2020届福建省厦门双十中学2017级高三上学期开学考试数学(理)试卷及解析
- 格式:doc
- 大小:2.03 MB
- 文档页数:19
绝密★启用前福建省厦门市双十中学2020届高三年级上学期暑假第一次返校考试数学(理)试题一、选择题(本小题共12小题,每小题4分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R ,集合A={5,4,3,2,1},集合B={2|≥x x },下图中阴影部分所表示的集合为A. {2,1,0}B.{2,1}C.{1}D.{1,0}2.复数ii i z +-=122,在复平面上对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限3.若),0(,231cos sin πααα∈-=+,则=αtan A. 3 B. 3- C. 33 D. 33- 4.己知命题R x p ∈∃:,使得2<1xx + 2,命题0>1,:2++∈∀x x R x q ,下列命题为真的是 A. q p ∧ B. q p ∧⌝)( C. )(q p ⌝∧ D. )()(q p ⌝∧⌝5. 函数)1ln(sin 2)(x x x f +-=的部分图像大致是6.在△ABC 中,045=C ,则=-+B A B A sin sin 2sin sin 22 7.已知,是平面内两个互相垂直的单位向量,若向量 满足0)()(=-⋅-,则||的最大值是A.1B. 22C.2D.2 8.已知A, B,C,D 是同一球面上的四个点,其中△ABC 是正角形,AD 丄平面ABC, AD=2AB=6,则该球的表面积为A. π16B. π24C. π332D. π489.在二项式n xx )3(+的展开式中,各项系数之和为M,各项二项式系数之和为N,且M+N=72,则展开式中常数项的值为A.18B.12C. 9D. 610. 已知函数)0>(cos sin )(ωωωx x x f +=,如果存在实数1x ,使得对任意的实数x ,都有)2012()()(11+≤≤x f x f x f 成立,则ω的最小值为A. 20121B. 2012πC. 40241D. 4024π 11.设21,A A 为椭圆的)0>b 0,>(12222a by a x =+左、右顶点,若在椭圆上存在异于21,A A 的点P,使得02=⋅,其中O 为坐标原点,则椭圆的离心率e 的取值范围是A. 23-B.-1C.0D.1 12.若不等式b ax x x +≤+-+22)1ln(对-1>x ∀恒成立,则b +a 取最小值时对应的a 的值A. 23-B.-1C.0D.1 二、填空题:本大题共4小题,毎小题4分。
2020届福建省厦门市双十中学高三上学期期中数学(理)试题一、单选题 1.已知集合则( )A .B .C .D .【答案】A 【解析】因为,,所以故选A.【考点】本题主要考查不等式基础知识及集合的交集运算. 2.已知11abi i=-+,其中,a b 是实数,i 是虚数单位,则||a bi -=( ) A .3 B .2 C .5 D .5 【答案】 C【解析】试题分析:由题;11abi i=-+,则(1)1(1)(1)2a i a ai bi i i --==-+-。
即;2,1a b == 所以;|||2|5a bi i -=-= 【考点】复数的运算及复数的模. 3.已知等差数列的前n 项和为,若,则等于A .18B .36C .54D .72 【答案】D【解析】利用等差数列的性质:下标之和相等的两项的和相等,由,结合等差数列的求和公式可求得. 【详解】 数列为等差数列,,由等差数列的性质得: ,又其前项和为,,故选D .【点睛】本题主要考查等差数列的性质以及等差数列的求和公式的应用,属于中档题. 解答与等差数列有关的问题时,要注意应用等差数列的性质()与前 项和的关系.4.设,a b 是互不垂直的两条异面直线,则下列命题成立的是( ) A .存在唯一直线l ,使得l a ⊥,且l b ⊥ B .存在唯一直线l ,使得l a //,且l b ⊥ C .存在唯一平面α,使得a α⊂,且//b α D .存在唯一平面α,使得a α⊂,且b α⊥ 【答案】C【解析】【详解】试题分析:过直线a 上任意一点P ,作b 的平行线c ,由,a c 相交确定一个平面α.直线l 只需垂直于平面α,就会与b 垂直,这样的直线有无数条,故A 错误.因为,a b 不一定垂直,根据平面两条直线所成角的定义,排除B.根据线面垂直的概念,排除D.所以选C. 【考点】空间点线面位置关系. 5.设02x π<<,则“2sin 1x x <”是“sin 1x x <”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【解析】由x 的范围得到0sin 1x <<,则由sin 1x x <能得到2sin sin 1x x x x <<,反之不成立,从而可求得结果. 【详解】 02x <<π,∴ 0sin 1x <<,故2sin sin x x x x <,若“sin 1x x <”,则“2sin 1x x <”, 若“2sin 1x x <”,则11sin ,1sin sin x x x x,此时sin 1x x <可能不成立, 例如,sin 1,sin 12x x x x π→→>,由此可知,“2sin 1x x <”是“sin 1x x <”的必要不充分条件,故选B. 【点睛】判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.6.设点M 是线段BC 的中点,点A 在直线BC 外,216,||||BC AB AC AB AC =+=-,则AM =( ) A .8 B .4C .2D .1【答案】C【解析】由||||AB AC AB AC +=-可得0AB AC ⋅=,AB AC ⊥,结合2||16BC =即可得结果. 【详解】因为2||16BC =,所以||4BC =,又因为22||||||||0AB AC AB AC AB AC AB AC AB AC +=-⇒+=-⇒⋅=, 所以AB AC ⊥,又因为M 是BC 的中点, 所以1||||22AM BC ==, 故选C. 【点睛】本题主要考查平面向量的数量积的运算法则,属于中档题. 向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=;二是向量的平方等于向量模的平方22a a=.7︒=()A .1 BCD .2【答案】C【解析】根据二倍角公式以及两角差的余弦公式进行化简即可. 【详解】原式22cos 20sin 20cos 25(cos 20sin 20)︒-︒=︒︒-︒02020cos 20sin 20-2522==cos 25cos 25cos 25︒+︒︒+︒︒=︒︒︒)(45)25=cos 25︒=︒故选C. 【点睛】这个题目考查了二倍角公式的应用,涉及两角差的余弦公式以及特殊角的三角函数值的应用属于基础题.8.已知函数f (x )=|lgx|.若0<a<b,且f (a )=f (b ),则a+2b 的取值范围是( ) A.)+∞ B.)+∞C .(3,)+∞D .[3,)+∞【答案】C【解析】试题分析:0,()()a b f a f b <<=,01,a b ∴<<<所以()lg ,()lgb f a a lga f b lgb ==-==,所以由()()f a f b =得lg lg a b -=,即lg lg lg()0+==a b ab ,所以1ab =,1b a =,令2()2h a a b a a=+=+,因为函数()h a 在区间(0,1)上是减函数,故()(1)3h a h >=,故选C 。
2024届厦门双十中学高三数学上学期期初考试卷2023.9(试卷满分150分,考试时间120分钟)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.全集U =R ,能表示集合{}2,1,0A =--和{}2|20B x x x =--≤关系的Venn 图是()A .B .C .D .2.不等式2210ax x -+>(R a ∈)恒成立的一个充分不必要条件是()A .a ≥1B .a >1C .102a <<D .a >23.已知825,log 3ab ==,则34a b -=()A .25B .5C .259D .534.设()()322f x x a x x =---+是定义在[]2,3b b +上的奇函数,则()f a b +=()A .-1B .0C .1D .-25.已知函数()1,2,x x x a f x x a +≤⎧=⎨>⎩,若()f x 的值域为R ,则实数a 的取值范围是()A .(,0]-∞B .[0,1]C .[0,)+∞D .(,1]-∞6.在三棱锥P -ABC 中,点O 为△ABC 的重心,点D ,E ,F 分别为侧棱PA ,PB ,PC 的中点,若a AF =,b CE = ,c BD = ,则OP =()A .111333a b c++B .111333a b c---C .212333a b c---D .222333a b c++7.已知函数()()22,f x x g x x =-+=,令()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩,则不等式()74h x >的解集是()A .1<2x x -⎧⎨⎩或17<<24x ⎫⎬⎭B .{<1x x -或71<<4x ⎫⎬⎭C .11<<22x x -⎧⎨⎩或7>4x ⎫⎬⎭D .{1<<1x x -或7>4x ⎫⎬⎭8.已知半径为4的球O ,被两个平面截得圆12O O 、,记两圆的公共弦为AB ,且122O O =,若二面角12O AB O --的大小为2π3,则四面体12ABOO 的体积的最大值为()A .83B .429C .829D .439二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.设m ,n 为不同的直线,α,β为不同的平面,则下列结论中正确的是()A .若//m α,//n α,则//m nB .若m α⊥,n α⊥,则//m nC .若//m α,m β⊂,则//αβD .若m α⊥,n β⊥,m n ⊥,则αβ⊥10.已知实数a ,b ,则下面说法正确的是()A .若a b >,则33a ab b>B .若a ,b 均大于0且ln ln b a a b =,则a b >C .若0a >,0b >,2a b +=,则221111a b +++最大值为212+D .若221a b +=,则ab 的取值范围为11,22⎡⎤-⎢⎥⎣⎦11.已知函数()(),f x g x 的定义域为()()()()()()(),21,21,4f x f x g x g x g x f x f x +=++=-+R 为奇函数,则()A .函数()f x 的图象关于()4,0对称B .函数()f x 是周期函数C .()()2100f x f x -++=D .20231()0k f k ==∑12.如图,棱长为2的正四面体ABCD 中,M ,N 分别为棱AD ,BC 的中点,O 为线段MN 的中点,球O 的表面正好经过点M ,则下列结论中正确的是()A .AO ⊥平面BCDB .球O 的体积为2π3C .球O 被平面BCD 截得的截面面积为4π3D .过点O 与直线AB ,CD 所成角均为π3的直线可作4条三、填空题:本题共4小题,每小题5分,共20分.13.圆台的底半径为1和2,母线长为3,则此圆台的体积为.14.正实数,x y 满足142x y +=,且不等式24y x m m +≥-恒成立,则实数m 的取值范围为.15.已知函数()221ax bxf x x +=+在其定义域内为偶函数,且()112f =,则()()()111122022202220212f f f f f f ⎛⎫⎛⎫⎛⎫+++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.16.在OAB 中,2,120OA AB OAB ∠=== ,若空间点P 满足13PAB OAB S S = ,则OP 的最小值为;直线OP 与平面OAB 所成角的正切的最大值是.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.ABC 中,D 是BC 上的点,AD 平分,BAC ABD ∠ 面积是ADC △面积的3倍.(1)求sin sin BC;(2)若21,2AD DC ==,求BD 和AC 的长.18.如图,圆台上底面圆1O 半径为1,下底面圆2O 半径为2,AB 为圆台下底面的一条直径,圆2O 上点C 满足1,AC BC PO =是圆台上底面的一条半径,点,P C 在平面1ABO 的同侧,且1//PO BC .(1)证明:平面PAC ⊥平面ABC ;(2)若圆台的高为2,求直线1AO 与平面PBC 所成角的正弦值.19.设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .20.教育是阻断贫困代际传递的根本之策.补齐贫困地区义务教育发展的短板,让贫困家庭子女都能接受公平而有质量的教育,是夯实脱贫攻坚根基之所在.治贫先治愚,扶贫先扶智.为了解决某贫困地区教师资源匮乏的问题,某市教育局拟从5名优秀教师中抽选人员分批次参与支教活动.支教活动共分3批次进行,每次支教需要同时派送2名教师,且每次派送人员均从这5人中随机抽选.已知这5名优秀教师中,2人有支教经验,3人没有支教经验.(1)求5名优秀教师中的“甲”,在这3批次支教活动中恰有两次被抽选到的概率;(2)求第一次抽取到无支教经验的教师人数X 的分布列;(3)求第二次抽选时,选到没有支教经验的教师的人数最有可能是几人?请说明理由.21.已知椭圆2222:1(0)x y C a b a b+=>>左焦点为F ,离心率为12,以坐标原点O 为圆心,OF 为半径作圆使之与直线20x y -+=相切.(1)求C 的方程;(2)设点()4,0,,P A B 是椭圆上关于x 轴对称的两点,PB 交C 于另一点E ,求AEF △的内切圆半径的范围.22.已知函数()2ln 1,R f x x ax x a a =-++∈,()f x '为()f x 的导函数.(1)讨论()f x '的极值;(2)若存在[2,e]t ∈,使得不等式()0<f t 成立,求a 的取值范围.1.D【分析】化简集合B ,根据两集合的关系,即可得出答案.【详解】由已知,可得{}{}212||20B x x x x x =---≤=≤≤,所以{}1,0A B ⋂=-,根据选项的Venn 图可知选项D 符合.故选:D.2.D【分析】先求得不等式2210ax x -+>(R a ∈)恒成立的充要条件,再找其充分不必要条件.【详解】不等式2210ax x -+>(R a ∈)恒成立,显然0a =不成立,故应满足0Δ440a a >⎧⎨=-<⎩,解得1a >,所以不等式2210ax x -+>(R a ∈)恒成立的充要条件是1a >,A 、C 选项不能推出1a >,B 选项是它的充要条件,2a >可以推出1a >,但反之不成立,故2a >是1a >的充分不必要条件.故选:D 3.C【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.【详解】因为25a=,821log 3log 33b ==,即323b =,所以()()22323232452544392a aa bbb -====.故选:C.4.B【分析】由奇函数的性质可求出,a b 的值,即可求出()f a b +.【详解】因为()()322f x x a x x =---+是定义在[]2,3b b +上的奇函数,所以20230a b b -=⎧⎨++=⎩,解得:21a b =⎧⎨=-⎩,所以()3f x x x =-+,则1a b +=,则()()1110f a b f +==-+=.故选:B.5.B【分析】分别画出分段函数对应的两个函数图象,再对实数a 的取值进行分类讨论即可.【详解】根据题意可得,在同一坐标系下分别画出函数1y x =+和()2x g x =的图象如下图所示:由图可知,当0x =或1x =时,两图象相交,若()f x 的值域是R ,以实数a 为分界点,可进行如下分类讨论:当0a <时,显然两图象之间不连续,即值域不为R ;同理当1a >,值域也不是R ;当01a ≤≤时,两图象相接或者有重合的部分,此时值域是R ;综上可知,实数a 的取值范围是01a ≤≤.故选:B 6.D【分析】根据空间向量的线性运算,结合重心的性质即可求解.【详解】取BC 中点为M ,1,21,212PF PA PC PA CE PE PC PB PC BD PD PB P a AF c A PBb ===-=-=-=-=-=-=三个式子相加可得()()122a b c PA PB PC PA PB PC a b c +=++⇒++=-++-+,又()()22113323OP AP AO PA AM PA AB AC PA PB PA PC PA=-==⨯+=-+- ------()()()111112333333PA PB PA PC PA PA PB PC PA PB PC a b c =-+----=++=+--=-+,故选:D7.C【分析】由()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩可知,()h x 的图像是()f x 与()g x 在同个区间函数值大的那部分图像,由此作出()h x 的图像,结合图像,即可求得()74h x >的解集.【详解】由()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩可知,()h x 的图像是()f x 与()g x 在同个区间函数值大的那部分图像,由此作出()h x 的图像,联立2=+2=y x y x -⎧⎨⎩,解得=2=2x y --⎧⎨⎩或=1=1x y ⎧⎨⎩,故12x =-,21x =,所以()2,2=+2,2<<1,>1x x h x x x x x ≤---⎧⎪⎨⎪⎩,又由()74h x >可知,其解集为()h x 的函数值比74大的那部图像的所在区间,结合图像易得,()74h x >的解集为{34<<x x x x 或}5>x x 联立2=+27=4y x y -⎧⎪⎨⎪⎩,解得1=27=4x y -⎧⎪⎪⎨⎪⎪⎩或1=27=4x y ⎧⎪⎪⎨⎪⎪⎩,故312x =-,412x =,联立=7=4y x y ⎧⎪⎨⎪⎩,解得7=47=4x y ⎧⎪⎪⎨⎪⎪⎩,故574x =,所以()74h x >的解集为11<<22x x -⎧⎨⎩或7>4x ⎫⎬⎭.故选:C..8.C【分析】根据圆的性质及球的截面的性质,利用正弦定理、余弦定理,均值不等式及三棱锥的体积公式求解即可.【详解】设弦AB 的中点为M ,连接12,O M O M ,依题意,可得如下图形,由圆的性质可知12,⊥⊥O M AB O M AB ,则12O MO ∠即为二面角的平面角,故122π3O MO ∠=,四面体12ABOO 的体积为121211sin 362π3MO O V AB S AB O M O M =⋅=⋅⋅⋅ 12312AB O M O M =⋅⋅,其中2221212121243O O O M O M O M O M O M O M=++⋅=≥⋅1243O M O M ⇒⋅≤,当且仅当12233O M O M ==时取等号,由球的截面性质,11OO O M ⊥,22OO O M ⊥,所以12,,,O O O M 四点共圆,则有外接圆直径2423i 23s πn R OM ===,从而2216862221633AB MB OB OM ==-=-=,1222224823339V O M O M ∴=⋅≤⨯=.故选:C 9.BD【分析】根据线线、线面、面面的位置关系,逐一分析各选项即可得答案.【详解】解:对A :若//m α,//n α,则//m n 或m 与n 相交或m 与n 异面,故选项A 错误;对B :若m α⊥,n α⊥,则//m n ,故选项B 正确;对C :若//m α,m β⊂,则//αβ或α与β相交,故选项C 正确;对D :若m α⊥,n β⊥,m n ⊥,则αβ⊥,故选项D 正确.故选:BD.10.ACD【分析】对于A ,分0a b >≥、0a b >>、0a b >>三种情况,结合不等式的性质即可判断;对于B ,令0a b =>可判断;对于C ,由2a b +=可得2242ab ab+=-,从而2221142(1)11(1)4ab a b ab --+=++-+,令1(0)t ab t =-≤,再令()424t m m -=≥,结合基本不等式即可判断;对于D ,由221a b +=可得21ab ≤,求解即可判断.【详解】对于选项A ,若0a b >≥,则3443a a a b b b =>=,若0a b ≥>,则330a a b b ≥>,若0a b >>,则3443a a ab b b =->-=,∴若a b >,都有33a a b b >,故A 正确;对于选项B ,当0a b =>,ln ln b a a b =显然成立,故B 错误;对于选项C ,∵2a b +=,2242ab ab+=-,∴2221142(1)11(1)4ab a b ab --+=++-+,∵2a b +=,212a b ab +⎛⎫∴≤= ⎪⎝⎭,当且仅当1a b ==时,等号成立.令1(0)t ab t =-≤,则2242(1)42(1)44ab t ab t ---=-++,令()424t m m -=≥,则42-=mt ,22424442132483228288t m t m m m m-+==≤=+-+-+-,当且仅当32m m=,即42m =时,等号成立.∴221111a b +++最大值为212+,故C 正确;对于选项D ,∵221a b +=,∴21ab ≤,1122ab -≤≤,则ab 的取值范围为11,22⎡⎤-⎢⎥⎣⎦,故D 正确.故选:ACD .11.ABD【分析】根据函数的对称性可得()f x 的图象关于()4,0对称,结合函数变换可推出函数()f x 是周期为8的函数,结合对称性与周期性逐项判断即可得答案.【详解】因为()4f x +为奇函数,则()()44f x f x +=--+,所以()()8f x f x =--+,则函数()f x 的图象关于()4,0对称,故A 正确;因为()()()21f x f x g x +=+①,()()()21g x g x f x +=-②,则①+②得:()()()()()2112222f x g x g x f x +++==⨯+,即()()2g x f x =+③,②-①得:()()()()()2112222g x f x f x g x +-+=-=⨯+,即()()2f x g x =-+④,由③得()()24g x f x +=+代入④得()()4f x f x =-+,所以()()48f x f x +=-+,则()()8f x f x =+,则函数()f x 是周期为8的函数,故B 正确;由于()f x 的图象关于()4,0对称,()f x 是周期为8的函数,无法确定是否关于点()6,0对称,故C 不正确;将③代入①可得()()()212f x f x f x +=++,所以()()()2213f f f =+,()()()2324f f f =+,()()()2435f f f =+,()()()2546f f f =+,()()()2657f f f =+,()()()2768f f f =+,()()()()()287971f f f f f =+=+,()()()()()()292181082f f f f f f ==+=+,累加得:()()()()()()()()()()2123821238f f f f f f f f ++++=++++ ,故可得()()()()12380f f f f ++++= ,所以20232024202481111()()(2024)()(8253)253()(8)000k k k k f k f k f f k f f k f =====-=-⨯=-=-=∑∑∑∑,故D 正确.故选:ABD.12.ABD【分析】设,E F 分别为,AB CD 的中点,连接,,,,,,ME EN NF MF EF AN DN ,根据线面垂直的判定定理可判断A ;求出球的半径,计算球的体积,进而判断B ;求出球O 被平面BCD 截得的截面圆的半径,可求得截面面积,进而判断C ;通过平移与补形法,通过角平分线的转化寻找平面进而找出直线,从而可判断D.【详解】设,E F 分别为,AB CD 的中点,连接,,,,,,ME EN NF MF EF AN DN ,则11,,,22EM BD NF BD EM BD NF BD ==∥∥,故,EM NF EM NF =∥,则四边形MENF 为平行四边形,故,EF MN 交于一点,且互相平分,即O 点也为EF 的中点,又,AB AC DB DC ==,故,AN BC DN BC ⊥⊥,,,AN DN N AN DN =⊂ 平面AND ,故BC ⊥平面AND ,由于,O MN MN ∈⊂平面AND ,则AO ⊂平面AND ,故BC AO ⊥,结合O 点也为EF 的中点,同理可证DC AO ⊥,,,BC DC C BC DC =⊂ 平面BCD ,故AO ⊥平面BCD ,A 正确;由球O 的表面正好经过点M ,则球O 的半径为OM ,棱长为2的正四面体ABCD 中,3AN DN ==,M 为AD 的中点,则MN AD ⊥,故22312MN ND MD =-=-=,则22OM =,所以球O 的体积为33442π()π()π33322OM ⨯=⨯=,B 正确;由BC ⊥平面AND ,BC ⊂平面BCD ,故平面AND ⊥平面BCD ,平面AND ⋂平面BCD DN =,由于AO ⊥平面BCD ,延长AO 交平面BCD 于G 点,则OG ⊥平面BCD ,垂足G 落在DN 上,且G 为正BCD △的中心,故1333NG ND ==,所以2222236()()236OG ON NG =-=-=,故球O 被平面BCD 截得的截面圆的半径为22263()()263-=,则球O 被平面BCD 截得的截面圆的面积为23ππ()33⨯=,C 错误;由题意得,正四面体可以放入正方体内,如下图所示,将AB 平移至正方体的底面内,过1A FC ∠和1B FD ∠的角平分线作垂直于底面的平面,即平面O P Q ,在平面内一定存在过O 点的两条直线12,l l 使得该直线与直线AB ,CD 所成角均为π3,同理可知,过1B FC ∠和1A FD ∠的角平分线作垂直于底面的平面也存在两条直线满足题意,所以过点O 与直线AB ,CD 所成角均为π3的直线可作4条,D 正确.故选:ABD【点睛】思路点睛:本题考查立体几何的综合问题.要结合图形的特点,作出适合的辅助线,要善于观察图形特点,放入特殊图形中从而快速求解.13.1423π【分析】由圆台的底半径为1和2,母线长为3,求出圆台高为22,由此能求出此圆台体积.【详解】∵圆台的底半径为1和2,母线长为3,∴圆台高h=223(21)--=22,∴此圆台体积V=3π(r 2+R 2+Rr )h=1423π.故答案为1423π.【点睛】本题考查圆台的体积的求法,解题关键点为在轴截面中求出圆台的高,属于基础题.14.[]1,2-【分析】将问题转化为2min ()4y x m m ≥+-,利用基本不等式求出4y x +的最小值,再解一元二次不等式即可.【详解】因为不等式24yx m m +≥-恒成立,所以2min ()34y x m m ≥+-,因为0,0x y >>,且142x y+=,所以11422()()121242488y y x y x y x x x y y x y x+=++=++≥⋅+=,当且仅当28x yy x=,即1,4x y ==时,等号是成立的,所以min ()24y x +=,所以22m m -≤,即(1)(2)0m m +-≤,解得12m -≤≤.故答案为:[]1,2-15.40432【分析】首先根据()f x 为偶函数和()112f =得到()221xf x x =+,再根据()11f x f x ⎛⎫+= ⎪⎝⎭求解即可.【详解】因为()221ax bxf x x +=+的定义域为R ,且为偶函数,所以()()f x f x -=,即222211ax bx ax bxx x -+=++,即0b =.所以()221ax f x x =+.又因为()1122a f ==,即1a =,所以()221x f x x =+.因为()2222222111111111x x x f x f x x x x x ⎛⎫+=+=+= ⎪+++⎝⎭+,所以()()()111122022202220212f f f f f f ⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()111140432022202121202120222021222f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+++++++=+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦故答案为:4043216.23324【分析】根据空间点P 满足的条件可知点P 在以直线AB 为旋转轴,底面圆半径为33的圆柱上,即可求得OP 的最小值;建立空间直角坐标系利用空间向量求得直线OP 与平面OAB 所成角的正弦值的表达式,再利用换元及基本不等式即可求得结果.【详解】过点O 作OD AB ⊥与点D ,过点P 作PC AB ⊥与点C ,如下图所示又2OA AB ==,则3OD =,又13PAB OAB S S = ,则1333PC OD ==,即点P 为空间中到直线AB 的距离为33,所以点P 在以直线AB 为旋转轴,底面圆半径为33的圆柱上,如图所示易知当点P 与点,O D 三点共线时,OP 最小,且最小值为323333-=;以OAB 所在平面为xO z ',建立B xyz -空间直角坐标,如下图所示:则平面OAB 的法向量为()0,1,0n =,不妨设CP 与x 轴正方向夹角为α,则()3,0,3O,33cos ,sin ,33P h αα⎛⎫ ⎪ ⎪⎝⎭,即33cos 3,sin ,333OP h αα⎛⎫=-- ⎪ ⎪⎝⎭,22223310cos 3sin (3)2cos (3)333OP h h ααα⎛⎫⎛⎫=-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭当3h =,且cos 1α=时,OP 最小,即当点P 与点O D 、三点共线时,OP 最小,且最小值为233;记直线OP 与平面OAB 所成角为θ,则23sin 3sin 102cos (3)3OP nOP nh αθα⋅==⋅-+-,因为2(3)0h -≥,所以23sin 31cos sin 106cos 102cos 3ααθαα-≤=--,令53cos ,28t t α=-≤≤,则5cos 3t α-=,则2(5)11169sin 10232t t t t θ--≤=--,而16161610101022t t t t t t ⎛⎫--=-+≤-⋅= ⎪⎝⎭,所以1sin 3θ≤,当且仅当4t =,等号成立,此时12tan 422θ==,故答案为:233;24【点睛】关键点点睛:本题关键在于根据已知条件确定空间中点P 的轨迹,再利用空间向量解决线面角取值范围的问题.17.(1)13(2)322BD =,306AC =【分析】(1)利用三角形面积之间的关系,结合正弦定理可得结果;(2)利用三角形角平分线定理可求得BD ;设AC x =,则3AB x =,由πADB ADC ∠+∠=,知cos cos ADB ADC ∠=-∠,由余弦定理得到cos ADB ∠和cos ADC ∠,建立方程求解即可得AC .【详解】(1)11sin ,sin 22ABD ACD S AB AD BAD S AC AD CAD ∠∠=⋅⋅=⋅⋅ ,3,,3ABD ACD S S BAD CAD AB AC ∠∠==∴= ,由正弦定理可知sin 1.sin 3B AC C AB ==(2)23,2BD AB DC DC AC ===,322BD ∴=.设AC x =,则3AB x =,在ABD △与ACD 中,由余弦定理可知,22221192cos 232x AD BD AB ADB AD BD ∠-+-==⋅,222232cos 22x AD CD AC ADC AD CD ∠-+-==⋅,π,cos cos ,ADB ADC ADB ADC ∠∠∠∠+=∴=- 22113922322x x --∴=-,解得306x =,即306AC =.18.(1)证明见解析(2)23015【分析】(1)取AC 中点M ,四边形12PO O M 为平行四边形,从而得到12//PM O O ,根据12O O ⊥平面ABC 可得PM ⊥平面ABC ,从而得到需求证的面面垂直.(2)建立如图所示的空间直角坐标系,求出1AO及平面PBC 的法向量后可求线面角的正弦值.【详解】(1)取AC 中点M ,由题意,121,22PO BC AB ===,又1//PO BC ,故1111//,22PO BC PO BC =.又2211//,22O M BC O M BC =,故1212//,PO O M PO O M =,所以四边形12PO O M 为平行四边形,则12//PM O O .由12O O ⊥平面ABC ,故PM ⊥平面ABC ,又PM ⊂面PAC ,故平面PAC ⊥平面ABC .(2)以2O 为坐标原点,2221,,O B O C O O的方向为,,x y z 轴的正方向,建立如图所示的空间直角坐标系.则有:()()()()1222,0,0,2,0,0,0,2,0,,,2,0,0,222A BC P O ⎛⎫-- ⎪ ⎪⎝⎭,故()12,0,2.AO =设平面PBC 的法向量(),,n x y z =而()222,2,0,,,222BC CP ⎛⎫=-=-- ⎪ ⎪⎝⎭ ,故220222022n BC x y n CP x y z ⎧⋅=-+=⎪⎨⋅=--+=⎪⎩,令1z =,得()2,2,1.n = 设所求角的大小为θ,则11122230sin cos ,1565AO n AO n AO nθ⋅+====⋅⋅ .所以直线1AO 与平面PBC 所成角的正弦值为23015.19.(1)3n a n =(2)5150d =【分析】(1)根据等差数列的通项公式建立方程求解即可;(2)由{}n b 为等差数列得出1a d =或12a d =,再由等差数列的性质可得50501ab -=,分类讨论即可得解.【详解】(1)21333a a a =+ ,132d a d ∴=+,解得1a d =,32133()6d d S a a =+==∴,又31232612923T b b b d d d d=++=++=,339621S T d d∴+=+=,即22730d d -+=,解得3d =或12d =(舍去),1(1)3n a a n d n ∴=+-⋅=.(2){}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+,2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d =,1d > ,0n a ∴>,又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=,505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去)当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解;当1a d =时,501495051a a d d =+==,解得5150d =.综上,5150d =.20.(1)36125(2)分布列见解析(3)最有可能是1人,理由见解析【分析】(1)由独立重复事件的概率公式求解即可;(2)先写出X 的可能取值,再求出每个值的概率即可求解;(3)设ξ表示第二次抽取到的无支教经验的教师人数可能的取值为0、1、2,分别求出相应的概率,比较()0P ξ=、()1P ξ=、()2P ξ=的大小关系,由此可得出结论.【详解】(1)5名优秀教师中的“甲”在每轮抽取中,被抽取到的概率为25,则三次抽取中,“甲”恰有两次被抽取到的概率为2232336C 55125P ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭;(2)X 表示第一次抽取到的无支教经验的教师人数,X 的可能取值有0,1,2.2225C 1(0)C 10P X ===;112325C C 6(1)C 10P X ===;2325C 3(2)C 10P X ===.所以分布列为:X12P 0.10.60.3(3)设ξ表示第二次抽取到的无支教经验的教师人数,ξ可能的取值有0,1,2,则有:11222222333224222222555555C C C C C C C 37(0)C C C C C C 100P ξ⋅==⋅+⋅+⋅=,11111122112323233241222222555555C C C C C C C C C C 54(1)C C C C C C 100P ξ⋅==⋅+⋅+⋅=,2112223233222222255555C C C C C C 9(2)0C C C C C 100P ξ⋅==⋅+⋅+⋅=,因为(1)(0)(2)P P P ξξξ=>=>=,故第二次抽取到的无支教经验的教师人数最有可能是1人.21.(1)22143x y +=(2)30,4⎛⎫ ⎪⎝⎭.【分析】(1)由题意得22221212c OF c a a b c ⎧===⎪⎪⎪=⎨⎪=+⎪⎪⎩,解方程组可求出,a b ,从而可得椭圆的方程;(2)设AE 的方程为()0x my t m =+≠,代入椭圆方程化简利用根与系数的关系,再由点,,P B E 三点共线且斜率一定存在,可求得1t =,得直线AE 过定点()1,0Q ,且Q 为椭圆右焦点,所求内切圆半径为r ,则12124AQ y y r ⋅-=,化简换元后可求出其范围.【详解】(1)依题意22221212c OF c a a b c ⎧===⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2,3a b ==,所以C 的方程为22143x y +=.(2)因为AE 不与x 轴重合,所以设AE 的方程为()0x my t m =+≠,设点()()()11122,0,,A x y y E x y ≠,则()11,B x y -联立22143x my t x y =+⎧⎪⎨+=⎪⎩,得()2223463120m y mty t +++-=,则()222121222631248340,,3434mt t m t y y y y m m --∆=-+>+==++因为点,,P B E 三点共线且斜率一定存在,所以2112114y y y x x x +-=--,所以()1221124x y x y y y +=+,将1122,x my t x my t =+=+代入化简可得121224y y m y y t +=-,故2264312m mtt t -=--,解得1t =,满足()248330m ∆=+>所以直线AE 过定点()1,0Q ,且Q 为椭圆右焦点设所求内切圆半径为r ,因为1442AEF S a r r =⨯⋅= ,所以()22121212214312444434FQA FQEAEF AQ y y y y y y S S Sm r m ⋅-+-++=====+ 令21(1)u m u =+>,则221m u =-,所以2331313u r u u u==++,因为1u >,对勾函数13y u u=+在()1,+∞上单调递增,所以134u u +>,则304r <<.所以内切圆半径r 的范围为30,4⎛⎫⎪⎝⎭..【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.22.(1)答案见解析(2)2e 1,e 1⎛⎫++∞⎪-⎝⎭【分析】(1)求得()2(1ln )f x x a x '=-+,设2(1ln ())x a g x x -+=,求得2()x ag x x-=',分0a ≤和0a >,两种情况讨论,结合函数的单调性和极值的定义,即可求解;(2)根据题意转化为存在[2,e]t ∈,使得1ln 0at a t t +-+<,构造函数1()ln a h t t a t t+=-+,求得2(1)(1)()t t a h t t +--'=,分12a +≤、21e a <+<和1e a +≥,结合函数()h t 的单调性和极值、最值,即可求解.【详解】(1)由题意,函数2()ln 1,R f x x ax x a a =-++∈,可得函数()f x 的定义域为(0,)+∞,且()2(1ln )f x x a x '=-+,设2(1()()(0,)ln ),x a g x f x x x =-+∈'=+∞,则2()2ax ag x xx-'=-=,①当0a ≤时,可得()0g x '>,所以()g x 在(0,)+∞上单调递增,所以()f x '没有极值;②当0a >时,若0,2a x ⎛⎫∈ ⎪⎝⎭,则()0g x '<,()f x '在0,2a ⎛⎫ ⎪⎝⎭上单调递减,若,2a x ⎛⎫∈+∞ ⎪⎝⎭,则()0g x '>,()f x '在,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,所以()f x '在2a x =处取得极小值,且极小值为ln 22a a f a ⎛⎫'=- ⎪⎝⎭,在(0,)+∞上没有极大值,综上,当0a ≤时,()f x '没有极值;当0a >时,()f x '的极小值为ln 2aa -,无极大值.(2)由题意知,存在[2,e]t ∈,使得2()ln 10f t t at t a =-++<,即存在[2,e]t ∈,使得1ln 0at a t t+-+<,构造函数1()ln a h t t a t t+=-+,则221(1)(1)()1a a t t a h t t t t ++--'=--=,当12a +≤,即1a ≤时,()0h t '≥在[2,e]上恒成立,()h t 单调递增,所以()20h <,可得52ln 21a >-,与1a ≤矛盾,不满足题意;21当21e a <+<,即1e 1a <<-时,若[2,1]t a ∈+,则()0h t '≤,()h t 单调递减,若[1,e]t a ∈+,则()0h t '≥,()h t 单调递增,此时min ()(1)h t h a =+,由min ()(1)0h t h a =+<,可得(1)ln(1)10a a a +-++<,所以2ln(1)a a a +<+,因为21e a <+<,所以不等式2ln(1)a a a +<+不成立;当1e a +≥,即e 1a ≥-时,()0h t '≤在[2,e]t ∈上恒成立,()h t 单调递减,所以(e)0h <,可得2e 1e 1a +>-,满足题意.综上,实数a 的取值范围为2e 1,e 1⎛⎫++∞ ⎪-⎝⎭.【点睛】方法技巧:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.。
2016-2017学年福建省厦门一中高三(上)开学数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.若集合A={x|2x>x2},B={y|y=2x,x∈A},则集合A∩B等于()A.(0,2)B.(0,4)C.(1,2)D.(0,+∞)2.已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a等于()A.B.C.1 D.23.已知实数a,b,c,d成等比数列,且曲线y=3x﹣x3的极大值点为b,极小值为c,则ad=()A.4 B.﹣4 C.2 D.﹣24.下列四个条件中,使a>b成立的必要而不充分的条件是()A.a>b+1 B.a>b﹣1 C.a2>b2D.a3>b35.已知D为△ABC的边AB上的一点,且=+λ•,则实数λ的值为()A.B. C.D.6.已知A,B为中心在原点,焦点在x上的双曲线E的左,右顶点,点M在E上,△ABM 为等腰三角形,且顶角为120°,则E的渐近线方程为()A.2x±y=0 B.C.x±y=0 D.7.若log2(a+4b)=log2a+log2b,则a•b的最小值是()A.16 B.8 C.4 D.28.已知抛物线C:y2=16x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.6 B.8 C.10 D.129.设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2 B.a∧b≥2,c∨d≥2 C.a∨b≥2,c∧d≤2 D.a∨b≥2,c∨d≥2 10.已知函数f(x)的定义域为(0,+∞),且满足f(x)+x•f'(x)>0(f'(x)是f(x)的导函数),则不等式(x﹣1)f(x2﹣1)<f(x+1)的解集为()A.(﹣1,2)B.(1,2)C.(1,+∞)D.(﹣∞,2)11.设实数x,y满足,则xy的最大值为()A.B.C.12 D.1412.已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f(2)D.f(2)<f(0)<f(﹣2)二、填空题:本大题共4小题,每题5分,共20分.13.已知函数f(x)=,则不等式f(x)≥x2的解集为.14.在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.15.已知数列{a n}的前n项和为S n,对任意n∈N*都有S n=a n﹣,若﹣1<S k<2,则正整数k的值为.16.学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择.调查表明,凡是在这星期一选A菜的,下星期一会有20%改选B菜;而选B菜的,下星期一会有30%改选A菜,用a n(n∈N*)表示第n个星期一选A菜的人数,如果a1=428,则a8的值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且=.(Ⅰ)求B的大小;(Ⅱ)若点M为BC的中点,且求AM=AC,求的值.18.已知首项为的等比数列{a n}是递减数列,其前n项和为S n,且S1+a1,S2+a2,S3+a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n•log2a n,数列{b n}的前n项和T n,求满足不等式≥的最大n值.19.如图1,在Rt△ABC中,∠ABC=90°,∠BAC=60°,AB=2,D,E分别为AC,BD的中点,连接AE并延长BC于F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2,所示,(1)求证:AE⊥平面BCD;(2)求平面AEF与平面ADC所成的锐角二面角的余弦值;(3)在线段AF上是否存在点M使得EM∥平面ADC?若存在,请指出点M的位置;若存在,请指出点M的位置;若不存在,说明理由.20.经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.21.已知点M(0,2),椭圆E: +=1(a>b>0)的焦距为2,椭圆E上一点G与椭圆长轴上的两个顶点A,B连线的斜率之积等于﹣.(Ⅰ)求E的方程;(Ⅱ)设过点M的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的直线方程.22.已知函数f(x)=e x+ae﹣x﹣2x是奇函数.(Ⅰ)求实数a的值,并判断f(x)的单调性;(Ⅱ)设函数g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0恒成立,求实数b的取值范围.2016-2017学年福建省厦门一中高三(上)开学数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.若集合A={x|2x>x2},B={y|y=2x,x∈A},则集合A∩B等于()A.(0,2)B.(0,4)C.(1,2)D.(0,+∞)【考点】交集及其运算.【分析】先分别求出集合A和B,由此能求出A∩B.【解答】解:∵集合A={x|2x>x2}={x|0<x<2},B={y|y=2x,x∈A}={y|1<y<4},∴集合A∩B={x|1<x<2}=(1,2).故选:C.2.已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a等于()A.B.C.1 D.2【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移先确定z的最优解,然后确定a的值即可.【解答】解:先根据约束条件画出可行域,如图示:,z=2x+y,将最大值转化为y轴上的截距的最大值,当直线z=2x+y经过点B时,z最小,由得:,代入直线y=a(x﹣3)得,a=;故选:B.3.已知实数a,b,c,d成等比数列,且曲线y=3x﹣x3的极大值点为b,极小值为c,则ad=()A.4 B.﹣4 C.2 D.﹣2【考点】利用导数研究函数的极值.【分析】求出函数的极值,利用等比数列的性质求解即可.【解答】解:曲线y=3x﹣x3,可得y′=3﹣3x2.令3﹣3x2=0,可得函数的极值点为:﹣1,1.x=﹣1时,函数取得极小值c=﹣2,x=1时,函数取得极大值b=2.实数a,b,c,d成等比数列,可得ad=bc=﹣2.故选:D.4.下列四个条件中,使a>b成立的必要而不充分的条件是()A.a>b+1 B.a>b﹣1 C.a2>b2D.a3>b3【考点】必要条件、充分条件与充要条件的判断.【分析】欲求a>b成立的必要而不充分的条件,即选择一个“a>b”能推出的条件,但反之不能推出的条件,对选项逐一分析即可.【解答】解:“a>b”不能推出“a>b+1”,故选项A不是“a>b”的必要条件,不满足题意;“a>b”能推出“a>b﹣1”,但“a>b﹣1”不能推出“a>b”,故满足题意;“a>b”不能推出“a2>b2”,故选项C不是“a>b”的必要条件,不满足题意;“a>b”能推出“a3>b3”,且“a3>b3”能推出“a>b”,故是充要条件,不满足题意;故选B.5.已知D为△ABC的边AB上的一点,且=+λ•,则实数λ的值为()A.B. C.D.【考点】向量的加法及其几何意义.【分析】利用三点A,D,B共线,可得=m+(1﹣m)=﹣m+(m﹣1),经过比较即可得出.【解答】解:∵三点A,D,B共线,∴=m+(1﹣m)=﹣m+(m﹣1),∴,解得λ=.故选:D.6.已知A,B为中心在原点,焦点在x上的双曲线E的左,右顶点,点M在E上,△ABM 为等腰三角形,且顶角为120°,则E的渐近线方程为()A.2x±y=0 B.C.x±y=0 D.【考点】双曲线的简单性质.【分析】由题意画出图形,过点M作MN⊥x轴,得到Rt△BNM,通过求解直角三角形得到M坐标,代入双曲线方程可得a与b的关系,结合a,b,c的关系,求出a=b.即可得到渐近线方程.【解答】解:设双曲线方程为(a>0,b>0),如图所示,|AB|=|BM|,∠ABM=120°,过点M作MN⊥x轴,垂足为N,则∠MBN=60°,在Rt△BMN中,|BM|=|AB|=2a,∠MBN=60°,即有|BN|=2acos60°=a,|MN|=2asin60°=a,故点M的坐标为M(2a,a),代入双曲线方程得﹣=1,即为a2=b2,E的渐近线方程为::x±y=0.故选:C.7.若log2(a+4b)=log2a+log2b,则a•b的最小值是()A.16 B.8 C.4 D.2【考点】基本不等式在最值问题中的应用.【分析】根据对数的运算法则化简a,b关系,利用基本不等式解出ab的最小值即可.【解答】解:∵a>0,b>0,log2(a+4b)=log2a+log2b,∴a+4b=ab,∴ab≥2,∴ab≥16,当且仅当a=4b=4=8时“=”成立,故选:A.8.已知抛物线C:y2=16x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.6 B.8 C.10 D.12【考点】抛物线的简单性质.【分析】运用抛物线的定义,设Q到l的距离为d,求出斜率,求得直线PF的方程,与y2=16x 联立可得x=6,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则由抛物线的定义可得,|QF|=d,∵=4,∴Q在PF的延长线上,∴|PQ|=5d,∴直线PF的斜率为﹣=﹣2,∵F(4,0),∴直线PF的方程为y=﹣2(x﹣4),与y2=16x联立可得x=6,(由于Q的横坐标大于2)∴|QF|=d=6+4=10,故选:C.9.设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2 B.a∧b≥2,c∨d≥2 C.a∨b≥2,c∧d≤2 D.a∨b≥2,c∨d≥2 【考点】函数的值.【分析】依题意,对a,b赋值,对四个选项逐个排除即可.【解答】解:∵a∧b=,a∨b=,正数a、b、c、d满足ab≥4,c+d≤4,∴不妨令a=1,b=4,则a∧b≥2错误,故可排除A,B;再令c=1,d=1,满足条件c+d≤4,但不满足c∨d≥2,故可排除D;故选C.10.已知函数f(x)的定义域为(0,+∞),且满足f(x)+x•f'(x)>0(f'(x)是f(x)的导函数),则不等式(x﹣1)f(x2﹣1)<f(x+1)的解集为()A.(﹣1,2)B.(1,2)C.(1,+∞)D.(﹣∞,2)【考点】利用导数研究函数的单调性;函数的单调性与导数的关系.【分析】根据条件构造函数g(x)=xf(x),求函数的导数,利用函数单调性和导数之间的关系进行转化求解即可.【解答】解:设g(x)=xf(x),则g′(x)=f(x)+x•f'(x),∵f(x)+x•f'(x)>0,∴g′(x)>0,即g(x)在(0,+∞)为增函数,则不等式(x﹣1)f(x2﹣1)<f(x+1)等价为(x﹣1)(x+1)f(x2﹣1)<(x+1)f(x+1),即(x2﹣1)f(x2﹣1)<(x+1)f(x+1),即g(x2﹣1)<g(x+1),∵g(x)在(0,+∞)为增函数,∴,即,即1<x<2,故不等式的解集为(1,2),故选:B.11.设实数x,y满足,则xy的最大值为()A.B.C.12 D.14【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用基本不等式进行求解即可.【解答】解:法1:作出不等式组对应的平面区域如图由图象知y≤10﹣2x,则xy≤x(10﹣2x)=2x(5﹣x))≤2()2=,当且仅当x=,y=5时,取等号,经检验(,5)在可行域内,故xy的最大值为,法2:设z=xy,则y=为双曲线,要使z=xy最大,则z>0,∵由图象可知当z=xy与2x+y=10相切时,z=xy取得最大值,∴2x+=10即2x2﹣10x+z=0,由判别式△=100﹣8z=0,得x==,即xy的最大值为,故选:A12.已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f(2)D.f(2)<f(0)<f(﹣2)【考点】三角函数的周期性及其求法.【分析】依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.【解答】解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,∴f(x)=Asin(2x+2kπ+)=Asin(2x+).∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0,f(0)=Asin=Asin>0,又∵>﹣4+2π>>,而f(x)=Asinx在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0).故选:A.二、填空题:本大题共4小题,每题5分,共20分.13.已知函数f (x )=,则不等式f (x )≥x 2的解集为 [﹣2,2] .【考点】其他不等式的解法;分段函数的应用.【分析】分别将f (x )换成两段上的解析式,解不等式即可.【解答】解:不等式f (x )≥x 2,即为﹣x +2≥x 2,即x 2+x ﹣2≤0,解得﹣2≤x ≤1,又x ≤0,所以﹣2≤x ≤0;或者x +2≥x 2,即x 2﹣x ﹣2≤0,解得﹣1≤x ≤2,又x >0,所以0≤x ≤2; 所以不等式f (x )≥x 2的解集为[﹣2,2];14.在极坐标系中,圆ρ=8sin θ上的点到直线θ=(ρ∈R )距离的最大值是 6 .【考点】简单曲线的极坐标方程.【分析】圆ρ=8sin θ化为ρ2=8ρsin θ,把代入可得直角坐标方程,直线θ=(ρ∈R )化为y=x .利用点到直线的距离公式可得圆心C (0,4)到直线的距离d ,可得圆ρ=8sin θ上的点到直线θ=(ρ∈R )距离的最大值=d +r .【解答】解:圆ρ=8sin θ化为ρ2=8ρsin θ,∴x 2+y 2=8y ,化为x 2+(y ﹣4)2=16.直线θ=(ρ∈R )化为y=x .∴圆心C (0,4)到直线的距离d==2,∴圆ρ=8sin θ上的点到直线θ=(ρ∈R )距离的最大值=d +r=2+4=6.故答案为:6.15.已知数列{a n }的前n 项和为S n ,对任意n ∈N *都有S n =a n ﹣,若﹣1<S k <2,则正整数k 的值为 2 . 【考点】数列的求和.【分析】由当n ≥2时,a n =S n ﹣S n ﹣1=a n ﹣a n ﹣1,=﹣2,可知{a n }是1为首项,﹣2为公比的等比数列,根据等比数列的前n 项和公式,列不等式,即可求得正整数k 的值.【解答】解:当n=1时,a 1=a 1﹣,a 1=﹣1,当n ≥2时,S n ﹣1=a n ﹣1﹣,∴a n =S n ﹣S n ﹣1=a n ﹣a n ﹣1,∴=﹣2,∴{a n}是1为首项,﹣2为公比的等比数列,a n=﹣1(﹣2)n﹣1,∴S n=,由﹣1<S k<2,即﹣1<﹣ [1﹣(﹣2)k]<2,﹣2<(﹣2)k<7解得:k=2,故答案为:2.16.学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择.调查表明,凡是在这星期一选A菜的,下星期一会有20%改选B菜;而选B菜的,下星期一会有30%改选A菜,用a n(n∈N*)表示第n个星期一选A菜的人数,如果a1=428,则a8的值为301.【考点】数列的概念及简单表示法.【分析】根据题意可得:设{a n}为第n个星期一选A的人数,{b n}为第n个星期一选B的=a n×+×,变人数,根据这星期一选B菜的,下星期一会有改选A菜,可得:a n+1﹣300=(a n﹣300),利用等比数列的通项公式即可得出.形为:a n+1【解答】解:根据题意可得:设{a n}为第n个星期一选A的人数,{b n}为第n个星期一选B 的人数,根据这星期一选B菜的,下星期一会有改选A菜,=a n×+×,a n+1=a n+150,∴a n+1﹣300=(a n﹣300),变形为:a n+1∵a1=428,∴a1﹣300=128,∴数列{a n﹣300}是一个等比数列,首项为128,公比为,可得a8﹣300=128×=1.∴a8=301.故答案为:301.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且=.(Ⅰ)求B的大小;(Ⅱ)若点M为BC的中点,且求AM=AC,求的值.【考点】正弦定理.【分析】(Ⅰ)由已知化简,利用正弦定理,三角形内角和定理,两角和的正弦函数公式可得:2sinAcosB=sinA,由于sinA≠0,可求cosB,结合B的范围即可得解B的值.(Ⅱ)由AM=AC,利用余弦定理得,结合正弦定理即可得解的值.【解答】(本题满分为10分)解:(Ⅰ)在△ABC中,∵,∴2acosB=ccosB+bcosC,利用正弦定理可得:2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA,∵sinA≠0,∴.…∵0<B<π,∴.….(Ⅱ)在△ABC中,由余弦定理得:AC2=a2+c2﹣2accosB=a2+c2﹣ac,在△ABM中,由余弦定理得.…∵AM=AC,∴.∴由正弦定理得.…18.已知首项为的等比数列{a n}是递减数列,其前n项和为S n,且S1+a1,S2+a2,S3+a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n•log2a n,数列{b n}的前n项和T n,求满足不等式≥的最大n值.【考点】数列与不等式的综合.【分析】(Ⅰ)设出等比数列的公比,由S1+a1,S2+a2,S3+a3成等差数列,结合a1=且数列{a n}是递减数列求出公比,则等比数列{a n}的通项公式可求;(Ⅱ)把{a n}的通项公式代入b n=a n•log2a n,利用错位相减法求出数列{b n}的前n项和T n,代入≥求得n的最大值.【解答】解:(I)设等比数列{a n}的公比为q,由题知a1=,又∵S1+a1,S2+a2,S3+a3成等差数列,∴2(S2+a2)=S1+a1+S3+a3,变形得S2﹣S1+2a2=a1+S3﹣S2+a3,即得3a2=a1+2a3,∴q=+q2,解得q=1或q=,又由{a n}为递减数列,∴q=,∴a n=a1q n﹣1=()n;(Ⅱ)由于b n=a n log2a n=﹣n•()n,∴,则,两式相减得:=,∴.∴.由≥,解得n≤4.∴n的最大值为4.19.如图1,在Rt△ABC中,∠ABC=90°,∠BAC=60°,AB=2,D,E分别为AC,BD的中点,连接AE并延长BC于F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2,所示,(1)求证:AE⊥平面BCD;(2)求平面AEF与平面ADC所成的锐角二面角的余弦值;(3)在线段AF上是否存在点M使得EM∥平面ADC?若存在,请指出点M的位置;若存在,请指出点M的位置;若不存在,说明理由.【考点】用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)由已知条件推导出AE⊥BD于E,由此能证明AE⊥平面BCD.(Ⅱ)以E为坐标原点,分别以EF,ED,EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E﹣xyz,利用向量法能求出二面角的余弦值.(Ⅲ)根据线面平行的判定定理,利用向量法建立共线共线,设,解方程即可.【解答】(Ⅰ)证明:在Rt△ABC中,∠ABC=90°,D为AC的中点,∴AD=BD=DC,又∠BAC=60°,∴△ABD为等边三角形,∵E是BD的中点,∴AE⊥BD,∵平面ABD⊥平面BCD,交线为BD,又在△ABD中,AE⊥BD于E,AE⊂平面ABD∴AE⊥平面BCD.(Ⅱ)解:由(Ⅰ)结论AE⊥平面BCD,∴AE⊥EF.由题意知EF⊥BD,又AE⊥BD.如图,以E为坐标原点,分别以EF,ED,EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E﹣xyz,由(Ⅰ)知AB=BD=DC=AD=2,BE=ED=1.由图1条件计算得则AE=,BC=2,EF=,则E(0,0,0),D(0,1,0),A(0,0,),F(,0,0),C(,2,0).则,,易知,平面AEF 的一个法向量为=(0,1,0).设平面ADC 的法向量为=(x ,y ,z ),则,即令z=1,得y=,x=﹣1,即=(﹣1,,1),∴cos <,>==,即平面AEF 与平面ADC 所成的锐角二面角的余弦值为.(Ⅲ)解:设,其中λ∈[0,1].∵=(,0,﹣),∴=λ(,0,﹣),∴==(),由,得,解得∈[0,1].∴在线段AF 上是否存在点M 使得EM ∥平面ADC 且AM :AF=3:4.20.经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品.以x (单位:t ,100≤x ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图;用样本的频率分布估计总体分布.【分析】(Ⅰ)由题意先分段写出,当x∈[100,130)时,当x∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(Ⅱ)由(I)知,利润T不少于57000元,当且仅当120≤x≤150.再由直方图知需求量X ∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T不少于57000元的概率的估计值.(Ⅲ)利用利润T的数学期望=各组的区间中点值×该区间的频率之和即得.【解答】解:(Ⅰ)由题意得,当x∈[100,130)时,T=500x﹣300=800x﹣39000,当x∈[130,150)时,T=500×130=65000,∴T=.(Ⅱ)由(Ⅰ)知,利润T不少于57000元,当且仅当120≤x≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.T0.3+65000×0.4=59400.21.已知点M(0,2),椭圆E: +=1(a>b>0)的焦距为2,椭圆E上一点G与椭圆长轴上的两个顶点A,B连线的斜率之积等于﹣.(Ⅰ)求E的方程;(Ⅱ)设过点M的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的直线方程.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)设G点坐标,根据斜率公式求得G与椭圆长轴上的两个顶点A,B连线的斜率之积等于﹣,求得a和b的关系,由2c=2.求得c=,利用椭圆的关系即可求得a和b的值,求得椭圆方程;(Ⅱ)设直线方程,将直线方程代入椭圆方程,利用韦达定理及弦长公式求得丨PQ丨,由点到直线的距离公式和三角形的面积公式求得△OPQ的面积,根据基本不等式的关系,求得△OPQ的面积最大值时的k的取值,即可求得直线l的方程.【解答】解:(Ⅰ)设G(x0,y0),则,由条件知,,即得.…又,∴a=2,b=1,故椭圆E的方程为.…(Ⅱ)当l⊥x轴时不合题意,故设直线l:y=kx+2,P(x1,y1),Q(x2,y2).将l:y=kx+2代入得(1+4k2)x2+16kx+12=0,△=16(4k2﹣3)>0.x1+x2=﹣,x1+x2=,从而.又点O到直线PQ的距离,∴△OPQ的面积.…设,则t>0,.当且仅当t=2即时取等号,且满足△>0.…∴当△OPQ的面积最大时,l的方程为.…22.已知函数f(x)=e x+ae﹣x﹣2x是奇函数.(Ⅰ)求实数a的值,并判断f(x)的单调性;(Ⅱ)设函数g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0恒成立,求实数b的取值范围.【考点】分段函数的应用.【分析】(Ⅰ)根据函数的奇偶性,求出a的值,求出函数的导数,判断函数的单调性即可;(Ⅱ)求出g(x)的表达式,通过讨论b的范围,结合函数的单调性从而确定b的范围即可.【解答】解:(Ⅰ)因为f(x)=e x+ae﹣x﹣2x是奇函数,所以f(﹣x)=﹣f(x),即e﹣x+ae x+2x=﹣(e x+ae﹣x﹣2x),解得a=﹣1,因为f(x)=e x﹣e﹣x﹣2x,所以,当且仅当x=0时,等号成立,所以f(x)在(﹣∞,+∞)上单调递增.…(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4x﹣4b(e x﹣e﹣x﹣2x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)xg'(x)=2e2x+2e﹣2x﹣4b(e x+e﹣x)+(8b﹣4)=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+4(b﹣1)]=2[e x+e﹣x﹣2][e x+e﹣x﹣2(b﹣1)].…①当2(b﹣1)≤2即b≤2时,g'(x)≥0,等号仅当x=0时成立,所以g(x)在(﹣∞,+∞)上单调递增.而g(0)=0,所以对任意x>0,g(x)>0,②当b>2时,若x满足2<e x+e﹣x<2b﹣2,即时,g'(x)<0,而g(0)=0,因此当时,g(x)<0,不符合题意,综上知,b的取值范围是(﹣∞,2].…。
2017年普通高等学校招生统一考试(福建卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、若集合(是虚数单位),,则等于A. B. C. D.2、下列函数为奇函数的是A. B. C. D.3、若双曲线的左、右焦点分别为,点在双曲线上,且,则等于A. B. C. D.4、为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区户家庭,得到如下统计数据表:根据上表可得回归本线方程,其中,据此估计,该社区一户收入为万元家庭年支出为A.万元B.万元C.万元D.万元5、若变量满足约束条件则的最小值等于A. B. C. D.6、阅读如图所示的程序框图,运行相应的程序,则输出的结果为A. B. C. D.7、若是两条不同的直线,垂直于平面,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条8、若是函数的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于A. B. C. D.9、已知,若点是所在平面内一点,且,则的最大值等于A. B. C. D.10、若定义在上的函数满足,其导函数满足,则下列结论中一定错误的是A. B. C. D.二、填空题:本大题共5小题,每小题4分,共20分。
11、的展开式中,的系数等于.(用数字作答)12、若锐角的面积为,且,则等于.13、如图,点的坐标为,点的坐标为,函数,若在矩形内随机取一点,则此点取自阴影部分的概率等于.14、若函数(且)的值域是,则实数的取值范围是.15、一个二元码是由和组成的数字串,其中称为第位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由变为,或者由变为)已知某种二元码的码元满足如下校验方程组:其中运算定义为:.现已知一个这种二元码在通信过程中仅在第位发生码元错误后变成了,那么利用上述校验方程组可判定等于.三、解答题:本大题共6小题,共80分。
2016-2017学年福建省厦门市双十中学高三(上)期中数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2) D.(2,3)2.已知=1﹣bi,其中a,b是实数,i是虚数单位,则|a﹣bi|=()A.3 B.2 C.5 D.3.已知等差数列{a n}的前n项和为S n,若a4=18﹣a5,则S8=()A.18 B.36 C.54 D.724.设a,b是互不垂直的两条异面直线,则下列命题成立的是()A.存在唯一平面α,使得a⊂α,且b∥αB.存在唯一直线l,使得l∥a,且l⊥bC.存在唯一直线l,使得l⊥a,且l⊥bD.存在唯一平面α,使得a⊂α,且b⊥α5.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q6.已知函数f(x)=sinωx+cosωx(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是()A.[kπ+,kπ+],k∈z B.[kπ﹣,kπ+],k∈zC.[2kπ+,2kπ+],k∈z D.[2kπ﹣,2kπ+],k∈z7.如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若D=B+k C,则λ+k=()A.B.C.2 D.3),b=f(log25),8.已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0。
5c=f(2m),则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.c<b<a9.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.(4+π)10.若函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a 的取值范围是()A.(﹣)B.() C.()D.()11.已知函数f(x)=sin2x+sinx+cosx,以下说法中不正确的是()A.f(x)周期为2πB.f(x)最小值为﹣C.f(x)在区间[0,]单调递增D.f(x)关于点x=对称12.如图,在棱长为1的正方体ABCD﹣A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量夹角为60°,且||=1,|2﹣|=,则||=.14.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=2x,则f(log49)的值为.15.已知正项等比数列{a n}的前n项积为πn,已知a m﹣1•a m+1=2a m,π2m﹣1=2048,则m=.16.如图所示,在一个坡度一定的山坡AC的顶上有一高度为25m的建筑物CD,为了测量该山坡相对于水平地面的坡角θ,在山坡的A处测得∠DAC=15°,沿山坡前进50m到达B处,又测得∠DBC=45°,根据以上数据可得cosθ=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(3,),点B的极坐标为(6,),曲线C:(x﹣1)2+y2=1(1)求曲线C和直线AB的极坐标方程;(2)过点O的射线l交曲线C于M点,交直线AB于N点,若|OM||ON|=2,求射线l所在直线的直角坐标方程.18.在数列{a n}中,前n项和为S n,且S n=,数列{b n}的前n项和为T n,且b n=(1)求数列{a n}的通项公式;(2)是否存在m,n∈N*,使得T n=a m,若存在,求出所有满足题意的m,n,若不存在,请说明理由.19.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知a=bcosC+csinB.(1)若a=2,b=,求c(2)设函数y=sin(2A﹣30°)﹣2sin2(C﹣15°),求y的取值范围.20.如图,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,点B1在底面内的射影恰好是BC的中点,且BC=CA=2.(1)求证:平面ACC1A1⊥平面B1C1CB;(2)若二面角B﹣AB1﹣C1的余弦值为,求斜三棱柱ABC﹣A1B1C1的侧棱AA1的长度.21.已知椭圆C: +=1(a>b>0)的右焦点为F,上顶点为A,短轴长为2,O为原点,直线AF与椭圆C的另一个交点为B,且△AOF的面积是△BOF的面积的3倍.(1)求椭圆C的方程;(2)如图,直线l:y=kx+m与椭圆C相交于P,Q两点,若在椭圆C上存在点R,使OPRQ 为平行四边形,求m的取值范围.22.已知函数f(x)=•e﹣ax(a>0).(1)当a=2时,求曲线y=f(x)在x=处的切线方程;(2)讨论方程f(x)﹣1=0根的个数.2016-2017学年福建省厦门市双十中学高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分。
2017届高三上学期开学数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.复数z=在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合A={1,2,3},B={1,m},A∩B=B,则实数m的值为()A.2 B.3 C.1或2或3 D.2或33.如果sin(π﹣A)=,那么cos(﹣A)=()A.﹣ B.C.﹣D.4.设x,y∈R,向量=(1,x),=(3,2﹣x),若⊥,则实数x的取值为()A.1 B.3 C.1或﹣3 D.3或﹣1的大致图象是()5.函数y=log2A. B.C. D.6.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.7.如图,半径为2的⊙O中,∠AOB=120°,C为OB的中点,AC的延长线交⊙O于点D,连接BD,则弦BD 的长为()A.B.C.D.8.若函数f(x)=x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是()A.(1,2)B.[1,2)C.[0,2)D.(0,2)二、填空题9.抛物线x 2=ay 的准线方程是y=2,则a= .10.极坐标系中,直线ρsin (﹣θ)+1=0与极轴所在直线的交点的极坐标为 (只需写出一个即可)11.点P 是直线l :x ﹣y+4=0上一动点,PA 与PB 是圆C :(x ﹣1)2+(y ﹣1)2=4的两条切线,则四边形PACB 的最小面积为 .12.已知双曲线C 的渐进线方程为y=±x ,则双曲线C 的离心率为 .13.集合U={1,2,3}的所有子集共有 个,从中任意选出2个不同的子集A 和B ,若A ⊈B 且B ⊈A ,则不同的选法共有 种.14.已知数列{a n }是各项均为正整数的等差数列,公差d ∈N *,且{a n }中任意两项之和也是该数列中的一项.(1)若a 1=4,则d 的取值集合为 ;(2)若a 1=2m (m ∈N *),则d 的所有可能取值的和为 .三、解答题(共6小题,满分80分)15.已知函数f (x )=sin 2x+2sinxcosx+3cos 2x .(Ⅰ)求函数f (x )的单调递增区间;(Ⅱ)若x ∈[0,],求函数f (x )的最值及相应x 的取值.16.已知递减等差数列{a n }满足:a 1=2,a 2•a 3=40.(Ⅰ)求数列{a n }的通项公式及前n 项和S n ;(Ⅱ)若递减等比数列{b n }满足:b 2=a 2,b 4=a 4,求数列{b n }的通项公式.17.某公司每月最多生产100台警报系统装置,生产x 台(x ∈N *)的总收入为30x ﹣0.2x 2(单位:万元).每月投入的固定成本(包括机械检修、工人工资等)为40万元,此外,每生产一台还需材料成本5万元.在经济学中,常常利用每月利润函数P (x )的边际利润函数MP (x )来研究何时获得最大利润,其中MP (x )=P (x+1)﹣P (x ).(Ⅰ)求利润函数P (x )及其边际利润函数MP (x );(Ⅱ)利用边际利润函数MP (x )研究,该公司每月生产多少台警报系统装置,可获得最大利润?最大利润是多少?18.已知函数f (x )=axe x ,其中常数a ≠0,e 为自然对数的底数.(Ⅰ)求函数f (x )的单调区间;(Ⅱ)当a=1时,求函数f (x )的极值;(Ⅲ)若直线y=e (x ﹣)是曲线y=f (x )的切线,求实数a 的值.19.已知椭圆C : +=1(a >b >0),离心率e=,已知点P (0,)到椭圆C 的右焦点F 的距离是.设经过点P 且斜率存在的直线与椭圆C 相交于A 、B 两点,线段AB 的中垂线与x 轴相交于一点Q . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)求点Q 的横坐标x 0的取值范围.20.对于序列A0:a,a1,a2,…,an(n∈N*),实施变换T得序列A1:a1+a2,a2+a3,…,an﹣1+an,记作A1=T(A0):对A1继续实施变换T得序列A2=T(A1)=T(T(A)),记作A2=T2(A);…;An﹣1=Tn﹣1(A).最后得到的序列An﹣1只有一个数,记作S(A).(Ⅰ)若序列A0为1,2,3,求S(A);(Ⅱ)若序列A0为1,2,…,n,求S(A);(Ⅲ)若序列A和B完全一样,则称序列A与B相等,记作A=B,若序列B为序列A:1,2,…,n的一个排列,请问:B=A0是S(B)=S(A)的什么条件?请说明理由.2017届高三上学期开学数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.复数z=在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分母根据平方差公式得到一个实数,分子进行复数的乘法运算,得到最简结果,写出对应的点的坐标,得到位置.【解答】解:∵z===+i,∴复数z在复平面上对应的点位于第一象限.故选A.2.已知集合A={1,2,3},B={1,m},A∩B=B,则实数m的值为()A.2 B.3 C.1或2或3 D.2或3【考点】交集及其运算.【分析】根据A,B,以及两集合的交集为B,得到B为A的子集,确定出实数m的值即可.【解答】解:∵A={1,2,3},B={1,m},且A∩B=B,∴B⊆A,则实数m的值为2或3,故选:D.3.如果sin(π﹣A)=,那么cos(﹣A)=()A.﹣ B.C.﹣D.【考点】运用诱导公式化简求值;同角三角函数间的基本关系.【分析】直接利用诱导公式化简求解函数值即可.【解答】解:sin(π﹣A)=,可得sinA=,cos(﹣A)=sinA=,故选:B.4.设x,y∈R,向量=(1,x),=(3,2﹣x),若⊥,则实数x的取值为()A.1 B.3 C.1或﹣3 D.3或﹣1【考点】数量积判断两个平面向量的垂直关系.【分析】由⊥,可得=0,解出即可得出.【解答】解:∵⊥,∴=3+x(2﹣x)=0,化为x2﹣2x﹣3=0,解得x=3或﹣1.故选:D .5.函数y=log 2的大致图象是( )A .B .C .D .【考点】函数的图象.【分析】分析出函数的定义域和单调性,利用排除法,可得答案.【解答】解:函数y=log 2的定义域为(1,+∞),故排除C ,D ;函数y=log 2为增函数,故排除B ,故选:A .6.设变量x ,y 满足约束条件,则目标函数z=3x ﹣y 的取值范围是( )A .B .C .[﹣1,6]D .【考点】简单线性规划.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;由目标函数中z 的几何意义可求z 的最大值与最小值,进而可求z 的范围【解答】解:作出不等式组表示的平面区域,如图所示由z=3x ﹣y 可得y=3x ﹣z ,则﹣z 为直线y=3x ﹣z 在y 轴上的截距,截距越大,z 越小结合图形可知,当直线y=3x ﹣z 平移到B 时,z 最小,平移到C 时z 最大由可得B (,3),=6由可得C(2,0),zmax∴故选A7.如图,半径为2的⊙O中,∠AOB=120°,C为OB的中点,AC的延长线交⊙O于点D,连接BD,则弦BD 的长为()A.B.C.D.【考点】与圆有关的比例线段.【分析】在△OAC中,运用余弦定理可得AC,cos∠ACO,延长CO交圆于E,再由圆的相交弦定理,可得AC•CD=BC•CE,求得CD,再在△BCD中,运用余弦定理可得BD的长.【解答】解:在△OAC中,OA=2,OC=1,∠AOC=120°,可得AC2=OA2+OC2﹣2OA•OC•cos∠AOC=4+1﹣2•2•1•cos120°=5+2=7,即AC=,cos∠ACO===,延长CO交圆于E,由圆的相交弦定理,可得AC•CD=BC•CE,即CD===,在△BCD中,BD2=BC2+DC2﹣2BC•DC•cos∠BCD=1+﹣2•1••=.可得BD=.故选:C.8.若函数f(x)=x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是()A.(1,2)B.[1,2)C.[0,2)D.(0,2)【考点】利用导数研究函数的单调性.【分析】求出函数的定义域和导数,判断函数的单调性和极值,即可得到结论.【解答】解:函数的定义域为(0,+∞),∴函数的f′(x)=x﹣=,由f′(x)>0解得x>1,此时函数单调递增,由f′(x)<0解得0<x<1,此时函数单调递减,故x=1时,函数取得极小值.①当k=1时,(k﹣1,k+1)为(0,2),函数在(0,1)上单调减,在(1,2)上单调增,此时函数在(0,2)上不是单调函数,满足题意;②当k>1时,∵函数f(x)在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,∴x=1在(k﹣1,k+1)内,即,即,即0<k<2,此时1<k<2,综上1≤k<2,故选:B.二、填空题9.抛物线x2=ay的准线方程是y=2,则a= ‐8.【考点】抛物线的简单性质.【分析】依题意可求得抛物线x2=ay的准线方程是y=﹣,而抛物线x2=ay的准线方程是y=2,从而可求a.【解答】解:∵抛物线x2=ay的准线方程是y=﹣,又抛物线x2=ay的准线方程是y=2,∴﹣=2,∴a=﹣8.故答案为:﹣8.10.极坐标系中,直线ρsin(﹣θ)+1=0与极轴所在直线的交点的极坐标为(2,π)(只需写出一个即可)【考点】简单曲线的极坐标方程.【分析】令θ=π,可得: +1=0,解得ρ即可得出.【解答】解:令θ=π,可得: +1=0,解得ρ=2,可得交点(2,π).故答案为:(2,π).11.点P是直线l:x﹣y+4=0上一动点,PA与PB是圆C:(x﹣1)2+(y﹣1)2=4的两条切线,则四边形PACB 的最小面积为 4 .【考点】圆的切线方程.【分析】利用切线与圆心的连线垂直,可得S PACB =2S ACP .,要求四边形PACB 的最小面积,即直线上的动点到圆心的距离最短,利用二次函数的配方求解最小值,得到三角形的边长最小值,可以求四边形PACB 的最小面积.【解答】解:根据题意:圆C :(x ﹣1)2+(y ﹣1)2=4,圆心为(1,1),半径r=2,∵点P 在直线x ﹣y+4=0上,设P (t ,t+4),切线与圆心的连线垂直,直线上的动点到圆心的距离d 2=(t ﹣1)2+(t+4﹣1)2,化简:d 2=2(t 2+2t+5)=2(t+1)2+8,∴,那么:,则|PA|min =2,三角形PAC 的最小面积为:=2, 可得:S PACB =2S ACP =4,所以:四边形PACB 的最小面积S PABC =4,故答案为:4.12.已知双曲线C 的渐进线方程为y=±x ,则双曲线C 的离心率为 或 . 【考点】双曲线的简单性质.【分析】双曲线的渐近线为y=±x ,可得=或3,利用e==,可求双曲线的离心率.【解答】解:∵双曲线的渐近线为y=±x ,∴=或3,∴e===或.故答案为:或.13.集合U={1,2,3}的所有子集共有8 个,从中任意选出2个不同的子集A和B,若A⊈B且B⊈A,则不同的选法共有9 种.【考点】子集与真子集.【分析】根据含有n个元素的集合,其子集个数为2n个,即可得到子集个数.从中任意选出2,A⊈B且B⊈A.先去掉{1,2,3}和∅,还有6个子集,为{1},{2},{3},{1,2},{1,3},{2,3},从这6个中任选2个都是:A⊈B且B⊈A,即可得到答案.【解答】解:集合U={1,2,3}含有3个元素,其子集个数为23=8个.从中任意选出2个不同的子集A和B,A⊈B且B⊈A.先去掉{1,2,3}和∅,还有6个子集,为{1},{2},{3},{1,2},{1,3},{2,3},从这6个中任选2个都是:A⊈B且B⊈A,有①{1},{2}、②{1},{3}、③{1},{2,3}、④{2},{3}、⑤{2},{1,3}、⑥{3},{1,2}、⑦{1,2},{1,3}、⑧{1,2},{2,3}、⑨}{1,3},{2,3},则有9种.故答案为:8,9.14.已知数列{an }是各项均为正整数的等差数列,公差d∈N*,且{an}中任意两项之和也是该数列中的一项.(1)若a1=4,则d的取值集合为{1,2,4} ;(2)若a1=2m(m∈N*),则d的所有可能取值的和为2m+1﹣1 .【考点】等差数列的性质;等比数列的前n项和.【分析】由题意可得,ap +aq=ak,其中p、q、k∈N*,利用等差数列的通项公式可得d与a1的关系,然后根据d的取值范围进行求解.【解答】解:由题意可得,ap +aq=ak,其中p、q、k∈N*,由等差数列的通向公式可得a1+(p﹣1)d+a1+(q﹣1)d=a1+(k﹣1),整理得d=,(1)若a1=4,则d=,∵p、q、k∈N*,公差d∈N*,∴k﹣p﹣q+1∈N*,∴d=1,2,4,故d的取值集合为 {1,2,4};(2)若a1=2m(m∈N*),则d=,∵p、q、k∈N*,公差d∈N*,∴k﹣p﹣q+1∈N*,∴d=1,2,4,…,2m,∴d 的所有可能取值的和为1+2+4+…+2m ==2m+1﹣1, 故答案为(1){1,2,4},(2)2m+1﹣1.三、解答题(共6小题,满分80分)15.已知函数f (x )=sin 2x+2sinxcosx+3cos 2x .(Ⅰ)求函数f (x )的单调递增区间;(Ⅱ)若x ∈[0,],求函数f (x )的最值及相应x 的取值.【考点】三角函数中的恒等变换应用;正弦函数的单调性;三角函数的最值.【分析】(Ⅰ)运用二倍角的正弦和余弦公式,及两角和的正弦公式,化简函数f (x ),再由正弦函数的周期和单调增区间,解不等式即可得到.(Ⅱ)由x 的范围,可得2x ﹣2x+的范围,再由正弦函数的图象和性质,即可得到最值.【解答】解:(Ⅰ)f (x )=sin 2x+2sinxcosx+3cos 2x=sin2x+2cos 2x+1=sin2x+cos2x+2=sin (2x+)+2,令2k π﹣≤2x+≤2k π+,k ∈Z , 则k π﹣≤x ≤k π+,k ∈Z ,则有函数的单调递增区间为[k π﹣,k π+],k ∈Z .(Ⅱ)当x ∈[0,]时,2x+∈[,], 则有sin (2x+)∈[﹣1,1], 则当x=时,f (x )取得最小值,且为1,当x=时,f (x )取得最大值,且为+2.16.已知递减等差数列{a n }满足:a 1=2,a 2•a 3=40.(Ⅰ)求数列{a n }的通项公式及前n 项和S n ;(Ⅱ)若递减等比数列{b n }满足:b 2=a 2,b 4=a 4,求数列{b n }的通项公式.【考点】数列的求和.【分析】(I )格局等差数列的通项公式列方程组解出公差,得出通项公式,代入求和公式计算S n ; (II )根据等比数列的通项公式列方程组解出首项和公比即可得出通项公式.【解答】解:(I )设{a n }的公差为d ,则a 2=2+d ,a 3=2+2d ,∴(2+d )(2+2d )=40,解得:d=3或d=﹣6.∵{a n }为递减数列,∴d=﹣6.∴a n =2﹣6(n ﹣1)=8﹣6n ,Sn=•n=﹣3n2+5n.(II)由(I)可知a2=﹣4,a4=﹣16.设等比数列{bn}的公比为q,则,解得或.∵{bn}为递减数列,∴.∴bn=﹣2•2n﹣1=﹣2n.17.某公司每月最多生产100台警报系统装置,生产x台(x∈N*)的总收入为30x﹣0.2x2(单位:万元).每月投入的固定成本(包括机械检修、工人工资等)为40万元,此外,每生产一台还需材料成本5万元.在经济学中,常常利用每月利润函数P(x)的边际利润函数MP(x)来研究何时获得最大利润,其中MP(x)=P(x+1)﹣P(x).(Ⅰ)求利润函数P(x)及其边际利润函数MP(x);(Ⅱ)利用边际利润函数MP(x)研究,该公司每月生产多少台警报系统装置,可获得最大利润?最大利润是多少?【考点】函数模型的选择与应用.【分析】(Ⅰ)利用利润是收入与成本之差,求利润函数P(x),利用MP(x)=P(x+1)﹣P(x),求其边际利润函数MP(x);(Ⅱ)利用MP(x)=24.8﹣0.4x是减函数,即可得出结论.【解答】解:(Ⅰ)由题意知,x∈[1,100],且x∈N*P(x)=R(x)﹣C(x)=30x﹣0.2x2﹣(5x+40)=﹣0.2x2+25x﹣40,MP(x)=P(x+1)﹣P(x)=﹣0.2(x+1)2+25(x+1)﹣40﹣[﹣0.2x2+25x﹣40]=24.8﹣0.4x,(Ⅱ)∵MP(x)=24.8﹣0.4x是减函数,∴当x=1时,MP(x)的最大值为24.40(万元)18.已知函数f(x)=axe x,其中常数a≠0,e为自然对数的底数.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当a=1时,求函数f(x)的极值;(Ⅲ)若直线y=e(x﹣)是曲线y=f(x)的切线,求实数a的值.【考点】利用导数研究函数的单调性;利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求函数的导数,根据函数单调性和导数之间的关系即可求函数f(x)的单调区间;(Ⅱ)当a=1时,根据函数极值和导数之间的关系即可求函数f(x)的极值;(Ⅲ)设出切点坐标为(m,ame m),求出切线斜率和方程,根据导数的几何意义建立方程关系即可求实数a 的值.【解答】解:(Ⅰ)函数的导数f′(x)=a(e x+xe x)=a(1+x)e x,若a >0,由f′(x )>0得x >﹣1,即函数的单调递增区间为(﹣1,+∞),由f′(x )<0,得x <﹣1,即函数的单调递减区间为(﹣∞,﹣1),若a <0,由f′(x )>0得x <﹣1,即函数的单调递增区间为(﹣∞,﹣1),由f′(x )<0,得x >﹣1,即函数的单调递减区间为(﹣1,+∞);(Ⅱ)当a=1时,由(1)得函数的单调递增区间为(﹣1,+∞),函数的单调递减区间为(﹣∞,﹣1), 即当x=﹣1时,函数f (x )取得极大值为f (﹣1)=﹣,无极小值;(Ⅲ)设切点为(m ,ame m ),则对应的切线斜率k=f′(m )=a (1+m )e m ,则切线方程为y ﹣ame m =a (1+m )e m (x ﹣m ),即y=a (1+m )e m (x ﹣m )+ame m =a (1+m )e m x ﹣ma (1+m )e m +ame m =a (1+m )e m x ﹣m 2ae m ,∵y=e (x ﹣)=y=ex ﹣e ,∴∴,即若直线y=e (x ﹣)是曲线y=f (x )的切线,则实数a 的值是.19.已知椭圆C : +=1(a >b >0),离心率e=,已知点P (0,)到椭圆C 的右焦点F 的距离是.设经过点P 且斜率存在的直线与椭圆C 相交于A 、B 两点,线段AB 的中垂线与x 轴相交于一点Q . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)求点Q 的横坐标x 0的取值范围.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(I )由题意可得:e==, =,又a 2+b 2=c 2.联立解出即可得出. (II )设直线AB 的方程为:y=kx+,(k ≠0),A (x 1,y 1),B (x 2,y 2),线段AB 的中点M (x 3,y 3),直线AB 的方程与题意方程联立化为:(1+4k 2)x 2+12kx ﹣7=0,利用中点坐标公式与根与系数的关系可得可得中点M 的坐标,可得线段AB 的中垂线方程,令y=0,可得x 0,通过对k 分类讨论,利用基本不等式的性质即可得出.【解答】解:(I )由题意可得:e==, =,又a 2+b 2=c 2.联立解得:c 2=12,a=4,b=2.∴椭圆C 的标准方程为: =1.(II )设直线AB 的方程为:y=kx+,(k ≠0),A (x 1,y 1),B (x 2,y 2),线段AB 的中点M (x 3,y 3),线段AB 的中垂线方程为:y ﹣y 3=﹣(x ﹣x 3).联立,化为:(1+4k 2)x 2+12kx ﹣7=0,△>0,∴x 1+x 2=﹣, ∴x 3==﹣.y 3=kx 3+=.∴线段AB 的中垂线方程为:y ﹣=﹣(x+).令y=0,可得x 0==,k >0时,0>x 0≥.k <0时,0<x 0≤.k=0时,x 0=0也满足条件.综上可得:点Q 的横坐标x 0的取值范围是.20.对于序列A 0:a 0,a 1,a 2,…,a n (n ∈N *),实施变换T 得序列A 1:a 1+a 2,a 2+a 3,…,a n ﹣1+a n ,记作A 1=T (A 0):对A 1继续实施变换T 得序列A 2=T (A 1)=T (T (A 0)),记作A 2=T 2(A 0);…;A n ﹣1=T n ﹣1(A 0).最后得到的序列A n ﹣1只有一个数,记作S (A 0).(Ⅰ)若序列A 0为1,2,3,求S (A 0);(Ⅱ)若序列A 0为1,2,…,n ,求S (A 0);(Ⅲ)若序列A 和B 完全一样,则称序列A 与B 相等,记作A=B ,若序列B 为序列A 0:1,2,…,n 的一个排列,请问:B=A 0是S (B )=S (A 0)的什么条件?请说明理由.【考点】数列与函数的综合.【分析】(I )序列A 0为1,2,3,A 1:1+2,2+3,A 2:1+2+2+3,即可得出S (A 0). (II )n=1时,S (A 0)=1+2=3;n=2时,S (A 0)=1+2+2+3=1+2×2+3;n=3时,S (A 0)=1+2+2+3+2+3+3+4=1+3×2+3×3+4,…;取n 时,S (A 0)=•1+•2+•3+…+•n +•(n+1);利用倒序相加法和二项式定理的性质,即可求得结果.(III )序列B 为序列A 0:1,2,…,n 的一个排列,B=A 0⇒S (B )=S (A 0).而反之不成立.例如取序列B 为:n ,n ﹣1,…,2,1.满足S (B )=S (A 0).即可得出.【解答】解:(I )序列A 0为1,2,3,A 1:1+2,2+3,A 2:1+2+2+3,即8,∴S (A 0)=8. (II )n=1时,S (A 0)=1+2=3.n=2时,S (A 0)=1+2+2+3=1+2×2+3=8,n=3时,S (A 0)=1+2+2+3+2+3+3+4=1+3×2+3×3+4, …,取n ﹣1时,S (A 0)=•1+•2+•3+…+(n ﹣1)+•n,取n 时,S (A 0)=•1+•2+•3+…+•n +•(n+1),利用倒序相加可得:S (A 0)=×2n =(n+2)•2n ﹣1. 由序列A 0为1,2,…,n ,可得S (A 0)=(n+2)•2n ﹣1. (III )序列B 为序列A 0:1,2,…,n 的一个排列,B=A 0⇒S (B )=S (A 0).而反之不成立. 例如取序列B 为:n ,n ﹣1,…,2,1.满足S (B )=S (A 0). 因此B=A 0是S (B )=S (A 0)的充分不必要条件.。
福建省厦门市双十中学2017届高三上学期期中考试(理)一、选择题:(本大题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的一项。
)1、若集合{}260,A x x x x N *=-≤∈,则4,xN x A x *⎧⎫∈∈⎨⎬⎩⎭中元素的个数( ) A .3个 B .4个 C .1个 D .2个 2、已知复数1i z =-,则21z z-= ( ) A. 12- B. 12 C. 1i 2- D. 1i 23、采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9。
抽到的32人中,编号落入区间的人做问卷,其余的人做问卷。
则抽到的人中,做问卷的人数为( ) A. 15 B. 16 C. 17 D.184、已知直线与圆22:1O x y +=相交于A 、B 两点,且3AB =,则的值是 ( )A. 0 B .C .D . 5、执行图中的程序框图,若输出的5n =,则输入整数p 的最大值是( )A .15B .14C .7D .66、一个几何体的三视图如图所示,其中主视图和左视图是腰长为2的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是( ) A .323πB .43πC .48πD .12π[]1,450A B B 0=++c by ax OB OA ⋅1234-12-7、已知等比数列的首项12015a =,公比为,记,则达到最大值时,的值为( )A .B .C .D .138、设是两条不同直线,是两个不同的平面,下列命题正确的是( ) A . B .,则 C .,则 D .,则 9、若将函数5()f x x =表示为250125()(1)(1)(1)f x a a x a x a x =+++++⋅⋅⋅++,其中0a 、1a 、2a 、⋅⋅⋅、5a 为实数,则3a =( )A .5B .5-C .10D .10-10、已知1F 、2F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点关于渐近线的对称点恰好落在以为圆心,为半径的圆上,则双曲线的离心率为( ) A . B . C . D . 11、已知函数有3个零点,则实数的取值范围是( )A .B .1(,1)4C .(0,1)D .(,1)-∞ 12、设数列的前项和为,且,为等差数列,则( )A .B .C .D .第Ⅱ卷二.填空题:(本大题共4小题,每小题5分,共20分)13、已知向量(,1)a λ=,(2,1)b λ=+ ,若a b a b +=- ,则实数的值为14、设等差数列的前项和为,且满足2n n a S An Bn C +=++,若5A =,1C =,{}n a 12q =123n n b a a a a = n b n 101112,m n ,αβ//,////,//m n m n αβαβ且则,m n αβαβ⊥⊥⊥且m n ⊥,,m n m n αβ⊥⊂⊥αβ⊥,,//,//m n m n ααββ⊂⊂//αβ2F 1F 1OF 33223(,1)4{}n a n n S 121a a ==(){}2n n nS n a ++n a =12n n -1121n n -++2121n n --112n n ++λ则B =______. 15、已知(,)2παπ∈,若,则 . 16、已知函数,对于任意,都存在,使得,则的最小值为三.解答题:(本大题共6小题,共70分。
2020届厦门双十中学2017级高三上学期开学考试
数学(理)试卷
★祝考试顺利★
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知{}|21x A x =<,{|B x y ==,则A B =I ( ) A. [)2,0- B. []2,0- C. ()0,∞+ D. [)2,-+∞
【答案】A
【解析】
【分析】
分别计算出集合A 、B ,再取交集即可。
【详解】解:{}{}()|21|0,0x A x x x =<=<=-∞,{[)|2,B x y ===-+∞ ∴[)2,0A B =-I .
故选:A.
2.已知i 为虚数单位,a R ∈,若复数(1)i z a a =+-的共轭复数z 在复平面内对应的点位于第三象限,且5z z ⋅=,则z =( )
A. 12i -+
B. 12i --
C. 2i -
D. 23i -+
【答案】A
【解析】
【分析】
由题意可得()2215a a +-=,解得1a =-或2a =,据此可知12i z =-+或2i z =-,结合共轭复数的特征确定z 的值即可. 【详解】由5z z ⋅=可得()2215a a +-=,解得1a =-或2a =,所以12i z =-+或2i z =-, 因为z 在复平面内对应的点位于第三象限,所以12i z =-+.
本题选择A 选项.
3.我国古代著名的《周髀算经》
中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷()gu ǐ长一丈三尺五寸,夏至晷长一尺六寸.意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为
1996
分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.则“立春”时日影长度为( )
A. 19533分
B. 110522分
C. 211513分
D. 5
12506
分 【答案】B
【解析】
【分析】
首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出1190d 12=-,进而求出立春”时日影长度为110522. 【详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为1996分, 且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.
135012d 160∴+=,
解得1190d 12=-, ∴“立春”时日影长度为:11901135031052(122⎛⎫+-⨯= ⎪⎝⎭
分). 故选B .。