微积分8习题
- 格式:doc
- 大小:127.50 KB
- 文档页数:2
习题1—21.确定下列函数的定义域:(1)912-=x y ;(2)x y a arcsin log =;(3)xy πsin 2=; (4))32(log 213-+-=x x y a ;(5))4(log 21arccos 2x x y a -+-= 2.求函数⎪⎩⎪⎨⎧=≠=)0(0)0(1sin x x xy的定义域和值域。
3.下列各题中,函数)(x f 和)(x g 是否相同?(1)2)(,)(x x g x x f ==;(2)2sin 21)(,cos )(2π-==x g x x f ;(3)1)(,11)(2-=+-=x x g x x x f ;(4)0)(,)(x x g xxx f ==。
4.设x x f sin )(=证明:⎪⎭⎫ ⎝⎛+=-+2cos 2sin2)()(x x xx f x x f ∆∆∆ 5.设5)(2++=bx ax x f 且38)()1(+=-+x x f x f ,试确定b a ,的值。
6.下列函数中哪些是偶函数?哪些是奇函数?哪些是既非奇函数又非偶函数?(1))1(22x x y -= (2)323x x y -=; (3)2211x x y +-=; (4))1)(1(+-=x x x y ; (5)1cos sin +-=x x y (6)2xx a a y -+=。
7.设)(x f 为定义在),(∞+-∞上的任意函数,证明:(1))()()(1x f x f x F -+= 偶函数; (2))()()(2x f x f x F --=为奇函数。
8.证明:定义在),(∞+-∞上的任意函数可表示为一个奇函数与一个偶函数的和。
9.设)(x f 定义在),(L L -上的奇函数,若)(x f 在),0(L 上单增,证明:)(x f 在)0,(L -上也单增。
10.下列各函数中哪些是周期函数?对于周期函数,指出其周期: (1))2cos(-=x y (2)x y 4cos =; (3)x y πsin 1+=; (4)x x y cos =; (5)x y 2sin = (6)x x y tan 3sin +=。
微积分习题集带参考答案综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2xC .)2(-x xD .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:xx x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
习题8.11。
指出下列微分方程的阶数,并指出哪些方程是线性微分方程: (1)02)(2=+'-'xy y y y x (2) 02=+'-y y x y x (3)0)(sin 42=+''+'''y x y y x (4)θθ2sin d d =+p p解 (1) 1阶 非线性 (2) 1阶 线性 (3) 3阶 线性 (4) 1阶 线性2.验证下列函数是否是所给微分方程的解 (1) xxy x y y x sin ,cos ==+' (2) 2212,2)1(x C y x xy y x -+==+'- (C 为任意常数) (3) xCe y y y y ==+'-'',02 (C 为任意常数) (4) x xe C eC y y y y 21212121,0)(λλλλλλ+==+'+-'' (C 1 ,C 2为任意常数)(5) C y xy x y x y y x =+--='-22,2)2( (C 为任意常数) (6) )ln(,02)(2xy y y y y y x y x xy =='-'+'+''- 解 (1) 是,左=x x xx x x x xcos sin sin cos 2=+-=右(2) 是,左=x x C x x Cx x 2)12(1)1(222=-++---=右(3) 是,左=02=+-xxxCe Ce Ce =右 (4) 是,左=0)())(()(2121212121221121222211=++++-+x x x x x xe C e C e C e C eC e C λλλλλλλλλλλλλλ =右(5) 是,左==-=---y x yx yx y x 222)2(右(6) 是,左=x xy yx xy y y x xy y x x xy xy xy xy x xy ---+-+----2)()(22)(22332=0)())(2()()(222222232=---+-+---x xy x xy y y x xy xy x xy xy xy xy = 右3.求下列微分方程的解(1) 2d d =x y; (2) x xy cos d d 22=; (3) 0d )1(d )1(=--+y y x y (4) yx xy y )1()1(22++=' 解 (1)C x y x y +==⎰⎰2,d 2d(2) 1sin ,d cos d C x y x x x y +='=''⎰⎰211cos ,d )(sin d Cx C x y x C x x y ++-=+='⎰⎰(3)⎰⎰=+-x y y yd d 11⎰⎰=+++-x y y y d d 12)1(解得⎰⎰⎰=++-x y yy d d 12d 即 C x y y +=++-|1|ln 2(4)⎰⎰+=+dx x xdy y y )1(122解得 2122)1ln()1ln(C x y ++=+整理得 22211C x y =++4。
电子科技大学期末微积分一、选择题(每题2分) 1、设x 定义域为(1,2),则lg x 的定义域为()A 、(0,lg2)B 、(0,lg2C 、(10,100)D 、(1,2)2、x=-1是函数x =221xx x x的()A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、不是间断点3、试求024lim x x x等于()A 、14B 、0 C、1 D、4、若1y x x y,求y 等于()A 、22x y yx B 、22y x yxC 、22y x xyD 、22x y xy5、曲线221xy x的渐近线条数为()A 、0 B 、1 C 、2 D 、36、下列函数中,那个不是映射()A 、2y x (,)xR y R B 、221y xC 、2yx D 、ln yx (0)x二、填空题(每题2分)1、211xy=的反函数为__________2、、2(1))lim ()1xn xf x f x nx 设(,则的间断点为__________ 3、21lim51xxbx ax已知常数 a 、b,,则此函数的最大值为__________4、263y x k y x k 已知直线是的切线,则__________5、ln 2111x yyx 求曲线,在点(,)的法线方程是__________三、判断题(每题2分)1、221xyx函数是有界函数 ( )2、有界函数是收敛数列的充分不必要条件 ( )3、lim若,就说是比低阶的无穷小 ( )4、可导函数的极值点未必是它的驻点 ( )5、曲线上凹弧与凸弧的分界点称为拐点 ( )四、计算题(每题6分)1、1sinxy x求函数的导数2、21()arctan ln(12f x x xx dy 已知),求3、2326xxyyy x y已知,确定是的函数,求4、20tan sin lim sin x x xx x 求5、31)dx x x计算(6、21lim(cos )xxx 计算五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100R x x x (,总成本函数为2()20050C x xx ,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分)2、描绘函数21y x x的图形(12分)六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()xx f x A f Ax则2、证明方程10,1xxe 在区间()内有且仅有一个实数一、选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x2、6,7ab3、184、35、20xy 三、判断题1、√2、×3、√4、×5、×四、计算题1、1sin1sin1sinln 1sinln 22))1111cos()ln sin 1111(cos ln sin)xxx xxxy x e ex x xx xxxxxx x((2、22()112(arctan )121arctan dy f x dxx x xdxxxxdx3、解:2222)2)222302323(23)(23(22)(26)(23x y xy y yx y y x yy x yx y yy yx y4、解:2223000tan sin ,1cos 21tan (1cos )12lim lim sin 2x x xx x x x x x xx x x x x Q :::当时,原式=5、解:665232222266,61)61116116(1)166arctan 66arctanx xtdx tt tt t ttt t t Cx x C令t=原式(6、解:221ln cos 01lim ln cos 2212lim1limln cos ln cos lim1(sin )cos lim 2tan 1lim22xxxxxxxxxx eexxx x x xx x xe原式其中:原式五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x 222()()()100(20050)2(50)200()45050()0,,()4(50)41(502)410250225L x R x C x ax x xxx axxa x L x x a aL x xL x a a axT a Ta Ta令得此时取得最大值税收T=令得当时,T 取得最大值2、解:23300,121022201D xy x x y x y x yx,间断点为令则令则x(,1)1(1,0)310,231231(,)2y 0yy↘拐点↘无定义↘极值点↗渐进线:32lim lim 001lim xxxyy yx y y xy xx无水平渐近线是的铅直渐近线无斜渐近线图象六、证明题1、证明:lim ()0,0()11101()1lim ()xxf x A Mx M f x A xMM M xf A xf AxQ 当时,有取=,则当0时,有即2、证明:()1()0,1(0)10,(1)100,1()0,1()(1)0,(0,1)()0,110,1xxxf x xef x f f e f ef x x exf x xeQ Q 令在()上连续由零点定理:至少存在一个(),使得即又则在上单调递增方程在()内有且仅有一个实根欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
微积分第八章课后习题答案习题8-11.1一阶;2二阶;3一阶;4三阶;5三阶;6一阶;7二阶;8一阶;2.1、2、3、4、5都是微分方程的通解;3.122y x =+.4.将所给函数及所给函数的导数代人原方程解得:21()(1)2u x x dx x x C =+=++⎰.习题8-21.1原式化为:ln dyx y y dx =分离变量得:11ln dy dx y y x = 两边积分得:11ln dy dx y y x=⎰⎰ 计算得:()11ln ln d y dx y x=⎰⎰ 即:()1ln ln ln y x C =+ 整理:1ln y C x =所以:原微分方程的通解为:Cx y e =; 2原式化为:()()2211y x dy x y dx -=-- 分离变量得:()()2211y xdy dx y x -=-- 两边积分得:()()2211y xdy dx y x -=--⎰⎰ 计算得:()()()()22221111112211d y d x y x -=----⎰⎰ 即:()()221ln 1ln 1y x C -=--+ 整理:22(1)(1)y x C --=所以:原微分方程的通解为:22(1)(1)y x C --=;3xydx =-分离变量得:1dy y =两边积分得:1dy y =⎰计算得:()21ln 12y x =-即:1ln y C =整理:y =所以:原微分方程的通解为:y =41y e Cx -=-;5sin 1y C x =-; 61010x y C -+=;722ln 22arctan y y x x C -=-+; 8当sin02y ≠时,通解为ln |tan |2sin42y y C =-;当sin 02y=时,特解为2(0,1,2,)y k k π==±±;9222ln x y x C +-=; 1022ln ln x y C +=;2.1tan 2x y e=;2(1)sec x e y +=;32(1)22y x e y +-=;41ln |1|1a x a y=--+;524x y =;6323223235y y x x +--=;7sin y x =;8cos 0x y -=;3.12y Cx =;21Cx y xe +=;3sin ln ||yx C x=+;4ln |ln |y x C x =--;5arctany xxy Ce-=;6ln1yCx x=+;722(2ln ||)y x x C =+;8332x y Cx -=;4.1ln(1ln )y x x =--;222(ln 2)y x x =+;322tan(ln )4y x x π=+;4222ln y x x =;5y x =;6222(ln 2)y x x =+; 5.31()2x xϕ=-; 习题8-31.12x x y Ce e =-;2()n x y x e C =+;3sin ()x y e x C -=+;42(1)()y x x C =++;52sin ()y x x C =+;6()xy e x C -=+;722y x Cx =-+;82212x x y Ce e--=-;932433(1)x Cy x +=+;101(1)y C x =++;2.132(4)3xy e -=-;2x e y x =;31cos x y x π--=;4cos x y x=;5(1)x y e x =+;62ln 2y x x =-+;7sin 2sin 1x y e x -=+-;82sin 11x y x -=-; 3.155352y Cx x -=+;24414x y x Ce --=-++;32133ln |1|(ln |3|)2x C C C y++==;433(2ln 1)4C y x x x -=--或323(2ln 1)4xy x x C -+-=;51233317y Cx x -=-或123337y Cx x -=-;64414x y Ce x --=-+;习题8-41.112(2)x y x e C x C =-++;212ln |cos()|y x C C =-++;321212x y C e x x C =--+;41221(0)C x y C e C =+≠;541211cos3129y x x C x C =-++;64321211432C y x x x C =+-+;712()x y C x e C -=-+;812C x y C e =;2.1y =21ln(1)y ax a =-+;3lnsec y x =;441(1)2y x =+;5ln()ln 2x x y e e -=+-;61122x x y e e -=-;731cos 16y x x x =-++;821122y x =-;习题8-51.12312xxy C eC e--=+;23412()xy C C x e=+;312cos sin y C x C x=+;4412(cos3sin 3)xy e C x C x -=+;55212()x y C C x e =+;6212(cos sin )x y e C x C x =+;72512x xy C e C e -=+;8212()xy C C x e =+;9212(cos3sin 3)x y e C x C x =+;1012y C C =+;2.12(2)x y x e -=+;223sin 5x y e x -=;3342x x y e e =+;4sin x y e x =;51cos33x y e x =-;61cos sin y x x πππ=+;3.'''20y y y -+=;4. '''320y y y -+=;5.1*01y b x b =+;2*201y b x b x =+;3*0x y b e =;4*2012()x y b x b x b e =++;5*01cos 2sin 2y b x b x =+;6*01(cos sin )y x b x b x =+;6.132121123x y C C e x x -=++-;2121(cos sin )2x y C C e x x =++-;32212117()224x y e C x C x x x -=++--; 4122cos sin 1xe y C ax C ax a =+++;5312113cos sin ()1050x y C x C x x e =++-; 631234()(cos sin )2525x x y e C C x e x x =++-;72121(cos sin )(1)2x y e C x C x x =+++;83212xy C e C x =++;921232x x x y C e C e e -=++;1022212()224x x y C C x e x x e =++++;7.1275522x x y e e =-++;2(1)x x x y e e x x e -=-+-;3211(cos sin )sin 22x y e x x e x π=-+;4311(37cos 429sin 4)(5sin 14cos )102102x y x x e x x =-++; 511cos sin sin 233y x x x =--+;64115516164x y e x =+-;习题8-61.1三阶;2六阶;2.略;3.12t t y C =;2(1)t t y C =-;321122t y C t t =+-;42111()623t y C t t t =+-+;51(1)23t t t y C =-+;61222t t t y C t =+;4.123t y t =+;213()2t t y =-;3111()442t t y =+-;411(2)224t t t y =-+; 5.11234t t t y C C =+;21211(()22t tt y C C =+;312()3t t y C C t =+; 4122(cos sin )22t t y C t C t ππ=+;512(1)4t t t y C C =-+; 6122(cos sin )33t t y C t C t ππ=+;6.11[1(3)]2t t y =-+-;2sin3t t y t π=;32cos4t t y t π=⋅;习题8-7 略 总复习题八1.1三;2'''560y y y -+=;32129t t t y y y +++-=;2.1C ;2B ;3D ;4A ;5D;3.略;4.1221(1)y C x +=-;2(1)(1)xye e C +-=;3ln[(2)]02xC y x y x++=+;42xy ye x C +=;5ln Cy ax x=+;622124ln 39C x x x y x =--或23222(ln )33x C x x y =-+;332x xy C =++;8222arctanyx y C x+-=;92y Cx =;1022xy y C -=;5.11x e y +=或(1)sec x e y +=;2220x y x y +--=;32225x y +=;42(12ln )0x y y +-=;5cos 15sin x e y x -=或cos sin 51xy x e +=;62(1)x x x x e e e y e x x-==-; 6.()(1)x y x e x =+;7.1(ln ln )y x x e -=+;8.132212[)23x C C C =±-;22x C =±+;35322121373525x y C C ex x x -=++-+;421213(1)2x x xy C e C e x x e ---=++-;5121(cos 2sin 2)cos 24x x y e C x C x xe x=+-;61211cos 2210x x y C e C e x-=+-+;72(cos3sin 3)xy eA xB x -=+;8212x x x y C e C e e -=++;9.14x x y e e -=-;22sin 3x y e x =;32(73)x y x e -=-;42arctan x y e =;10.(cos sin )()2xx x e x ϕ++=;11.121t y t ∆=+;221t y t ∆=+;312cos ()sin 22t ay a t ∆=+⋅;434t y t ∆=; 12.1(2)ty C =-;221(3)()2255t t y C t =-+-+;312(3)t y C C =-+;412213(2)()32515t t t y C C t t =+-+-+⋅; 13.112(1)3t t t y A =⋅+⋅-,152(1)33t t t y =⋅+⋅-;2174()()22t t t y A B =+⋅+⋅-,31174()()2222t t t y =+⋅+⋅-;。
微积分课后题答案习题详解IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!n n =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在.(1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。
微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
(本科)《微积分》第八章 练习
一、填空题
1.函数11122--
-=y x z 的定义域=D 2.设22),(y x y x y x f +-+=,则=)4,3('x f
3.已知22),(y x y x xy f +=-,则=∂∂+∂∂y
y x f x y x f ),(),(
4.设),32(xy e y x f z +=,且),(v u f 可微,则=dz
5.由方程z
x y z =ln
确定隐函数()y x f z ,=,则=dz 二、单项选择题
1.平面区域}12|),{(22<+<+=y x y x y x D 且是 A .有界闭区域 B .无界闭区域 C .有界开区域 D .无界开区域
2.如果=),('00y x f x 0),('00=y x f y ,则二元函数),(y x f z =在点),(00y x 处
A .一定连续
B .一定偏导数存在
C .一定可微
D .一定有极值
3.设),(00y x 是二元函数),(y x f z =的驻点且有0),("00≠=A y x f xx ,B y x f xy =),("00,C y x f yy =),("00,若02<-AC B ,则),(00y x f 一定
A .是极大值
B .是极小值
C .不是极值
D .是极值
4.对于二元函数xy z =,原点)0,0(
A .是驻点但非极值点
B . 是驻点且为极小值点
C .是驻点且为极大值点
D .不是驻点
5.设函数)()(y x f y x f z -++=,且)(u f 可微,则
=∂∂+∂∂y
z x z A .)(')('y x f y x f -++ B .)(')('y x f y x f --+
C .)('2y x f +
D .)('2y x f -
三、计算题
1.设v u z ln 2=,y
x u =,y x v 23-=,求:y z x z ∂∂∂∂, 2.设v u e z 2-=,x u sin =,2x v =,求dx
dz 3.设)arctan(xy z =,x e y =,求dx
dz 4.设022=-++xyz z y x ,求y z x z ∂∂∂∂, 5.设)(sin 2
by ax z ++=,求22222,,y
z y x z x z ∂∂∂∂∂∂∂ 6.求二元函数y
x xy z 5050++=(0>x ,0>y )的极值。
四、应用题 1.某公司下属甲、乙两厂生产同一种产品,产量分别为y x ,时两厂的成本函数分别为
()62321++=x x x C ,()42222++=y y y C
该产品的价格函数为()()y x y x P +-=674,,试求甲、乙两厂的产量分别为多少时,该公司的利润最大,并求最大利润。
2.为销售产品需作两种方式的广告,设该两种广告费分别为1x 和2x ,其销售金额y 与1x ,
2x 的函数关系为2
211101005200x x x x y +++=。
若销售产品所得的利润是销售金额的五分之一减去总的广告费,计划两种广告费共25(千元)。
应怎样分配两种方式的广告费使利润最大,最大利润为多少?
五、证明题 设)(y xF xy z ++=,且)(u F 可微,求证:xy z y
z y x z x +=∂∂+∂∂。