9.2.1用直角坐标计算二重积分
- 格式:ppt
- 大小:981.50 KB
- 文档页数:30
直角坐标系下二重积分的计算二重积分是数学中的一种重要的积分形式,常用于计算平面区域上的物理量的总量。
在直角坐标系下,二重积分的计算可以通过将被积函数表示为被积函数关于自变量的函数进行积分的累次积分方式来进行。
设在平面上有一个闭合区域D,我们要计算函数f(x,y)在该区域上的积分,即要计算二重积分∬Df(x,y)dxdy。
二重积分的计算可以通过转化为极坐标下的积分来简化。
设在直角坐标系下,点(x,y)的极坐标为(r,θ),则x=r*cosθ,y=r*sinθ。
对于被积函数f(x,y),若能将其表示为关于极坐标的函数f(r,θ)时,就可以方便地进行极坐标下的积分计算。
此时二重积分可以写为∬Df(r,θ)rdrdθ。
要在直角坐标系下计算二重积分,有两种常用的方法:直接法和间接法。
一、直接法:假设被积函数为f(x,y),而积分区域D的边界方程为g(x,y)=0(边界方程可以是函数表达式或者隐函数表达式),那么二重积分可以按照以下步骤进行计算:1.求出区域D的边界方程g(x,y)=0,并确定积分区域D的内部。
2.将被积函数f(x,y)表示为关于x和y的函数。
3.对于区域D内部的任意一点(x,y),可以用参数方程表示为x=x(t),y=y(t)(通常情况下选取参数t为角度θ,即x=r*cosθ,y=r*sinθ)。
4.计算被积函数在参数方程的变换下的雅可比行列式,即计算J =dx/dt * dy/dt。
根据换元公式,二重积分可以转化为参数方程下的积分,如下所示:∬Df(x,y)dxdy = ∫∫f(x(t),y(t))*Jdtdt。
5.计算在变换后的区域D'上的二重积分:∬D'f(x(t),y(t))Jdtdt。
二、间接法:假设被积函数为f(x,y),而积分区域D的边界方程为g(x,y)=0(边界方程可以是函数表达式或者隐函数表达式),那么二重积分可以按照以下步骤进行计算:1.求出区域D的边界方程g(x,y)=0,并确定积分区域D的内部。
直角坐标系下二重积分的计算二重积分是一个非常重要的数学概念,在多种实际的问题中都得到了广泛应用。
通过对直角坐标系下二重积分的计算,可以深入地理解这个概念的含义。
在本篇文章中,我们将对直角坐标系下二重积分的计算进行详细的讲解。
一、二重积分的定义在直角坐标系下,二重积分可以定义为:如果在平面上有一个区域D,在D中每一点(x,y)都有一个实数f(x,y),那么二重积分可以表示为:∬Df(x,y)dxdy其中,dxdy是对x和y的区域积分。
从数学上来讲,二重积分可以看做是对一个多元函数在一个二维区域上的积分。
在物理学、工程学和经济学等领域中,二重积分可以用来计算物体的质量、电荷或利润等量。
二、二重积分的计算接下来,我们将具体介绍如何计算直角坐标系下的二重积分。
1、以矩形为例当区域D为矩形时,可以使用以下公式进行求解:∬Df(x,y)dxdy=∫ab[∫cd f(x,y)dy]dx其中,a、b、c和d是矩形的四个顶点。
从右到左积分是对x的积分,从下到上积分是对y的积分。
这个公式建立在f(x,y)在矩形D内是连续函数的条件下。
如果f(x,y)不连续,那么需要将图形分割成多个子区域,再对每个子区域使用上述公式求解。
如果积分上下限为定值,则直接将定值带入公式中进行计算。
2、以圆形为例当区域D为圆形时,可以使用以下公式进行求解:∬Df(x,y)dxdy=∫0R[∫0 2πf(rcosθ,rsinθ)rdθ]dr其中,R是圆的半径,r是极径。
θ是极角,取值从0到2π。
这个公式建立在f(x,y)在圆形D内是连续函数的条件下。
如果不连续,需要将圆形分割成多个区域,再对每个区域使用上述公式求解。
3、以三角形为例当区域D为三角形时,可以使用以下公式进行求解:∬Df(x,y)dxdy=∫a b[∫c(x)(d(x)−c(x))/b a f(x,y)dy]dx 其中,a和b是三角形底边的两个端点。
c(x)是左侧斜线的端点函数,d(x)是右侧斜线的端点函数。
二重积分的计算方法例题及解析一、利用直角坐标计算二重积分1. 例题- 计算∬_D(x + y)dσ,其中D是由直线y = x,y = x^2所围成的闭区域。
2. 解析- (1)首先确定积分区域D的范围:- 联立方程<=ft{begin{array}{l}y = x y = x^2end{array}right.,- 解得<=ft{begin{array}{l}x = 0 y = 0end{array}right.和<=ft{begin{array}{l}x = 1 y = 1end{array}right.。
- 所以在x的范围是0≤slant x≤slant1,对于每一个x,y的范围是x^2≤slant y≤slant x。
- (2)然后将二重积分化为累次积分:- ∬_D(x + y)dσ=∫_0^1dx∫_x^2^x(x + y)dy。
- (3)先计算内层积分:- ∫_x^2^x(x + y)dy=∫_x^2^xxdy+∫_x^2^xydy。
- ∫_x^2^xxdy=x<=ft(y)<=ft.rve rt_x^2^x=x(x - x^2)=x^2-x^3。
- ∫_x^2^xydy=(1)/(2)y^2<=ft.rvert_x^2^x=(1)/(2)(x^2-x^4)。
- 所以∫_x^2^x(x + y)dy=x^2-x^3+(1)/(2)(x^2-x^4)=(3)/(2)x^2-x^3-(1)/(2)x^4。
- (4)再计算外层积分:- ∫_0^1((3)/(2)x^2-x^3-(1)/(2)x^4)dx=(3)/(2)×(1)/(3)x^3-(1)/(4)x^4-(1)/(2)×(1)/(5)x^5<=ft.rvert_0^1。
- =(1)/(2)-(1)/(4)-(1)/(10)=(10 - 5 - 2)/(20)=(3)/(20)。
直角坐标系下二重积分的计算在直角坐标系下,二重积分是对一个平面区域上的函数进行积分。
它的计算可以通过几何方法或者代数方法来进行,下面我们将介绍二重积分的计算方法以及一些相关的概念和定理。
一、二重积分的概念1.二重积分的定义设函数f(x, y)在平面区域D上有界,D在xOy平面上的投影为Ω,若Ω上有限个点构成的网格P={ (x1,y1), (x2,y2), ..., (xn,yn) },其中每个小区域ΔS1,ΔS2,...,ΔSn(ΔSk的形状和大小可以不一样),则每个ΔS_k上取点(xi_k)Σf(xi_k, yi_k)ΔS_k,称为这些和的极限Σf(xi_k, yi_k)ΔS_k,当格数无穷,网格直径趋于0时,如果此极限存在,则称此极限为平面区域D上函数f(x, y)的二重积分,记为∬D f(x, y)dxdy。
2.二重积分的几何意义从几何意义上理解,二重积分可以表示在平面区域D上函数f(x, y)的值在x轴与y轴所确定的平面区域上的总体积。
通过对平面区域上的小区域求和得到总体积。
3.二重积分的代数意义从代数意义上理解,二重积分可以将一个平面区域上的函数表示为两个单变量函数的积分,即先对y进行积分,再对x进行积分。
这种方法可以简化对复杂函数的积分运算。
二、计算二重积分的方法1.直角坐标系下的二重积分计算在直角坐标系下,二重积分的计算可以通过对x或y进行积分,然后再对另一个变量进行积分来进行。
具体而言,对于函数f(x, y),可以先对y进行积分,再对x进行积分,或者先对x进行积分,再对y 进行积分。
这种计算方法又称为换序积分。
2.计算中间量的选择在进行二重积分计算时,为了简化计算,可以选择合适的中间量来进行变量替换。
例如,可以选择极坐标中的r和θ来替代x和y,从而简化计算过程。
3.区域的划分在计算二重积分时,需要将平面区域D划分为若干小区域,然后对每个小区域进行积分。
可以选择直线或者曲线来进行划分,也可以选择矩形或者圆形等形状的小区域来进行划分。