m n m n =+-+【点睛】本题考查了公式法分解因式,熟练应用平方差公式是解题关键.24.(2022秋·上海·七年级校考阶段练习)因式分解:()()2280x y y x ----【答案】()()810x y x y ---+【分析】利用十字相乘法分解因式即可.【详解】()()2280x y y x ----。
专题09因式分解之八大题型判断是否是因式分解【变式训练】1.(2023下·浙江温州·七年级校考期末)下列变形是因式分解的是( )已知因式分解的结果求参数【变式训练】已知二次三项式22x x k +-有一个因式是6x -,求另一个因式以及k 的值.【答案】8x +,48k =【分析】设另一根因式为x n +,可得()()()222666x x k x x n x n x n +-=-+=+--,再建立方程组626n n k-=ìí-=-î,再解方程组即可得到答案.【详解】解:∵二次三项式22x x k +-有一个因式是6x -,∴设另一根因式为x n +,∴()()()222666x x k x x n x n x n +-=-+=+--,∴626n n k -=ìí-=-î,解得:848n k =ìí=î,∴另一根因式为:8x +.【点睛】本题考查的是因式分解的含义,二元一次方程组的解法,熟练的利用待定系数法建立方程组是解本题的关键.公因式例题:(2023上·福建厦门·八年级校考期末)单项式33a b 与239a b 的公因式是( )A .23a bB .333a bC .abD .339a b 【答案】A【分析】根据公因式的概念分别求得系数的最大公因数,相同字母的次数的最低次数即可.【详解】解:单项式33a b 与单项式239a b 的公因式是23a b .故选:A .【点睛】此题考查公因式,掌握由几个单项式的各系数最大公约数与各相同字母最小次幂的乘积,组成的式子叫这几个单项式的公因式是解决此题的关键.【变式训练】【变式训练】综合提公因式法和公式法分解因式(2)()()22a x y b y x -+-()()22x y a b =--()()()x y a b a b =-+-.【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式,掌握平方差公式()()22a b a b a b +-=-和完全平方公式()2222a b a ab b ±=±+.【变式训练】1.(2023下·江苏扬州·七年级统考期末)分解因式:(1)228m -;(2)()()244x y x y +-++.【答案】(1)()()222m m +-(2)()22x y +-【分析】(1)先提取公因式2,再用平方差公式进行因式分解即可;(2)将x y +看做一个整体,利用完全平方公式进行因式分解即可.【详解】(1)解:原式()()()224222m m m =-=+-;(2)解:原式()()22222x y x y =+-´++()22x y =+-.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握平方差公式()()22a b a b a b +-=-和完全平方公式()222a b a ab b ±=±+.2.(2023下·江苏盐城·七年级统考期中)分解因式:(1)2273x -+;(2)22344xy x y y --;(3)()()2221619y y ---+.【答案】(1)()()333x x +-(2)()22y x y --(3)()()2222+-y y【分析】(1)利用提公因式法及平方差公式,即可分解因式;(2)利用提公因式法及完全平方公式,即可分解因式;(3)利用完全平方公式及平方差公式,即可分解因式.【详解】(1)解:2273x -+2327x =-()239x =-()()333x x =+-(2)解:22344xy x y y --()2244y x xy y =--+()22y x y =--(3)解:()()2221619y y ---+()()2221619y y =---+()2213y éù=--ëû()224y =-()()222y y =+-éùëû()()2222y y =+-【点睛】本题考查了分解因式的方法,熟练掌握和运用分解因式的方法是解决本题的关键.十字相乘法分解因式例题:(2023下·四川达州·八年级校考期末)将多项式234--x x 分解因式后正确的是( )A .()()223x x x+--B .()34x x --C .()()14x x -+D .()()14x x +-【答案】D【分析】利用十字相乘法进行因式分解即可.【详解】解:()()23414.x x x x --=+-故选:D .【点睛】本题考查了十字相乘法分解因式,运用十字相乘法分解因式,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.【变式训练】【点睛】本题考查了因式分解,熟练掌握十字相乘法进行因式分解是解题的关键.分组分解法分解因式例题:(2023下·山东青岛·八年级统考期末)【问题提出】:分解因式:(1)23355x xy x y +-- (2)2244a b a b-+-【问题探究】:某数学“探究学习”小组对以上因式分解题目进行了如下探究:探究1:分解因式:(1)23355x xy x y+--分析:甲发现该多项式前两项有公因式3x ,后两项有公因式5-,分别把它们提出来,剩下的是相同因式()x y +,可以继续用提公因式法分解.解:()22335533(55)3()5()()(35)x xy x y x xy x y x x y x y x y x +--=+-+=+-+=+-另:乙发现该多项式的第二项和第四项含有公因式y ,第一项和第三项含有公因式x ,把y ,x 提出来,剩下的是相同因式(35)x -,可以继续用提公因式法分解.解:()22335535(35)(35)(35)(35)()x xy x y x x xy y x x y x x x y +--=-+-=-+-=-+探究2:分解因式:(2)2266a b a b-+-分析:甲发现先将22a b -看作一组应用平方差公式,其余两项看作一组,提出公因式6,则可继续再提出因式,从而达到分解因式的目的.解:()222266(66)()()6()()(6)a b a b a b a b a b a b a b a b a b -+-=-+-=+-+-=-++【方法总结】:对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和公式法进行分解,然后,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法:【学以致用】:尝试运用分组分解法解答下列问题;(1)分解因式:3244x x x +--;(2)分解因式:22229y yz z x ++-;【拓展提升】:(3)分解因式:2815m m -+.【答案】(1)()()()122x x x ++-;(2)()()33y z x y z x +++-;(3)()()53m m --.【分析】(1)把前面两个和后面两个分别组成两组,提公因式()1x +后再利用平方差公式继续分解;(2)把前面三个和后面一个组成两组,利用公式分解即可;(3)把15分解成161-,再把前面三个和后面一个组成两组,利用公式分解即可.【详解】解:(1)3244x x x +--()()3241x x x =+-+()()2141x x x =+-+()()214x x =+-()()()122x x x =++-;(2)22229y yz z x ++-()22229y yz z x =++-()()223y z x =+-()()33y z x y z x =+++-;(3)2815m m -+()28161m m =-+-()241m =--()()4141m m =-+--()()53m m =--.【点睛】解答本题的关键是注意用分组分解法时,一定要考虑分组后能否提取公因式,运用公式.【变式训练】1.(2023上·河南南阳·八年级统考期末)常用的分解因式的方法有提取公因式法、公式法等,但有的多项式则不能直接用上述两种方法进行分解,比如多项式22424x y x y -++.这样我们就需要结合式子特点,探究新的分解方法.仔细观察这个四项式,会发现:若把它的前两项结合为一组符合平方差公式特点,把它的后两项结合为一组可提取公因式,而且对前后两组分别进行因式分解后会出现新的公因式,提取新的公因式就可以完成对整个式子的因式分解.具体过程如下:例1:22424x y x y-++()()22424x y x y =--- 分成两组()()()2222x y x y x y =+--- 分别分解()()222x y x y =-+- 提取公因式完成分解像这种将一个多项式适当分组后,再分解因式的方法叫做分组分解法.分组分解法一般是针对四项或四项以上的多项式,关键在恰当分组,分组须有“预见性”,预见下一步能继续分解,直到完成分解.(1)关于以上方法中“分组”目的的以下说法中所有正确的序号是______.①分组后组内能出现公因式;②分组后组内能运用公式;③分组后组间能继续分解.(2)若要将以下多项式进行因式分解,怎样分组比较合适?①22x y x y -++=______.②22222a a b ab b +--+=______.(3)利用分组分解法进行因式分解:22441x x y +-+.【答案】(1)①②③(2)①()()22x y x y -++,②()()22222a b a ab b -+-+;(3)()()2121x y x y ++-+【分析】(1)根据阅读材料解答即可;(2)运用分组分解法直接作答即可;(3)运用分组分解法直接作答即可.【详解】(1)解:从材料可知:“分组”的目的是:①分组后组内能出现公因式;②分组后组内能运用公式;③分组后组间能继续分解;故正确的序号是①②③,故答案为:①②③;(2)解:①()()2222x y x y x y x y -++=-++,②()()2222222222a a b ab b a b a ab b +--+=-+-+,故答案为:①()()22x y x y -++,②()()22222a b a ab b -+-+;(3)解:22441x x y +-+()22441x x y =++-()2221x y =+-()()2121x y x y =++-+【点睛】本题考查了因式分解,能够灵活运用分组分解法进行因式分解是解答本题的关键.因式分解的应用例题:(2023下·辽宁丹东·八年级统考期末)已知a ,b ,c 是三角形的三边,且满足()2222333a b c a b c ++=++则ABC V 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【答案】C【分析】将()2222333a b c a b c ++=++进行变形得2222222220a b c ab ac bc ++---=,根据完全平方公式得222()()()0a b b c a c -+-+-=,即可得a b c ==,即可得.【详解】解:()2222333a b c a b c ++=++,222222222333a b c ab ac bc a b c +++++=++,2222222220a b c ab ac bc ++---=,222()()()0a b b c a c -+-+-=,0a b -=,0b c -=,0a c -=,a b =,b c =,a c =,∴a b c ==,∴三角形ABC 为等边三角形,故选:C .【点睛】本题考查了因式分解,完全平方公式,等边三角形的判定,解题的关键是掌握因式分解,完全平方公式,等边三角形的判定.【变式训练】(2)14【分析】(1)①仿照例题的方法,根据分组分解法分解因式;②仿照例题的方法,根据拆项法分解因式;(2)仿照例题的方法,根据分组分解法分解因式,根据非负数的性质,求得,,a b c 的值,即可求解.【详解】(1)①()()()222222961961313131x x y x x y x y x y x y +-+=++-=+-=+++-;②()()()()()2226869131313124x x x x x x x x x -+=-+-=--=-+--=--(2)a ,b ,c 为ABC V 的三条边,22254610340a b c ab b c --++-=+,∴2222446910250a b ab b b c c +-+-++-+=,∴()()()2222350a b b c -++-=-,∴20a b -=,30b -=,50c -=,∴6a =,3b =,5c =,∴ABC V 的周长为63514++=.【点睛】本题考查了因式分解以及因式分解的应用,仿照例题的方法因式分解是解题的关键.一、单选题1.(2023下·云南昭通·八年级校联考期末)在多项式323124a b a bc -中,各项的公因式是( )A .34a bcB .34a bC .24abD .224a b 【答案】B【分析】根据多项式的公因式来进行求解即可.【详解】解: ()323312443a b a bc a b b c =--Q ,34a b \是多项式323124a b a bc -中各项的公因式.故选:B .【点睛】本题主要考查了多项式的公因式,理解多项式的公因式是解答关键.2.(2023下·陕西渭南·八年级统考期末)下列因式分解正确的是( )A .()1ax ay a x y +=++B .()ma mb m a b -=-C .()22444x x x ++=+D .()2211x x -=-【答案】B【分析】根据因式分解的定义和方法逐项判断即可.【详解】A 、()ax ay a x y +=+,因式分解错误,该选项不符合题意;B 、因式分解正确,该选项符合题意;C 、()22442x x x ++=+,因式分解错误,该选项不符合题意;D 、()()2111x x x -=-+,因式分解错误,该选项不符合题意.故选:B .【点睛】本题主要考查因式分解,牢记因式分解的定义(把一个多项式化成几个整式的积的形式叫做因式分解)和方法(提公因式法和公式法)是解题的关键.3.(2023上·河南许昌·八年级统考期末)如果()()21052x kx x x ++=--,则k 应为( )A .3-B .3C .7D .7-【答案】D 【分析】先利用整式乘法化简等式的左边代数式,再根据对应系数相等求解k 值即可.【详解】解:∵()()22525210710x x x x x x x --=--+=-+,∴2210710x kx x x ++=-+,∴7k =-,故选:D .【点睛】本题考查因式分解,熟知因式分解和整式乘法是互为逆运算是解答的关键.4.(2023上·福建厦门·八年级统考期末)要使多项式22x M x ++能运用平方差公式进行分解因式,整式M 可以是( )A .1B .1-C .24x -+D .24x --【答案】D【分析】利用平方差公式的结构特征判断即可.【详解】解:A .()22211x x x ++=+是完全平方公式因式分解,不合题意;B .221x x +-不能用平方差公式因式分解,故该选项不正确,不符合题意;C .222424x x x x x -++=+,不能用平方差公式因式分解,故该选项不正确,不符合题意;D . ()()22242422x x x x x x --+=-=+-,能用平方差公式因式分解,故该选项正确,符合题意;故选:D .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.5.(2023下·安徽宿州·八年级校考期末)已知ABC V 的三边长分别为a ,b ,c ,且满足22a ac b bc -=-,则ABC V 一定是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形【答案】D 【分析】依据题意,由22a ac b bc -=-得220a b ac bc --+=,从而()()0a b a b c -+-=,由两边之和大于第三边可得a b c +>,即0a b c +->,进而0a b -=,故可得解.【详解】解:由题意,∵22a ac b bc -=-,∴220a b ac bc --+=.∴()()0a b a b c -+-=.又∵a b c +>,即0a b c +->,∴0a b -=,即a b =.∴ABC V 是等腰三角形.故选:D .【点睛】本题主要考查了因式分解的应用,解题时需要熟练掌握并能理解.二、填空题【点睛】本题主要考查了因式分解的应用,正确理解题意是解题的关键.三、解答题11.(2023下·四川达州·八年级校考期末)分解因式:(1)32231212a a b ab -+-;(2)229()()m n m n +--.【答案】(1)23(2)a a b --(2)()()422m n m n ++【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式利用平方差公式分解即可.【详解】(1)原式()22344a a ab b =--+23(2)a a b =--;(2)()2原式()()()()33m n m n m n m n =++-+--éùéùëûëû()()422m n m n =++.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(2023下·四川达州·八年级校考期末)因式分解:(1)()()42a x y b y x ---;(2)22168x xy y -+;【答案】(1)()()22x y a b -+(2)2(4)x y -【分析】(1)利用提公因式法进行分解,即可解答;(2)利用完全平方公式进行分解,即可解答.【详解】(1)解:()()42a x y b y x ---【答案】(1)(3)(3)+++-a b a b (2)ABC V 是等腰三角形,理由见解析【分析】(1)运用完全平方公式分解222a ab b ++,再运用平方差公式进行分解即可;(2)运用乘法公式进行分组分解法分解因式即可.【详解】(1)解:2229a ab b ++-2()9a b =+-(3)(3)a b a b =+++-.(2)解:20a ab ac bc -+-=,因式分解为:()2()0a ab ac bc -+-=,()()0a a b c a b -+-=,()()0a b a c -+=,0a b \-=,即a b =,∴ABC V 是等腰三角形.【点睛】本题主要考查因式分解的知识,掌握乘法公式的运用,因式分解的方法是解题的关键.15.(2023下·甘肃陇南·八年级统考期末)阅读与思考请仔细阅读并完成相应任务.生活中我们经常用到密码,例如用支付宝或微信支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:3222x x x +--可以因式分解为()()()112x x x -++,当29x =时,128x -=,130x +=,231x +=,此时可以得到数字密码283031.任务:(1)根据上述方法,当15x =,5y =时,对于多项式32x xy -分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x ,y ,求出一个由多项式33x y xy +分解因式后得到的密码(只需一个即可).【答案】(1)可得数字密码是151020;也可以是152010;101520;102015,201510,201015(2)24121(或12124)【分析】(1)先将32x xy -进行因式分解,再根据题意代入15x =,5y =计算,即可求解;(2)根据勾股定理和三角形周长公式得2213121x y x y +=ìí+=î,解得24xy =,再将多项式33x y xy +分解因式后,代入24xy =,22121x y +=进行计算即可求解.【详解】(1)解:()()32x xy x x y x y -=-+,当15x =,5y =时,10x y -=,20x y +=,可得数字密码是151020;也可以是152010;101520;102015,201510,201015.(2)由题意得:2213121x y x y +=ìí+=î,解得24xy =,而()3322x y xy xy x y +=+,所以可得数字密码为24121(或12124).【点睛】本题考查因式分解和因式分解的应用,解题的关键是掌握因式分解的方法以及题目中数字密码的计算方法.16.(2023下·辽宁锦州·八年级统考期末)数形结合是解决数学问题的重要思想方法,借助图形可以对很多数学问题进行直观推导和解释.如图1,有足够多的A ,B ,C 三种纸片:A 种是边长为m 的正方形,B 种是边长为n 的正方形,C 种是宽为m ,长为n 的长方形.用A 种纸片1张,B 种纸片1张,C 种纸片2张可以拼出(不重不漏)如图2所示的正方形.根据正方形的面积,可以用来解释整式乘法()()222m n m n m mn n ++=++,反过来也可以解释多项式222m mn n ++,因式分解的结果为2222()m mn n m n ++=+,依据上述积累的数与形对应关系的经验,解答下列问题:(1)若多项式2223m n mn ++表示分别由1,2,3张A ,B ,C 三种纸片拼出如图3所示的大长方形的面积,请根据图形求出这个长方形的长和宽,并对多项式2232m mn n ++进行因式分解;(2)我们可以借助图3再拼出一个更长方形,使该长方形刚好由3张A 种纸片,2张B 种纸片,7张C 种纸片拼成,那么这个长方形的面积可以表示为多项式______,据此可得到该多项式因式分解的结果为______.【答案】(1)长是2m n +,宽是m n +,因式分解结果是()()2m n m n ++(2)22372m mn n ++,()()23m n m n ++【分析】(1)根据A ,B ,C 三种纸片的边长即可求出图2中长方形的长和宽,根据长方形的面积等于长乘宽即可进行因式分解;(2)根据长方形由3张A 种纸片,2张B 种纸片,7张C 种纸片拼成,即可求出这个长方形的面积,然后进行因式分解即可.【详解】(1)解:根据图形可知这个长方形的长是2m n +,宽是m n +,2232(2)()m mn n m n m n \++=++;(2)根据长方形刚好由3张A 种纸片,2张B 种纸片,7张C 种纸片拼成,则这个长方形的面积可以表示为多项式22372m mn n ++,22372(2)(3)m mn n m n m n \++=++,故答案为:22372m mn n ++,(2)(3)m n m n ++.【点睛】本题主要考查了因式分解的应用,多项式乘多项式,利用数形结合思想与长方形的面积解答是解题的关键.。
因式分解复习课
因式分解:把一个多项式化成几个整式的积的形式,是一种是式子变形,要
求对提公因式法与公式法熟练掌握
一、提公因式法:
多项式中的公因式:数字部分找最大公约数,字母部分找相同的字母和最低次幂
例题1 c ab b a 3
23128+ )(3)(2c b c b a +-+ )(3)(2y z b z y a ---
练习1 mn n m 282+ 22912y x xyz - )7(3)7(42+-+x x a
二、公式法:
回忆乘法公式:(1)平方差公式:=-+))((b a b a
(2)完全平方公式:=+2)(b a =-2)(b a
乘法公式反过来:=-22b a =++222b ab a =+-2
22b ab a
★基础练习:(1) =32 =23 =-3)3( =-2)4( =-3)2(a (2) ( )²=29x ( )²=4
4a
(3)=+2)(y x =+2)1(a =+2)32(b a =-+)4)(4(x x =-+))((a b b a =-2)12(a =-2)(y x =-22)2(y x
(4) ( )+2ab+( )=( )² x 2+( )+=( )2
2+( )+29
16y =( )2 a 2-14a+( )=( )2
36 - ( )+36b 2=( )2 (x-y )2+16(x-y)+( )=[ ]2
例题2 942-x 22)()(q x p x +-+ 44y x - ab b a -3
例题3 924162
++x x 2244y xy x -+- 22363ay axy ax ++
练习2 2225
1b a -
y y x 42- 164+-a 2361b - 22)2()2(y x y x +-+
122++a a 1442+-x x 22363y xy x -+- 4
12+
+y y 224)(4)(m n m m n m ++-+
三、巩固练习
1、填空题
(1)如果(-1-b )· M = b 2 - 1,则M =_______. (2)若x 2+ax +b 可以分解成(x +1)(x -2),则a =_______,b =_______.
(3)若9x 2+2(m -4)x +16是一个完全平方式,则m 的值为_______.
(4)分解因式a 2(b -c )-b +c =_______.
(5)分解因式xy -2y -2+x =_______.
(6)在实数范围内分解因式x 3-4x =______
2、把下列各式分解因式
4x (a -b )+(b 2-a 2) (a 2+b 2)2-4a 2b 2 x 4+2x 2-3 (x +y )2-3(x +y )+2
;823x x - .9622224y y x y x +- ;6363223abc c a b a a --+ ().4222222a c b c b -+-
3.解答题
(1)已知108,1==+ab b a ,求22ab b a +的值
(2)已知3,5==+ab b a ,则代数式=++32232ab b a b a
(3)若一个长方形的面积是x x x ++232(x >0),且一边长为x+1,求另一边长为多少。