线代1-1,2,3,4重.
- 格式:ppt
- 大小:164.50 KB
- 文档页数:6
2021考研数学大纲解析之线性代数2021年8月26日教育部考试中心发布了2021年全国硕士研究生入学统一考试数学考试大纲。
对比2021年和2021年的考研大纲,可以这两年的大纲基本上,没有发生任何变化。
其实,考研数学作为考研科目中最稳定的一门,基本上不存在大的调整,所以我们完全可以预测今年的考试风格难易以及重点等等会和以往保持一致。
根据考生的学习特点以及考研数学对考生的要求,全年的复习应该分为四个阶段,分别为:基础阶段、强化阶段、提高阶段以及最后的冲刺模考阶段。
我们接下来,具体分析一下,每个阶段考生的学习重点以及时间规划。
首先,是基础阶段。
基础阶段的复习,应该尽早开始复习。
对于2021年的考生来说,最晚开始复习数学的时间不能晚于看到这篇文章的时间,一直到什么时候结束呢?一般来说,要到明年的6月底。
这是时间安排,基础阶段的复习重点就是针对考研的“三基”:基本概念、基本理论以及基本方法。
以行列式的学习为例,在基础阶段,考生首先要能够理解行列式的基本概念,行列式指的是不同行不同列元素n项乘积的代数和。
其中,“代数”指的是“有符号”,符号的正负取决于列排列的逆序数,当逆序数为奇数时,符号为负;逆序数为偶数时,符号为正。
这一点,考生要明白。
而且,在算列排列的逆序数时,必须得保证行排列是按照自然顺序排列的。
对于基本理论,指的是考生要能够掌握行列式的性质和展开定理。
对于性质,考生要掌握以下几条:交换行与列,行列式的值不变;交换任意两行,行列式的值变号;将行列式的某一行乘以常数k之后,行列式值变为原来的k倍;某一行所有元素均为两个数之和时,行列式可以按照该行拆分。
对于这几条性质,考生首先要记住他们的内容,另外,还要知道,这些性质是对行列式进行变形的。
对于,展开定理,内容是行列式的值等于某一行所有元素与其代数余子式的乘积之和。
在掌握了基本理论后就是掌握基本方法,对于行列式,基本方法就是会计算简单的行列式。
对于能够会利用定义概念来算上三角行列式的值等于主对角线元素的乘积,能够会计算逆序数,能够通过行列式的性质计算行列式的值。
线性代数性质公式整理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN线性代数第一章行列式一、相关概念1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积的代数和,这里是1,2,···n的一个排列。
当是偶排列时,该项的前面带正号;当是奇排列时,该项的前面带负号,即(1.1)这里表示对所有n阶排列求和。
式(1.1)称为n阶行列式的完全展开式。
2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。
一个排列的逆序总是称为这个排列的逆序数。
用表示排列的逆序数。
3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。
4.2阶与3阶行列式的展开——,5.余子式与代数余子式——在n阶行列式中划去所在的第i 行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式称为的余子式,记为;称为的代数余子式,记为,即。
6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作。
二、行列式的性质1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。
2.两行互换位置,行列式的值变号。
特别地,两行相同(或两行成比例),行列式的值为0.3.某行如有公因子k,则可把k提出行列式记号外。
4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和:5.把某行的k倍加到另一行,行列式的值不变:6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0三、行列式展开公式n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即|A|按i行展开的展开式|A|按j列展开的展开式四、行列式的公式1.上(下)三角形行列式的值等于主对角线元素的乘积;2.关于副对角线的n阶行列式的值3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则4.范德蒙行列式5.抽象n阶方阵行列式公式 (矩阵)若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:;; |AB|=|A||B|;;;;若,则,且特征值相同。
考研数学一大纲重点内容回顾线性代数部分知识点汇总线性代数是考研数学一科目中非常重要的一部分。
在考试中,线性代数占据了相当大的比重,因此熟练掌握线性代数的知识点是非常重要的。
本文将回顾考研数学一大纲中线性代数部分的重点知识点,帮助考生在备考中能够有针对性地进行复习,并为考试发挥出最佳水平做准备。
知识点1:向量空间向量空间是线性代数中最基础的概念之一。
考生需要掌握向量空间的定义、性质和基本运算法则。
此外,需要掌握向量空间的子空间、线性相关性和线性无关性等概念。
知识点2:矩阵与行列式矩阵和行列式也是考研数学一线性代数部分的重要内容。
考生需要掌握矩阵的运算法则,包括矩阵的加法、乘法和转置等运算。
同时,需要了解矩阵的秩以及矩阵可逆的条件。
在行列式方面,需要熟悉行列式的性质,以及行列式的计算方法和展开式。
知识点3:线性方程组线性方程组是线性代数中的一个重要应用,也是考研数学一中的常见考点。
考生需要掌握线性方程组的解法,包括消元法、矩阵法和特征值法等。
同时,还需要了解线性方程组解的存在唯一性条件,以及齐次线性方程组和非齐次线性方程组的关系。
知识点4:特征值和特征向量特征值和特征向量是线性代数中的重要概念,也是考研数学一中的热点内容。
考生需要了解特征值和特征向量的定义、性质和计算方法。
同时,需要掌握矩阵的对角化和相似对角化的相关知识。
知识点5:线性变换线性变换是线性代数的核心内容之一。
考生需要了解线性变换的定义和性质,以及线性变换的矩阵表达式和几何意义。
此外,还需要了解线性变换的基矩阵和过渡矩阵的计算方法。
知识点6:内积空间内积空间是线性代数中的高级内容,也是考研数学一中的难点。
考生需要了解内积空间的定义和性质,以及内积空间的标准正交基和正交投影的相关知识。
同时,还需要了解内积空间的正交补和正交矩阵的概念和计算方法。
综上所述,考研数学一大纲重点内容回顾线性代数部分的知识点汇总包括了向量空间、矩阵与行列式、线性方程组、特征值和特征向量、线性变换以及内积空间等内容。
线性代数 第一章 行列式§1 二阶和三阶行列式一、二元一次线性方程组与二阶行列式结论:如果112212210a a a a -≠,如此二元线性方程组11112212112222a x a xb a x a x b +=⎧⎨+=⎩ 的解为122122*********b a a b x a a a a -=-,1121212112121a b b a x a b b a -=-。
定义:设11122122,,,a a a a ,记11221221a a a a -为11122122a a a a 。
称11122122a a a a 为二阶行列式 有了行列式的符号,二元线性方程组的求解公式可以改写为112222*********b a b a x a a a a =,111122211122122a b a b x a a a a =二、三阶行列式与三元一次线性方程组定义:111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++---定理:如果1112132122233132330a a a D a a a a a a =≠,如此***123(,,)x x x 是下面的三元线性方程组的解111122133121122223323113223333a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩ 当且仅当*1x =112132222333233/b a a b a a D b a a ,*2x =111132122331333/a b a a b a D a b a ,*3x =111212122231323/a a b a a b D a a b 其中111213212223313233a a a a a a a a a 为系数行列式。
1、行列式公式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A = ; Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k-⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。
线性代数知识点、难点1、n 阶行列式的定义 对于n 阶行列式的定义,重点应把握两点:一是每一项的构成,二是每一项的符号。
每一项的构成是不同行不同列的n 个元素构成,一个n 阶行列式共有!n 项。
乘积项为1212...n j j nj a a a 的符号取决于12,,...n j j j 的逆序数,即当12,,...n j j j 为偶排列时取正号,当12,,...n j j j 为奇排列时取负。
例1 行列式 3122D =为二阶行列式,每一项由2个元素构成,第一项为3*2,符号为正,第二项为1*2,符号为负。
2、余子式和代数余子式余子式和代数余子式的概念容易出错,在计算中应注意。
代数余子式(1)i j ij ij A M +=-,其中ij M 为余子式。
一般这类题,重点考察对代数余子式的理解和其基本性质的应用,所以考生一定要灵活掌握,掌握基本思想。
下面请看一例: 例2 设行列式3040222207005322D =--则第4行元素余子式之和的值为__________ 【分析】4142434441424344M M M M A A A A +++=-+-+3230403402222(7)(1)22228071111111+==--=------部分考生答案为0。
原因是将余子式和代数余子式混淆了。
本题中第四行元素的代数余子式之和为0。
因为41424344414243441(2222)02A A A A A A A A +++=+++=。
3、行列式按一行(列)展开设()ij n n A a ⨯=,则1122||,...0,i j i j in jn A i ja A a A a A i j=⎧+++=⎨≠⎩ 或1122||,...0,i j i j ni nj A i ja A a A a A i j =⎧+++=⎨≠⎩注意:公式中使用的是代数余子式,而不是余子式。
4、行列式的计算 行列式的基本计算方法有三个:例21 归化 利用行列式的性质将行列式化成较简单且易于计算的行列式(如三角行列式等);例22 降阶 利用行列式的展开定理,将高阶行列式化成低阶行列式进行计算。
线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
大一线性代数知识点汇总一、向量和矩阵线性代数是数学中重要的一部分,其基础知识主要涉及向量和矩阵的运算。
在大一学习线性代数时,我们需要掌握以下的基本知识点:1. 向量的定义和表示:向量由有序数构成,可以用箭头表示,也可以用坐标表示。
2. 向量的加法和减法:向量的加法满足交换律和结合律,减法可以转化成加法运算。
3. 向量的数量积:向量的数量积表示两个向量的乘积,满足分配律、结合律和交换律。
4. 向量的模和单位向量:向量的模表示向量的长度,单位向量表示模为1的向量。
5. 矩阵的定义和表示:矩阵由数按一定的行列排列而成,可以用方括号表示。
6. 矩阵的加法和减法:矩阵的加法和减法满足相应的运算法则。
7. 矩阵的乘法:矩阵的乘法不满足交换律,但满足结合律。
8. 矩阵的转置:矩阵的转置是将矩阵的行变为列,列变为行。
9. 矩阵的逆:若矩阵A存在逆矩阵A^-1,则A*A^-1=A^-1*A=I,其中I为单位矩阵。
二、线性方程组线性方程组也是线性代数中的重要内容,大一时需要学习如下的知识点:1. 线性方程组的定义和表示:由n个线性方程组成,其中每个方程都是关于未知数x1, x2, ..., xn的线性方程。
2. 线性方程组的解集:线性方程组的解集可以为空集、有唯一解、有无穷多解。
3. 线性方程组的解法:求解线性方程组主要有高斯消元法、矩阵的方法和克拉默法则。
4. 线性方程组的矩阵表示:用矩阵和向量表示线性方程组,通过高斯消元法求解。
5. 线性相关和线性无关:向量组中的向量经线性组合得到零向量时,称这个向量组线性相关;线性无关则相反。
6. 矩阵的秩:矩阵的秩是指线性无关的行向量或列向量的最大个数。
三、向量空间和线性映射向量空间和线性映射是线性代数的重要内容,大一需要学习以下的知识点:1. 向量空间:满足若干规定条件的向量的集合。
2. 向量空间的子空间:向量空间的非空子集,在子集中仍然满足向量加法和数量乘法的封闭性。
3. 基和维数:一个向量空间中的一组向量如果既线性无关又能张成整个向量空间,则称为基,向量空间的基的个数称为维数。