2014高考数学一轮 一课双测A B精练(四十六)两直线的位置关系 文
- 格式:doc
- 大小:132.00 KB
- 文档页数:5
安徽省淮北市高考数学一轮复习:46 两条直线的位置关系姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)已知直线 , ,则它们的图像可能为()A .B .C .D .2. (2分) (2017高一下·长春期末) 原点和点(1,1)在直线两侧,则的取值范围是()A .B .C .D .3. (2分) (2018高二上·巴彦月考) 光线通过点A(2,3),在直线l:上反射,反射光线经过点B(1,1),则反射光线所在直线方程为()A .B . 4x+5y-1=0C . 3x-4y+1=0D . 3x-4y-1=04. (2分)平面直角坐标系中直线y=2x+1关于y=x﹣2对称的直线l方程为()A . x﹣4y﹣11=0B . 4x﹣y+11=0C . x﹣2y+7=0D . x﹣2y﹣7=05. (2分)如果直线(3a+2)x+ay-1=0与直线2ax+y-2a+1=0互相平行,则实数a的值为()A . 0或-B . -C . 2D . 2或-6. (2分)过点(1,2)且与原点的距离最大的直线方程是()A . 2x+y-4=0B . x+2y-5=0C . x+3y-7=0D . 3x+y-5=07. (2分)已知直线3x+4y﹣5=0与圆x2+y2=4相交于A,B两点,那么弦AB的长等于()A . 3B . 2C .D . 18. (2分)若函数,函数,则的最小值为()A .B .C .D .9. (2分)点(a,b)关于直线x+y=1的对称点的坐标是()A . (1﹣b,1﹣a)B . (1﹣a,1﹣b)C . (﹣a,﹣b)D . (﹣b,﹣a)10. (2分) (2019高一下·朝阳期末) 已知直线,,若,则实数的值是()A .B .C .D . 或11. (2分)若P(a,b),Q(c,d)都在直线y=mx+k上,则|PQ|用a,c,m表示为()A .B . |m(a-c)|C .D .12. (2分) (2019高二上·兴宁期中) 已知点P(3,2)与点Q(1,4)关于直线对称,则直线的方程为()A . x+y+1=0B . x-y=0C . x-y+1=0D . x+y=0二、填空题 (共5题;共5分)13. (1分) (2018高二上·武邑月考) 过点作直线交轴于点,过点作交轴于点,延长至点,使得,则点的轨迹方程为________.14. (1分) (2018高二上·嘉兴期末) 若直线与直线互相平行,则实数________,若这两条直线互相垂直,则 ________.15. (1分)(2019·临沂模拟) 若,则定义直线为曲线,的“分界直线”.已知,则的“分界直线”为________.16. (1分) (2020高二上·黄陵期末) 若直线始终平分圆的周长,则的最小值为________.17. (1分)点A(1,2)关于点P(3,4)对称的点的坐标为________ .三、解答题 (共5题;共45分)18. (5分) (2019高二上·唐山月考) 已知圆O:x2+y2=8内有一点P0(﹣1,2),AB为过点P0且倾斜角为α的弦.(1)当α=135°时,求弦AB的长;(2)当弦AB被P0平分时,求直线AB的方程.19. (10分) (2016高二上·衡水期中) 如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.20. (10分)(2013·上海理) 已知椭圆C的两个焦点分别为F1(﹣1,0)、F2(1,0),短轴的两个端点分别为B1 , B2(1)若△F1B1B2为等边三角形,求椭圆C的方程;(2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程.21. (10分)已知函数f(x)=x3﹣3x及y=f(x)上一点P(1,﹣2),过点P作直线l.(1)求使直线l和y=f(x)相切且以P为切点的直线方程;(2)求使直线l和y=f(x)相切且切点异于P的直线方程.22. (10分) (2018高二上·雅安月考) 光线通过点,在直线上反射,反射光线经过点 .(1)求点关于直线对称点的坐标;(2)求反射光线所在直线的一般式方程.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共45分) 18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、22-2、第11 页共11 页。
河北省沧州市高考数学一轮复习:46 两条直线的位置关系姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)设函数,其中表示不超过的最大整数,如,.若直线与函数的图象恰好有3个不同的交点,则实数的取值范围是()A .B .C .D .2. (2分)方程Ax+By+C=0表示倾斜角为锐角的直线,则必有()A . AB>0B . AB<0C . BC>0D . BC<03. (2分)已知等边△ABC的两个顶点A(0,0),B(4,0),且第三个顶点在第四象限,则BC边所在的直线方程是()A . y=﹣xB . y=﹣(x﹣4)C . y= (x﹣4)D . y= (x+4)4. (2分)点P(1,2)关于x轴和y轴的对称点依次是()A . (2,1),(﹣1,﹣2)B . (﹣1,2),(1,﹣2)C . (1,﹣2),(﹣1,2)D . (﹣1,﹣2),(2,1)5. (2分)如果直线x+2y-1=0和y=kx互相平行,则实数k的值为().A . 2B .C . -2D . -6. (2分)在平面直角坐标系中,点P (-1,2 )关于x轴的对称点的坐标为A . (2,-3 )B . (1,-2 )C . (2,-1 )D . (-2,1 )7. (2分) (2018高二上·武邑月考) 若圆C:x2+y2-4x-4y-10=0上至少有三个不同的点到直线l:x -y+c =0的距离为2,则c的取值范围是()A . [-2 ,2 ]B . (-2 ,2 )C . [-2,2]D . (-2,2)8. (2分)在平面直角坐标系中,点分别是轴、轴上两个动点,又有一定点,则的最小值是()A . 10B . 11C . 12D . 139. (2分)点(a,b)关于直线x+y=1的对称点的坐标是()A . (1﹣b,1﹣a)B . (1﹣a,1﹣b)C . (﹣a,﹣b)D . (﹣b,﹣a)10. (2分)“”是“直线与直线垂直”的()A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件11. (2分) (2016高一下·定州期末) 当直线(sin2α)x+(2cos2α)y﹣1=0(<α<π)与两坐标轴围成的三角形面积最小时,α等于()A .B .C .D .12. (2分)直线l的方程x﹣2y+6=0的斜率和它在x轴与y轴上的截距分别为()A . , -6,3B . , 6,3C . 2,-6,3D . , -6,-3二、填空题 (共5题;共5分)13. (1分)设P点在x轴上,Q点在y轴上,PQ的中点是M(﹣1,2),则|PQ|等于________14. (1分)已知直线l1:(k﹣3)x+(4﹣k)y+1=0与l2:2(k﹣3)x﹣2y+3=0平行,则k的值是________15. (1分)已知直线L斜率为﹣3,在y轴上的截距为7,则直线l的方程为________16. (1分)当θ为________时,点P(﹣,)到直线xcosθ+ysinθ+2=0的距离最大,最大距离是________.17. (1分)以,为端点的线段的垂直平分线方程是 ________.三、解答题 (共5题;共45分)18. (5分) (2018高一上·广西期末) 已知直线经过点,其倾斜角为60°.(1)求直线的方程;(2)求直线与两坐标轴围成三角形的面积.19. (10分) (2016高一下·普宁期中) 如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C (﹣4,0),D(0,4)设△AOB的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值;(2)设点P在圆E上,使△PCD的面积等于12的点P有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.20. (10分)已知F1 , F2是椭圆+=1(a>b>0)的左、右焦点,A是椭圆上位于第一象限内的一点,=0,若椭圆的离心率等于.(1)求直线AO的方程(O为坐标原点);(2)直线AO交椭圆于点B,若三角形ABF2的面积等于4,求椭圆的方程.21. (10分) (2017高一上·武邑月考) 如图,在平面直角坐标系内,已知点,,圆的方程为,点为圆上的动点.(1)求过点的圆的切线方程.(2)求的最大值及此时对应的点的坐标.22. (10分) (2018高二上·雅安月考) 光线通过点,在直线上反射,反射光线经过点 .(1)求点关于直线对称点的坐标;(2)求反射光线所在直线的一般式方程.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共45分) 18-1、18-2、19-1、19-2、20-1、答案:略21-1、21-2、22-1、22-2、。
课时作业(四十四) [第44讲 两直线的位置关系](时间:35分钟 分值:80分)基础热身1.[2012·嘉兴一模] “k =3”是“两直线kx +3y -2=0和(2-k )x +y -7=0互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件2.已知直线l 1经过两点(-2,3),(-2,-1),直线l 2经过两点(2,1),(a ,-5),且l 1∥l 2,则a =( )A .-2B .2C .4D .33.若点A (3,-4)与点A ′(5,8)关于直线l 对称,则直线l 的方程为( )A .x +6y +16=0B .6x -y -22=0C .6x +y +16=0D .x +6y -16=04.[2012·嘉兴检测] 已知双曲线x 2-my 2=1的一条渐近线与直线2x -y +1=0垂直,则实数m =________.能力提升5.若过点A (4,sin α)和B (5,cos α)的直线与直线x -y +c =0平行,则|AB |的值为( )A .6 B. 2C .2D .2 26.过点(1,0)且与直线x -2y -2=0平行的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -1=0D .x +2y -1=07.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( )A.1710B.175C .8D .28.入射光线沿直线x +2y +c =0射向直线l :x +y =0,被直线l 反射后的光线所在的直线方程为( )A .2x +y +c =0B .2x +y -c =0C .2x -y +c =0D .2x -y -c =09.已知实数x ,y 满足2x +y +5=0,那么x 2+y 2的最小值为________.10.[2012·湖州二模] 已知a ,b 为正数,且直线2x -(b -3)y +6=0与直线bx +ay -5=0互相垂直,则2a +3b 的最小值为________.11.[2012·杭州模拟] 设曲线f (x )=2ax 3-a 在点(1,a )处的切线与直线2x -y +1=0平行,则实数a 的值为________.12.(13分)已知正方形的中心为G (-1,0),一边所在直线的方程为x +3y -5=0,求其他三边所在直线方程.难点突破13.(12分)已知A (3,1),在直线x -y =0和y =0上分别有点M 和N 使△AMN 的周长最短,求点M ,N 的坐标.课时作业(四十四)【基础热身】1.A [解析] k =3可得A 1A 2+B 1B 2=0,A 1A 2+B 1B 2=0可得k =3或-1.故选A.2.B [解析] 由题意知直线l 1的倾斜角为90°,而l 1∥l 2,所以直线l 2的倾斜角也为90°,又直线l 2经过两点(2,1),(a ,-5),所以a =2.故选B.3.D [解析] ∵点A 与A ′关于直线l 对称,∴AA ′的中点在直线l 上,且k AA ′·k l =-1.∵AA ′的中点为(4,2),k AA ′=6,∴k l =-16.∴直线l 的方程为y -2=-16(x -4),即x +6y -16=0. 4.4 [解析] 双曲线渐近线斜率为±m m ,∴-m m·2=-1,∴m =4. 【能力提升】5.B [解析] 由题知sin α-cos α4-5=1,得cos α-sin α=1, 则|AB |=1+(sin α-cos α)2= 2.6.A [解析] 设直线方程为x -2y +c =0,又经过点(1,0),故c =-1,所求方程为x -2y -1=0.故选A.7.D [解析] 由题意知63=m 4≠14-3⇒m =8, 直线6x +my +14=0可化为3x +4y +7=0,则两平行线之间的距离是d =|-3-7|32+42=2.故选D.8.B [解析] 在入射光线上取点⎝⎛⎭⎫0,-c 2, 它关于直线l 的对称点为⎝⎛⎭⎫c 2,0,可排除A ,C ;在入射光线上取点(-c ,0),它关于直线l 的对称点为(0,c ),可排除D.故选B. 9.5 [解析] x 2+y 2表示点(x ,y )到原点的距离, 根据数形结合得x 2+y 2的最小值为原点到直线2x +y +5=0的距离,即d =55= 5. 10.25 [解析] b =3时两直线不垂直,b ≠3时,由两条直线垂直的充要条件可得:a =2b b -3, ∴2a +3b =3b +4b b -3=3b +12b -3+4=3(b -3)+12b -3+13 ≥23(b -3)·12b -3+13=25,当且仅当a =b =5时取“=”.故2a +3b 的最小值为25. 11.13[解析] ∵f ′(x )=6ax 2,∴切线斜率k =f ′(1)=6a ,又切线与直线2x -y +1=0平行,∴6a =2,∴a =13. 12.解:正方形中心G (-1,0)到四边距离均为|-1-5|12+32=610. 设正方形中与已知直线平行的一边所在直线方程为x +3y -c 1=0,则|-1-c 1|10=610,即|c 1+1|=6, 解得c 1=5或c 1=-7,故与已知边平行的直线方程为x +3y +7=0.设正方形另一组对边所在直线方程为3x -y +c 2=0,则|3×(-1)+c 2|10=610,即|c 2-3|=6, 解得c 2=9或c 2=-3.所以正方形另两边所在直线的方程为3x -y +9=0和3x -y -3=0,综上所述,正方形其他三边所在直线的方程分别为x +3y +7=0,3x -y +9=0,3x -y -3=0.【难点突破】13.解:A (3,1)关于y =x 的对称点为A 1(1,3),A (3,1)关于y =0的对称点为A 2(3,-1),△AMN 的周长最小值为|A 1A 2|,|A 1A 2|=25,A 1A 2的方程为2x +y -5=0.A 1A 2与x -y =0的交点为M ,由⎩⎪⎨⎪⎧2x +y -5=0,x -y =0⇒M 53,53. A 1A 2与y =0的交点为N ,由⎩⎪⎨⎪⎧2x +y -5=0,y =0⇒N 52,0.。
高考数学知识点:两直线的位置关系一、两条直线的位置关系典型例题1:典型例题2:二、两条直线的交点设两条直线的方程是l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则两条直线相交,此解就是交点坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.典型例题3:三、几种距离4、在判断两条直线的位置关系时,首先应分析直线的斜率是否存在,两条直线都有斜率时,可根据斜率的关系作出判断,无斜率时,要单独考虑.5、在使用点到直线的距离公式或两平行线间的距离公式时,直线方程必须先化为Ax+By+C=0的形式,否则会出错.典型例题4:四、对称问题主要包括中心对称和轴对称②直线关于直线的对称可转化为点关于直线的对称问题来解决.典型例题5:典型例题6:1、点到直线的距离问题可直接代入距离公式去求.注意直线方程为一般式.2、点到与坐标轴垂直的直线的距离,可用距离公式求解.也可用如下方法去求解:(1)点P(x0,y0)到与y轴垂直的直线y=a的距离d=|y0-a|.(2)点P(x0,y0)到与x轴垂直的直线x=b的距离d=|x0-b|.3、充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l1和l2,l1∥l2?k1=k2,l1⊥l2?k1·k2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.4、(1)若直线l1和l2有斜截式方程l1:y=k1x+b1,l2:y=k2x +b2,则直线l1⊥l2的充要条件是k1·k2=-1.(2)设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0.则l1⊥l2?A1A2+B1B2=0.【作者:吴国平】。
高考数学(文)一轮:一课双测A+B精练(四十二)空间点、直线、平面间的位置关系1.(·杭州模拟)若a,b,c,d是空间四条直线.如果“a⊥c,b⊥c,a⊥d,b⊥d”,则( )A.a∥b且c∥dB.a,b,c,d中任意两条可能都不平行C.a∥bD.a与b,c与d中至少有一对直线互相平行2.l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面3.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α( )A.不存在B.只有1个C.恰有4个D.有无数多个4.(·广州模拟)在正四棱锥V-ABCD中,底面正方形ABCD的边长为1,侧棱长为2,则异面直线VA与BD所成角的大小为( )A.π6 B.π4C.π3 D.π25.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为( )A.1B.2C.3D.46.(·重庆高考)设四面体的六条棱的长分别为1,1,1,1,2和a,且长为a的棱与长为2的棱异面,则a的取值范围是( )A.(0,2) B.(0,3)C.(1,2) D.(1,3)7.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH 不相交,则甲是乙成立的________条件.8.如图是一几何体的平面展开图,其中ABCD 为正方形,E ,F 分别为PA ,PD 的中点.在此几何体中,给出下面四个结论:①直线BE 与CF 异面;②直线BE 与AF 异面;③直线EF ∥平面PBC ;④平面BCE ⊥平面PAD.其中正确的有________个.9.如图所示,在三棱锥C -ABD 中,E ,F 分别是AC 和BD 的中点,若CD =2AB =4,EF ⊥AB ,则EF 与CD 所成的角是________.10.已知空间四边形ABCD 中,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边BC 、CD 的中点.(1)求证:BC 与AD 是异面直线; (2)求证:EG 与FH 相交.11.如图所示,正方体ABCD -A1B1C1D1中,A1C 与截面DBC1交于O 点,AC ,BD 交于M 点,求证:C1,O ,M 三点共线.12.(·许昌调研)如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綊12AD ,BE 綊12F A ,G ,H 分别为FA ,FD 的中点.(1)求证:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么?1.将图1中的等腰直角三角形ABC 沿斜边BC 的中线折起得到四面体ABCD(如图2),则在四面体ABCD 中,AD 与BC 的位置关系是( )A .相交且垂直B .相交但不垂直C .异面且垂直D .异面但不垂直2.(·哈尔滨模拟)若两条异面直线所成的角为60°,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有________对.3.(·池州模拟)正方形ABCD 中,点E ,F 分别在AB ,CD 上,且AE =2EB ,CF =2FD ,将直角梯形AEFD 沿EF 折起到A ′EFD ′的位置,使点A ′在平面ABCD 上的射影G 恰好落在BC 上.(1)判断直线AA ′与DD ′的位置关系,并证明; (2)证明平面A ′AE ⊥平面A ′BC. [答 题 栏]A 级1._________2._________3._________4._________5._________6._________B 级1.______2.______7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(四十二)A 级1.D2.B3.D4.D5.选CAB ,CD ,EF 和GH 在原正方体中如图所示,显然AB 与CD ,EF 与GH ,AB 与GH 都是异面直线,而AB 与EF 相交,CD 与GH 相交,CD 与EF 平行.故互为异面的直线有且只有三对.6.选A 如图所示的四面体ABCD 中,设AB =a ,则由题意可得CD =2,其他边的长都为1,故三角形ACD 及三角形BCD 都是以CD 为斜边的等腰直角三角形,显然a>0.取CD 中点E ,连接AE ,BE ,则AE ⊥CD ,BE ⊥CD 且AE =BE =1-⎝⎛⎭⎪⎫222=22,显然A ,B ,E 三点能构成三角形,应满足任意两边之和大于第三边,可得2×22>a ,解得0<a< 2. 7.解析:E ,F ,G ,H 四点不共面时,EF ,GH 一定不相交,否则,由于两条相交直线共面,则E ,F ,G ,H 四点共面,与已知矛盾,故甲可以推出乙;反之,EF ,GH 不相交,含有EF ,GH 平行和异面两种情况,当EF ,GH 平行时,E ,F ,G ,H 四点共面,故乙不能推出甲.即甲是乙的充分不必要条件.答案:充分不必要8.解析:如图,易得EF ∥AD ,AD ∥BC ,∴EF ∥BC ,即B ,E ,F ,C 四点共面,则①错误,②正确,③正确,④不一定正确.答案:29.解析:取CB 的中点G ,连接EG ,FG , ∴EG ∥AB ,FG ∥CD.∴EF 与CD 所成角即为∠EFG. 又∵EF ⊥AB ,∴EF ⊥EG , 在Rt △EFG 中,EG =12AB =1,FG =12CD =2,∴sin ∠EFG =12.∴∠EFG =π6.∴EF 与CD 所成的角为π6.答案:π610.证明:(1)假设BC 与AD 共面,不妨设它们所共平面为α,则B 、C 、A 、D ∈α.所以四边形ABCD 为平面图形,这与四边形ABCD 为空间四边形相矛盾.所以BC 与AD 是异面直线.(2)如图,连接AC ,BD ,则EF ∥AC ,HG ∥AC ,因此EF ∥HG ;同理EH ∥FG ,则EFGH 为平行四边形.又EG 、FH 是▱EFGH 的对角线, 所以EG 与HF 相交.11.证明:∵C1∈平面A1ACC1, 且C1∈平面DBC1.∴C1是平面A1ACC1与平面DBC1的公共点. 又∵M ∈AC ,∴M ∈平面A1ACC1. ∵M ∈BD ,∴M ∈平面DBC1,∴M 也是平面A1ACC1与平面DBC1的公共点,∴C1M 是平面A1ACC1与平面DBC1的交线. ∵O 为A1C 与截面DBC1的交点, ∴O ∈平面A1ACC1,O ∈平面DBC1, 即O 也是两平面的公共点,∴O ∈直线C1M ,即C1,O ,M 三点共线. 12.解:(1)证明:由题设知,FG =GA , FH =HD ,所以GH 綊12AD.又BC 綊12AD ,故GH 綊BC.所以四边形BCHG 是平行四边形. (2)C ,D ,F ,E 四点共面.理由如下: 由BE 綊12AF ,G 是FA 的中点知,BE 綊GF , 所以EF 綊BG.由(1)知BG ∥CH ,所以EF ∥CH ,故EC ,FH 共面.又点D 在直线FH 上,所以C ,D ,F ,E 四点共面.B 级1.选C 在图1中的等腰直角三角形ABC 中,斜边上的中线AD 就是斜边上的高,则AD ⊥BC ,翻折后如图2,AD 与BC 变成异面直线,而原线段BC 变成两条线段BD ,CD ,这两条线段与AD 垂直,即AD ⊥BD ,AD ⊥CD ,故AD ⊥平面BCD ,所以AD ⊥BC.2.解析:正方体如图,若要出现所成角为60°的异面直线,则直线需为面对角线,以AC 为例,与之构成黄金异面直线对的直线有4条,分别是A ′B ,BC ′,A ′D ,C ′D ,正方体的面对角线有12条,所以所求的黄金异面直线对共有12×42=24对(每一对被计算两次,所以要除以2).答案:243.解:(1)AA ′∥DD ′,设直线AD 与EF 相交于点O ,翻折后直线A ′D ′仍过O 点, ∴A ,A ′,D ,D ′四点共面于平面OAA ′. 又FD ∥AE ,FD ⊄平面A ′AE , AE ⊂平面A ′AE ,∴FD∥平面A′AE.同理,FD′∥平面A′AE,而FD∩FD′=F,∴平面DFD′∥平面A′AE.又平面OAA′∩平面DFD′=DD′,平面OAA′∩平面A′AE=AA′,∴AA′∥DD′.(2)∵A′G⊥平面ABCD,∴A′G⊥AB.又AB⊥BC,BC∩A′G=G,∴AB⊥平面A′BC.又AB⊂平面A′AE,∴平面A′AE⊥平面A′BC.高考数学(文)一轮:一课双测A+B精练(四十八) 直线与圆、圆与圆的位置关系1.(·人大附中月考)设m>0,则直线2(x+y)+1+m=0与圆x2+y2=m的位置关系为( )A.相切B.相交C.相切或相离D.相交或相切2.(·福建高考)直线x+3y-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于( )A.25B.23C.3D.13.(·安徽高考)若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是( )A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)4.过圆x2+y2=1上一点作圆的切线与x轴,y轴的正半轴交于A,B两点,则|AB|的最小值为( )A.2B.3C.2D.35.(·兰州模拟)若圆x2+y2=r2(r>0)上仅有4个点到直线x-y-2=0的距离为1,则实数r的取值范围为( )A.(2+1,+∞) B.(2-1, 2+1)C.(0, 2-1) D.(0, 2+1)6.(·临沂模拟)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2-2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为( )A.2B.21 2C.22D.27.(·朝阳高三期末)设直线x-my-1=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为23,则实数m的值是________.8.(·东北三校联考)若a,b,c是直角三角形ABC三边的长(c为斜边),则圆C:x2+y2=4被直线l:ax+by+c=0所截得的弦长为________.9.(·江西高考)过直线x +y -22=0上点P 作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.10.(·福州调研)已知⊙M :x2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB|=423,求|MQ|及直线MQ 的方程;(2)求证:直线AB 恒过定点.11.已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM|=|ON|,求圆C 的方程. 12.在平面直角坐标系xOy 中,已知圆x2+y2-12x +32=0的圆心为Q ,过点P(0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B.(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ ―→共线?如果存在,求k 值;如果不存在,请说明理由.1.已知两圆x2+y2-10x -10y =0,x2+y2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.2.(·上海模拟)已知圆的方程为x2+y2-6x -8y =0,a1,a2,…,a11是该圆过点(3,5)的11条弦的长,若数列a1,a2,…,a11成等差数列,则该等差数列公差的最大值是________.3.(·江西六校联考)已知抛物线C :y2=2px(p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO|=|BO|=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ―→,·PF ―→,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.[答 题 栏] A 级1._________2._________3._________4._________5B 级1.______2.______.__________6._________7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(四十八)A 级1.C2.B3.C4.C5.选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l1,l2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l2的距离2+1.6.选D 圆心C(0,1)到l 的距离 d =5k2+1,所以四边形面积的最小值为2×⎝ ⎛⎭⎪⎫12×1×d2-1=2, 解得k2=4,即k =±2. 又k >0,即k =2.7.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1, 即|1-2m -1|1+m2=1,解得m =±33.答案:±338.解析:由题意可知圆C :x2+y2=4被直线l :ax +by +c =0所截得的弦长为24-⎝⎛⎭⎪⎫c a2+b22,由于a2+b2=c2,所以所求弦长为2 3.答案:239.解析:∵点P 在直线x +y -22=0上,∴可设点P(x0,-x0+22),且其中一个切点为M.∵两条切线的夹角为60°, ∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x20+-x0+222=2,解得x0= 2.故点P 的坐标是( 2,2).答案:( 2, 2)10.解:(1)设直线MQ 交AB 于点P ,则|AP|=223,又|AM|=1,AP ⊥MQ ,AM ⊥AQ ,得|MP|=12-89=13,又∵|MQ|=|MA|2|MP|,∴|MQ|=3.设Q(x,0),而点M(0,2),由x2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q(q,0),由几何性质,可知A ,B 两点在以Q M 为直径的圆上,此圆的方程为x(x -q)+y(y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx -2y +3=0,所以直线AB 恒过定点⎝ ⎛⎭⎪⎫0,32. 11.解:(1)证明:由题设知,圆C 的方程为 (x -t)2+⎝ ⎛⎭⎪⎫y -2t 2=t2+4t2, 化简得x2-2tx +y2-4t y =0,当y =0时,x =0或2t ,则A(2t,0); 当x =0时,y =0或4t ,则B ⎝ ⎛⎭⎪⎫0,4t , 所以S △AOB =12|OA|·|OB|=12|2t|·⎪⎪⎪⎪⎪⎪4t =4为定值.(2)∵|OM|=|ON|,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN , ∴C 、H 、O 三点共线,则直线OC 的斜率 k =2t t =2t2=12,∴t =2或t =-2. ∴圆心为C(2,1)或C(-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.解:(1)圆的方程可写成(x -6)2+y2=4,所以圆心为Q(6,0).过P(0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x2+(kx +2)2-12x +32=0,整理得(1+k2)x2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k2)=42(-8k2-6k)>0,解得-34<k<0,即k 的取值范围为⎝ ⎛⎭⎪⎫-34,0. (2)设A(x1,y1)、B(x2,y2) 则OA +OB =(x1+x2,y1+y2), 由方程①得x1+x2=-4k -31+k2.②又y1+y2=k(x1+x2)+4.③因P(0,2)、Q(6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x1+x2)=6(y1+y2),将②③代入上式, 解得k =-34.而由(1)知k ∈⎝ ⎛⎭⎪⎫-34,0,故没有符合题意的常数k. B 级1.解析:由两圆的方程x2+y2-10x -10y =0,x2+y2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230.答案:2x +y -5=02302.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.解:(1)易得B(1,3),A(-1,-3),设圆M 的方程为(x -a)2+y2=a2(a >0),将点B(1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y2=4,因为点A(-1,-3)在准线l 上,所以p2=1,p =2,所以抛物线C 的方程为y2=4x.(2)由(1)得,M(2,0),F(1,0),设点P(x ,y),则PM ,=(2-x ,-y),PF ,=(1-x ,-y),又点P 在抛物线y2=4x 上,所以PM ,·PF ,=(2-x)(1-x)+y2=x2-3x +2+4x =x2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2.(3)证明:设点Q(-1,m),则|QS|=|QT|=m2+5,以Q 为圆心,m2+5为半径的圆的方程为(x +1)2+(y -m)2=m2+5,即x2+y2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y2=4,即x2+y2-4x =0,② 由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝ ⎛⎭⎪⎫23,0.高考数学(文)一轮:一课双测A+B精练(四十)空间几何体的结构特征及三视图和直观图1.(·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A.②③④B.①②③C.①③④D.①②④2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1B.2C.3D.43.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是( )5.如图△A′B′C′是△ABC的直观图,那么△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形6.(·东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A.2+3B.1+3C.2+23D.4+37.(·昆明一中二模)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为1,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号) 2①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆8.(·安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.9.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.10.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.11.(·银川调研)正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?12.(·四平模拟)已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.1.(·江西八所重点高中模拟)底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( )A.23B.3C.3D.42.(·深圳模拟)如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=3,且当规定正视方向垂直平面ABCD时,该几何体的侧视图的面积为22.若M,N分别是线段DE,CE上的动点,则AM+MN+NB的最小值为________.3.一个多面体的直观图、正视图、侧视图如图1和2所示,其中正视图、侧视图均为边长为a的正方形.(1)请在图2指定的框内画出多面体的俯视图;(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(3)求该多面体的表面积.[答题栏]A级1._________2._________3._________4._________5._________6._________B级 1.______2.______ 7.__________8.__________9.__________答案高考数学(文)一轮:一课双测A+B精练(四十)A级1.A2.A3.C4.B5.选B由斜二测画法知B正确.6.选D依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7.解析:如图1所示,直三棱柱ABE-A1B1E1符合题设要求,此时俯视图△A BE是锐角三角形;如图2所示,直三棱柱ABC-A1B1C1符合题设要求,此时俯视图△ABC是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD-A1B1C1D1符合题设要求,此时俯视图(四边形ABCD)是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin60°×2-13×12×2×2sin60°×1=533.答案:5339.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而PA =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2210.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体. 11.解:如图所示,正四棱锥S -ABCD 中, 高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中,OA =SA2-OS2=2,∴AC =4. ∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高, 在Rt △SOE 中,∵OE =12BC =2,SO =3,∴SE =5,即侧面上的斜高为 5.12.解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=12=23,∴S △VBC =12×23×23=6.B 级1.选A 当正视图的面积达最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为2 3.2.解析:依题意得,点E 到直线AB 的距离等于32-⎝ ⎛⎭⎪⎫222=2,因为该几何体的左(侧)视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC =2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA =∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB2=AE2+BE2-2AE ·BEcos120°=9,即AB =3,即AM +MN +NB 的最小值为3.答案:33.解:(1)根据多面体的直观图、正视图、侧视图,得到俯视图如下:(2)证明:如图,连接AC ,BD ,交于O 点,连接OE. ∵E 为AA1的中点,O 为AC 的中点, ∴在△AA1C 中,OE 为△AA1C 的中位线. ∴OE ∥A1C.∵OE ⊄平面A1C1C ,A1C ⊂平面A1C1C , ∴OE ∥平面A1C1C.(3)多面体表面共包括10个面,SABCD =a2, SA1B1C1D1=a22,S △ABA1=S △B1BC =S △C 1DC =S △ADD1=a22,S △AA1D1=S △B1A1B =S △C1B1C =S △DC1D1 =12×2a 2×32a 4=3a28, ∴该多面体的表面积S =a2+a22+4×a22+4×3a28=5a2.。
第2节 两直线的位置关系考试要求 1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知 识 梳 理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A1x +B1y +C1=0,A2x +B2y +C2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式(1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=(x2-x1)2+(y2-y1)2.特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x2+y2. (2)点到直线的距离公式平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax0+By0+C|A2+B2.(3)两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C1-C2|A2+B2.4.对称问题(1)点P (x 0,y 0)关于点A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有⎩⎪⎨⎪⎧y′-y0x′-x0·k =-1,y′+y02=k·x′+x02+b ,可求出x ′,y ′. [常用结论与微点提醒] 1.两直线平行的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行的充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). 2.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0.3.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( ) (4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 解析 (1)两直线l 1,l 2有可能重合.(2)如果l 1⊥l 2,若l 1的斜率k 1=0,则l 2的斜率不存在. 答案 (1)× (2)× (3)√ (4)√2.(老教材必修2P114A10改编)两条平行直线3x +4y -12=0与ax +8y +11=0之间的距离为( ) A.235B.2310C.7D.72解析 由题意知a =6,直线3x +4y -12=0可化为6x +8y -24=0,所以两平行直线之间的距离为|11+24|36+64=72.答案 D3.(老教材必修2P110B1改编)若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9. 答案 -94.(2020·青岛调研)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( ) A.2B.-3C.2或-3D.-2或-3解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或-3. 答案 C5.(2020·重庆重点中学联考)已知直线l 1:y =2x ,则过圆x 2+y 2+2x -4y +1=0的圆心且与直线l 1垂直的直线l 2的方程为________.解析 由题意可知圆的标准方程为(x +1)2+(y -2)2=4,所以圆的圆心坐标为(-1,2),由已知得直线l 2的斜率k =-12,所以直线l 2的方程为y -2=-12(x +1),即x +2y -3=0. 答案 x +2y -3=06.(一题多解)(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 解析 法一 由题意可设P ⎝ ⎛⎭⎪⎫x0,x0+4x0(x 0>0),则点P 到直线x +y =0的距离d =⎪⎪⎪⎪⎪⎪x0+x0+4x02=⎪⎪⎪⎪⎪⎪2x0+4x02≥22x0·4x02=4,当且仅当2x 0=4x0,即x 0=2时取等号. 故所求最小值是4.法二 设P ⎝ ⎛⎭⎪⎫x0,4x0+x0(x 0>0),则曲线在点P 处的切线的斜率为k =1-4x20.令1-4x20=-1,结合x 0>0得x 0=2,∴P (2,32),曲线y =x +4x (x >0)上的点P 到直线x +y =0的最短距离即为此时点P 到直线x +y =0的距离,故d min =|2+32|2=4.答案 4考点一 两直线的平行与垂直【例1】 (1)(2019·河北五校联考)直线l 1:mx -2y +1=0,l 2:x -(m -1)y -1=0,则“m =2”是“l 1∥l 2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件(2)(2020·西安模拟)已知倾斜角为α的直线l 与直线x +3y -1=0垂直,则12cos ⎝⎛⎭⎪⎫2 019π2-2α的值为( )A.310B.35C.-310D.110解析 (1)由l 1∥l 2得-m (m -1)=1×(-2),得m =2或m =-1,经验证,当m =-1时,直线l 1与l 2重合,舍去,所以“m =2”是“l 1∥l 2”的充要条件.(2)∵直线x +3y -1=0的斜率为-13,∴直线l 的斜率k =3,∴tan α=3,∴12cos ⎝ ⎛⎭⎪⎫2 0192π-2α=12cos ⎝ ⎛⎭⎪⎫3π2-2α=-12sin 2α=-12×2sin αcos α=-sin αcos αsin2α+cos2α=-tan αtan2α+1=-39+1=-310.答案 (1)C (2)C规律方法 1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 【训练1】 (1)若直线ax +4y -2=0与直线2x -5y +b =0垂直,垂足为(1,c ),则a +b +c =( ) A.-2B.-4C.-6D.-8(2)已知三条直线2x -3y +1=0,4x +3y +5=0,mx -y -1=0不能构成三角形,则实数m 的取值集合为( )A.⎩⎨⎧⎭⎬⎫-43,23B.⎩⎨⎧⎭⎬⎫-43,23,43C.⎩⎨⎧⎭⎬⎫43,-23D.⎩⎨⎧⎭⎬⎫-43,-23,23 解析 (1)由已知得:⎝⎛⎭⎪⎫-a 4×25=-1,a +4c -2=0,2-5c +b =0,解得a =10,c =-2,b =-12.∴a +b +c =-4.(2)由题意得直线mx -y -1=0与2x -3y +1=0,4x +3y +5=0平行,或者直线mx -y -1=0过2x -3y +1=0与4x +3y +5=0的交点.当直线mx -y -1=0与2x -3y +1=0,4x +3y +5=0分别平行时,m =23或-43;当直线mx -y -1=0过2x -3y +1=0与4x +3y +5=0的交点时,m =-23.所以实数m 的取值集合为⎩⎨⎧⎭⎬⎫-43,-23,23.答案 (1)B (2)D考点二 两直线的交点与距离问题【例2】 (1)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为________________.(2)(2020·广州模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析 (1)先解方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,得l 1,l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53, 于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0.(2)由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a|5.又|15-3a|5≤3,即|15-3a |≤15,解之得0≤a ≤10,所以a 的取值范围是[0,10]. 答案 (1)5x +3y -1=0 (2)[0,10]规律方法 1.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.2.利用距离公式应注意:(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;(2)应用两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为相等.【训练2】 (1)(2020·葫芦岛调研)若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是( ) A.-23B.23C.-32D.32(2)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( ) A.95B.185C.2910D.295(3)(一题多解)直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________.解析 (1)由题意,设直线l 的方程为y =k (x -1)-1,分别与y =1,x -y -7=0联立解得M ⎝ ⎛⎭⎪⎫2k +1,1,N ⎝ ⎛⎭⎪⎪⎫k -6k -1,-6k +1k -1.又因为MN 的中点是P (1,-1),所以由中点坐标公式得k =-23.(2)因为36=48≠-125,所以两直线平行,由题意可知,|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.(3)法一 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由题意知|2k -3+k +2|k2+1=|-4k -5+k +2|k2+1,即|3k -1|=|-3k -3|,∴k =-13. ∴直线l 的方程为y -2=-13(x +1), 即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.法二 当AB ∥l 时,有k =k AB =-13,直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 答案 (1)A (2)C (3)x +3y -5=0或x =-1 考点三 对称问题 多维探究角度1 点关于点对称【例3-1】 直线x -2y -3=0关于定点M (-2,1)对称的直线方程是________________.解析 设所求直线上任一点(x ,y ),则关于M (-2,1)的对称点(-4-x ,2-y )在已知直线上,∴所求直线方程为(-4-x )-2(2-y )-3=0,即x -2y +11=0. 答案 x -2y +11=0规律方法 1.点关于点的对称:点P (x ,y )关于O (a ,b )对称的点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x′=2a -x ,y′=2b -y.2.直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解. 角度2 点关于线对称【例3-2】 如图,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( ) A.33 B.6 C.210D.25解析 直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.答案 C规律方法 1.若点A (a ,b )与点B (m ,n )关于直线Ax +By +C =0(A ≠0,B ≠0)对称,则直线Ax +By +C =0垂直平分线段AB ,即有⎩⎪⎨⎪⎧n -b m -a ·⎝ ⎛⎭⎪⎫-A B =-1,A·a +m 2+B·b +n 2+C =0.2.几个常用结论(1)点(x ,y )关于x 轴的对称点为(x ,-y ),关于y 轴的对称点为(-x ,y ).(2)点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ). (3)点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x ,2b -y ). 角度3 线关于线对称【例3-3】 直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________________.解析 设所求直线上任意一点P (x ,y ), 则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x02-y +y02+2=0,x -x0=-(y -y0),得⎩⎪⎨⎪⎧x0=y -2,y0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0,即x -2y +3=0. 答案 x -2y +3=0规律方法 求直线l 1关于直线l 对称的直线l 2,有两种处理方法:(1)在直线l 1上取两点(一般取特殊点),利用求点关于直线的对称点的方法求出这两点关于直线l 的对称点,再用两点式写出直线l 2的方程.(2)设点P (x ,y )是直线l 2上任意一点,其关于直线l 的对称点为P 1(x 1,y 1)(P 1在直线l 1上),根据点关于直线对称建立方程组,用x ,y 表示出x 1,y 1,再代入直线l 1的方程,即得直线l 2的方程.【训练3】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)(一题多解)直线l 关于点A 对称的直线l ′的方程.解(1)设A ′(x ,y ),则⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,即A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上. 设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,即M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎨⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. (3)法一 在l :2x -3y +1=0上任取两点, 如P (1,1),N (4,3),则P ,N 关于点A 的对称点P ′,N ′均在直线l ′上.易知P ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 法二 设Q (x ,y )为l ′上任意一点,则Q (x ,y )关于点A (-1,-2)的对称点为 Q ′(-2-x ,-4-y ),∵Q ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.数学抽象——活用直线系方程1.数学抽象素养水平表现为能够在关联的情境中抽象出一般的数学概念和规则,能够将已知数学命题推广到更一般情形.本课时中研究直线方程时常用到直线系方程就是其具体表现之一.2.直线系方程的常见类型(1)过定点P (x 0,y 0)的直线系方程是:y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0),也就是平常所提到的直线的点斜式方程;(2)平行于已知直线Ax +By +C =0的直线系方程是:Ax +By +λ=0(λ是参数且λ≠C ); (3)垂直于已知直线Ax +By +C =0的直线系方程是:Bx -Ay +λ=0(λ是参数); (4)过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ,但不包括l 2). 类型1 相交直线系方程【例1】 (一题多解)已知两条直线l 1:x -2y +4=0和l 2:x +y -2=0的交点为P ,求过点P 且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解 法一 解l 1与l 2组成的方程组得到交点P (0,2),因为k 3=34,所以直线l 的斜率k =-43,方程为y -2=-43x ,即4x +3y -6=0.法二 设所求直线l 的方程为:4x +3y +c =0,由法一可知:P (0,2),将其代入方程,得c =-6,所以直线l 的方程为4x +3y -6=0.法三 设所求直线l 的方程为:x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0,因为直线l 与l 3垂直,所以3(1+λ)-4(λ-2)=0,所以λ=11,所以直线l 的方程为4x +3y -6=0. 类型2 平行直线系方程【例2】 已知直线l 1与直线l 2:x -3y +6=0平行,l 1与x 轴、y 轴围成面积为8的三角形,请求出直线l 1的方程.解 设直线l 1的方程为:x -3y +c =0(c ≠6),则令y =0,得x =-c ;令x =0,得y =c 3,依照题意有:12×|-c |×⎪⎪⎪⎪⎪⎪c 3=8,c =±43.所以l 1的方程是:x -3y ±43=0.【例3】 (一题多解)已知直线方程3x -4y +7=0,求与之平行而且在x 轴、y 轴上的截距和是1的直线l 的方程.解 法一 设存在直线l :x a +y b =1,则a +b =1和-b a =34组成的方程组的解为a =4,b =-3.故l 的方程为:x 4-y3=1,即3x -4y -12=0.法二 根据平行直线系方程可设直线l 为:3x -4y +c =0(c ≠7),则直线l 在两坐标轴上截距分别对应的是-c 3,c 4,由-c 3+c4=1,知c =-12.故直线l 的方程为:3x -4y -12=0.类型3 垂直直线系方程【例4】求经过A(2,1),且与直线2x+y-10=0垂直的直线l的方程.解因为所求直线与直线2x+y-10=0垂直,所以设该直线方程为x-2y+c=0,又直线过点A(2,1),所以有2-2×1+c=0,解得c=0,即所求直线方程为x-2y=0.类型4直线系方程的应用【例5】求过直线2x+7y-4=0与7x-21y-1=0的交点,且和A(-3,1),B(5,7)等距离的直线方程.解设所求直线方程为2x+7y-4+λ(7x-21y-1)=0,即(2+7λ)x+(7-21λ)y+(-4-λ)=0,由点A(-3,1),B(5,7)到所求直线等距离,可得|(2+7λ)×(-3)+(7-21λ)×1-4-λ|(2+7λ)2+(7-21λ)2=|(2+7λ)×5+(7-21λ)×7-4-λ|(2+7λ)2+(7-21λ)2,整理可得|43λ+3|=|113λ-55|,解得λ=2935或λ=13,所以所求的直线方程为21x-28y-13=0或x=1.A级基础巩固一、选择题1.直线2x+y+m=0和x+2y+n=0的位置关系是()A.平行B.垂直C.相交但不垂直D.不能确定解析直线2x+y+m=0的斜率k1=-2,直线x+2y+n=0的斜率为k2=-12,则k1≠k2,且k1k2≠-1.答案 C2.(2020·昆明诊断)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1B.2C.2D.22解析 圆(x +1)2+y 2=2的圆心坐标为(-1,0),由y =x +3得x -y +3=0,则圆心到直线的距离d =|-1-0+3|12+(-1)2=2.答案 C3.(2019·高安期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( ) A.6x -4y -3=0 B.3x -2y -3=0 C.2x +3y -2=0D.2x +3y -1=0解析 因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.答案 A4.设a ∈R ,则“a =1”是“直线ax -y +1=0与直线x -ay -1=0平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 当a =1时,两直线分别为x -y +1=0和x -y -1=0,满足两直线平行.当直线ax -y +1=0与直线x -ay -1=0平行时,若a =0,两直线分别为-y +1=0和x -1=0,不满足两直线平行,所以a ≠0.故a 1=-1-a ≠1-1,解得a 2=1,且a ≠-1,所以a =1.即“a =1”是“直线ax -y +1=0与直线x -ay -1=0平行”的充要条件.故选C. 答案 C5.点P 在直线3x +y -5=0上,且点P 到直线x -y -1=0的距离为2,则点P 的坐标为( ) A.(1,2)B.(2,1)C.(1,2)或(2,-1)D.(2,1)或(-2,1)解析设P (x 0,y 0),则⎩⎪⎨⎪⎧3x0+y0-5=0,|x0-y0-1|2=2,解得⎩⎪⎨⎪⎧x0=1,y0=2或⎩⎪⎨⎪⎧x0=2,y0=-1,所以点P 的坐标为(1,2)或(2,-1).故选C. 答案 C6.(2020·河北五校联盟质检)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A.2B.823C.3D.833解析 因为a =0或a =2时,l 1与l 2均不平行,所以a ≠0且a ≠2.因为l 1∥l 2,所以1a -2=a 3≠62a ,所以⎩⎪⎨⎪⎧a (a -2)=3,2a2≠18,a≠2,a≠0,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪⎪⎪6-232=823.故选B.答案 B7.(2020·山东省精英对抗赛)直线ax +y +3a -1=0恒过定点N ,则直线2x +3y -6=0关于点N 对称的直线方程为( ) A.2x +3y -12=0 B.2x +3y +12=0 C.2x -3y +12=0D.2x -3y -12=0解析 由ax +y +3a -1=0可得a (x +3)+y -1=0,令⎩⎪⎨⎪⎧x +3=0,y -1=0,可得x =-3,y =1,∴N (-3,1).设直线2x +3y -6=0关于点N 对称的直线方程为2x +3y +c =0(c ≠-6). 则|-6+3-6|4+9=|-6+3+c|4+9,解得c =12或c =-6(舍去).∴所求直线方程为2x +3y +12=0,故选B. 答案 B8.已知直线l 1:mx -y +3=0与l 2关于直线y =x 对称,l 2与l 3:y =-12x +12垂直,则实数m =( ) A.-12B.12C.-2D.2解析 由于l 2与l 3:y =-12x +12垂直,故l 2的斜率是2.设l 2:2x -y +n =0,因为l 1:mx -y +3=0过定点(0,3),l 2和x 轴的交点为⎝⎛⎭⎪⎫-n 2,0,l 1:mx -y +3=0与l 2关于直线y =x 对称,所以3n 2=-1,则n =-6.易知l 2:2x -y -6=0和直线y =x 的交点为(6,6),该点也在l 1:mx -y +3=0上,所以6m -6+3=0,解得m =12. 答案 B 二、填空题9.点(-1,-2)关于直线x +y =1对称的点的坐标是______.解析 设点(-1,-2)关于直线x +y =1对称的点的坐标是(m ,n ),则⎩⎪⎨⎪⎧m -12+n -22=1,n +2=m +1,所以⎩⎪⎨⎪⎧m =3,n =2,故所求坐标为(3,2). 答案 (3,2)10.(2020·长沙一调)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,由⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得⎩⎪⎨⎪⎧a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.答案 6x -y -6=011.如果平面直角坐标系内的两点A (a -1,a +1),B (a ,a )关于直线l 对称,那么直线l 的方程为________________. 解析 因为直线AB 的斜率为a +1-a a -1-a=-1,所以直线l 的斜率为1.设直线l 的方程为y =x +b ,由题意知直线l 过点⎝ ⎛⎭⎪⎫2a -12,2a +12,所以2a +12=2a -12+b ,解得b =1,所以直线l 的方程为y =x +1,即x -y +1=0. 答案 x -y +1=012.在平面直角坐标系中,已知点P (-2,2),对于任意不全为零的实数a ,b ,直线l :a (x -1)+b (y +2)=0,若点P 到直线l 的距离为d ,则实数d 的取值范围是________. 解析 易知直线l 经过定点(1,-2),则点P 到直线l 的距离d 的最大值为(-2-1)2+(2+2)2=5,最小值为0,所以d 的取值范围是[0,5]. 答案 [0,5]B 级 能力提升13.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线的方程分别是x =0,y =x ,则直线BC 的方程是( ) A.y =3x +5 B.y =2x +3 C.y =2x +5D.y =-x 2+52解析 A 关于直线x =0的对称点是A ′(-3,-1),关于直线y =x 的对称点是A″(-1,3),由角平分线的性质可知,点A′,A″均在直线BC上,所以直线BC的方程为y=2x+5.故选C.答案 C14.(2019·洛阳期末)已知点P(x0,y0)是直线l:Ax+By+C=0外一点,则方程Ax+By +C+(Ax0+By0+C)=0表示()A.过点P且与l垂直的直线B.过点P且与l平行的直线C.不过点P且与l垂直的直线D.不过点P且与l平行的直线解析因为点P(x0,y0)不在直线Ax+By+C=0上,所以Ax0+By0+C≠0,所以直线Ax+By+C+(Ax0+By0+C)=0不经过点P,排除A,B;又直线Ax+By+C+(Ax0+By0+C)=0与直线l:Ax+By+C=0平行,排除C.故选D.答案 D15.(2020·济南质检)l1,l2是分别经过A(1,1),B(0,-1)两点的两条平行直线,当l1,l2间的距离最大时,直线l1的方程是________________.解析当两条平行直线与A,B两点连线垂直时,两条平行直线间的距离最大.因为A(1,1),B(0,-1),所以k AB=-1-10-1=2,所以当l1,l2间的距离最大时,直线l1的斜率为k=-12,此时,直线l1的方程是y-1=-12(x-1),即x+2y-3=0.答案x+2y-3=016.(一题多解)已知直线l经过直线2x+y-5=0与x-2y=0的交点,若点A(5,0)到直线l的距离为3,则l的方程为________.解析法一两直线交点为(2,1),当斜率不存在时,所求直线方程为x-2=0;当斜率存在时,设其为k,则所求直线方程为y-1=k(x-2),即kx-y+(1-2k)=0.由点线距离公式得d =|5k +1-2k|k2+1=3,解得k =43,故所求直线方程为4x -3y -5=0.综上知,所求直线方程为x -2=0或4x -3y -5=0.法二 经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, 所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=2或λ=12.所以l 的方程为x =2或4x -3y -5=0. 答案 x =2或4x -3y -5=0C 级 创新猜想17.(多选题)已知直线l 1:x -y -1=0,动直线l 2:(k +1)x +ky +k =0(k ∈R ),则下列结论正确的是( )A.存在k ,使得l 2的倾斜角为90°B.对任意的k ,l 1与l 2都有公共点C.对任意的k ,l 1与l 2都不重合D.对任意的k ,l 1与l 2都不垂直解析 对于动直线l 2:(k +1)x +ky +k =0(k ∈R ),当k =0时,斜率不存在,倾斜角为90°,故A 正确;由方程组⎩⎪⎨⎪⎧x -y -1=0,(k +1)x +ky +k =0,可得(2k +1)x =0,对任意的k ,此方程有解,可得l 1与l 2有交点,故B 正确;因为当k =-12时,k +11=k -1=k-1成立,此时l 1与l 2重合,故C 错误;由于直线l 1:x -y -1=0的斜率为1,动直线l 2的斜率为k +1-k=-1-1k ≠-1,故对任意的k ,l 1与l 2都不垂直,故D 正确.答案 ABD18.(多填题)在平面直角坐标系内,已知A (1,2),B (1,5),C (3,6),D (7,-1),则平面内任意一点到点A 与点C 的距离之和的最小值为________,平面内到A ,B ,C ,D 的距离之和最小的点的坐标是________.解析 设平面上任一点M ,因为|MA |+|MC |≥|AC |=25,当且仅当A ,M ,C 共线,且M 在A ,C 之间时取等号,同理,|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线,且M 在B ,D 之间时取等号,连接AC ,BD 交于一点M ,此时|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.因为k AC =6-23-1=2,所以直线AC 的方程为y -2=2(x -1),即2x-y =0.① 又因为k BD =5-(-1)1-7=-1,所以直线BD 的方程为y -5=-(x -1),即x +y -6=0.②联立①②得⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =2,y =4,所以M (2,4).答案 25 (2,4)。
2014高考数学(文)一轮:一课双测A+B精练(四十四) 直线、平面垂直的判定与性质1.(2012·某某模拟)设a,b,c是三条不同的直线,α,β是两个不同的平面,则a ⊥b的一个充分条件是( )A.a⊥c,b⊥c B.α⊥β,a⊂α,b⊂βC.a⊥α,b∥αD.a⊥α,b⊥α2.设α,β,γ是三个不重合的平面,l是直线,给出下列命题①若α⊥β,β⊥γ,则α⊥γ;②若l上两点到α的距离相等,则l∥α;③若l ⊥α,l∥β,则α⊥β;④若α∥β,l⊄β,且l∥α,则l∥β.其中正确的命题是( )A.①②B.②③C.②④D.③④3.给出命题:(1)在空间里,垂直于同一平面的两个平面平行;(2)设l,m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α;(3)已知α,β表示两个不同平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的充要条件;(4)a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一个平行.其中正确命题个数是( )A.0 B.1 C.2 D.34.(2013·某某模拟)如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )A.直线AB上B.直线BC上C.直线AC上D.△ABC内部5.(2012·曲阜师大附中质检)如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )A.①② B.①②③ C.① D.②③6.(2012·某某名校模拟)如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下面命题正确的是( ) A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC7.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)8.(2012·某某一中月考)正四棱锥S-ABCD的底面边长为2,高为2,E是BC的中点,动点P在四棱锥的表面上运动,并且总保持PE⊥AC,则动点P的轨迹的长为________.9.(2013·某某模拟)点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,给出下列四个命题:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的命题序号是________.10.如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC.11.(2012·海淀二模)如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在AB上,且OM∥AC.(1)求证:平面MOE∥平面PAC;(2)求证:平面PAC⊥平面PCB.12.(2012·某某摸底)如图,在多面体ABCDEF 中,四边形ABCD是梯形,AB ∥CD ,四边形ACFE 是矩形,平面ACFE ⊥平面ABCD ,AD =DC =CB =AE =a ,∠ACB =π2.(1)求证:BC ⊥平面ACFE ;(2)若M 是棱EF 上一点,AM ∥平面BDF ,求EM 的长.1.如图,在立体图形D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列正确的是( )A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE2.如图所示,b ,c 在平面α内,a ∩c =B ,b ∩c =A ,且a ⊥b ,a ⊥c ,b ⊥c ,若C ∈a ,D ∈b ,则△ACD 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形3.(2012·某某模拟)如图,在三棱锥P -ABC 中,△PAC ,△ABC 分别是以A ,B 为直角顶点的等腰直角三角形,AB =1.(1)现给出三个条件:①PB =3;②PB ⊥BC ;③平面PAB ⊥平面ABC .试从中任意选取一个作为已知条件,并证明:PA ⊥平面ABC ;(2)在(1)的条件下,求三棱锥P -ABC 的体积.[答 题 栏]A 级 1._________ 2._________ 3._________ 4._________5._________6._________B 级 1.______ 2.______7. __________ 8. __________ 9. __________答 案2014高考数学(文)一轮:一课双测A+B精练(四十四)A级1.C 2.D 3.B 4.A5.选B 对于①,∵PA⊥平面ABC,∴PA⊥BC.∵AB为⊙O的直径,∴BC⊥AC.∴BC⊥平面PAC.又PC⊂平面PAC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥PA.∵PA⊂平面PAC,∴OM∥平面PAC;对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.6.选D 在平面图形中CD⊥BD,折起后仍有CD⊥BD,由于平面ABD⊥平面BCD,故CD ⊥平面ABD,CD⊥AB,又AB⊥AD,故AB⊥平面ADC,所以平面ABC⊥平面ADC.7.解析:由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC等)8.解析:如图,设AC∩BD=O,连接SO,取CD的中点F,SC的中点G,连接EF,EG,FG,设EF交AC于点H,连接GH,易知AC⊥EF,GH∥SO,∴GH⊥平面ABCD,∴AC⊥GH,∴AC⊥平面EFG,故动点P的轨迹是△EFG,由已知易得EF=2,GE=GF=62,∴△EFG的周长为2+6,故动点P的轨迹长为2+ 6.答案:2+ 69.解析:连接BD交AC于O,连接DC1交D1C于O1,连接OO1,则OO1∥BC1.∴BC1∥平面AD1C,动点P到平面AD1C的距离不变,∴三棱锥P-AD1C的体积不变.又VP-AD1C=VA-D1PC,∴①正确.∵平面A 1C 1B ∥平面AD 1C ,A 1P ⊂平面A 1C 1B ,∴A 1P ∥平面ACD 1,②正确.由于DB 不垂直于BC 1显然③不正确;由于DB 1⊥D 1C ,DB 1⊥AD 1,D 1C ∩AD 1=D 1,∴DB 1⊥平面AD 1C .DB 1⊂平面PDB 1,∴平面PDB 1⊥平面ACD 1,④正确.答案:①②④10.证明:(1)由已知,得MD 是△ABP 的中位线,所以MD ∥AP .又MD ⊄平面APC ,AP ⊂平面APC ,故MD ∥平面APC .(2)因为△PMB 为正三角形,D 为PB 的中点,所以MD ⊥PB .所以AP ⊥PB .又AP ⊥PC ,PB ∩PC =P ,所以AP ⊥平面PBC .因为BC ⊂平面PBC ,所以AP ⊥BC .又BC ⊥AC ,AC ∩AP =A ,所以BC ⊥平面APC .因为BC ⊂平面ABC ,所以平面ABC ⊥平面APC .11.证明:(1)因为点E 为线段PB 的中点,点O 为线段AB 的中点,所以OE ∥PA .因为PA ⊂平面PAC ,OE ⊄平面PAC ,所以OE ∥平面PAC .因为OM ∥AC ,且AC ⊂平面PAC ,OM ⊄平面PAC ,所以OM ∥平面PAC .因为OE ⊂平面MOE ,OM ⊂平面MOE ,OE ∩OM =O ,所以平面MOE ∥平面PAC .(2)因为点C 在以AB 为直径的⊙O 上,所以∠ACB =90°,即BC ⊥AC .因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA ⊥BC .因为AC ⊂平面PAC ,PA ⊂平面PAC ,PA ∩AC =A ,所以BC ⊥平面PAC .因为BC ⊂平面PCB ,所以平面PAC ⊥平面PCB .12.解:(1)证明:因为∠ACB =π2,所以BC ⊥AC .又因为BC ⊂平面ABCD ,平面ACFE ∩平面ABCD =AC ,平面ACFE ⊥平面ABCD ,所以BC ⊥平面ACFE .(2)记AC ∩BD =O ,在梯形ABCD 中,因为AD =DC =CB =a ,AB ∥CD ,所以∠ACD =∠CAB =∠DAC .所以π=∠ABC +∠BCD =∠DAB +∠ACD +∠ACB =3∠DAC +π2,所以∠DAC =π6,即∠CBO =π6. 又因为∠ACB =π2,CB =a ,所以CO =33a .连接FO ,由AM ∥平面BDF 得 AM ∥FO ,因为四边形ACFE 是矩形,所以EM =CO =33a . B 级1.选C 要判断两个平面的垂直关系,就需固定其中一个平面,找另一个平面内的一条直线与第一个平面垂直.因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE .因为AC 在平面ABC 内,所以平面ABC ⊥平面BDE .又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE .2.解析:选B ∵a ⊥b ,b ⊥c ,a ∩c =B ,∴b ⊥面ABC ,∴AD ⊥AC ,故△ACD 为直角三角形.3.解:法一:(1)选取条件①在等腰直角三角形ABC 中,∵AB =1,∴BC =1,AC = 2.又∵PA =AC ,∴PA = 2.∴在△PAB 中,AB =1,PA = 2.又∵PB =3,∴AB 2+PA 2=PB 2.∴∠PAB =90°,即PA ⊥AB .又∵PA ⊥AC ,AB ∩AC =A ,∴PA ⊥平面ABC .(2)依题意得,由(1)可知PA ⊥平面ABC , V 三棱锥P -ABC =13PA ·S △ABC =13×2×12×12=26.法二:(1)选取条件②∵PB ⊥BC ,又AB ⊥BC ,且PB ∩AB =B ,∴BC ⊥平面PAB .∵PA ⊂平面PAB ,∴BC ⊥PA .又∵PA ⊥AC ,且BC ∩AC =C ,∴PA ⊥平面ABC .(2)依题意得,由(1)可知PA ⊥平面ABC .∵AB =BC =1,AB ⊥BC ,∴AC =2,∴PA =2,∴V 三棱锥P -ABC =13PA ·S △ABC =13×12AB ·BC ·PA =13×12×1×1×2=26. 法三:(1)选取条件③若平面PAB ⊥平面ABC ,∵平面PAB ∩平面ABC =AB ,BC ⊂平面ABC ,BC ⊥AB , ∴BC ⊥平面PAB .∵PA ⊂平面PAB ,∴BC ⊥PA .∵PA ⊥AC ,且BC ∩AC =C ,∴PA ⊥平面ABC .(2)同法二.。
高考数学(文)一轮:一课双测A+B精练(四十三) 直线、平面平行的判定及性质1.(·浙江模拟)已知直线m⊥平面α,直线n⊂平面β,则下列命题正确的是( ) A.若n∥α,则α∥βB.若α⊥β,则m∥nC.若m⊥n,则α∥βD.若α∥β,则m⊥n2.平面α∥平面β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α3.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( )A.不存在B.有1条C.有2条D.有无数条4.(·浙江模拟)已知α,β,γ是三个不重合的平面,a,b是两条不重合的直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是( )A.①或②B.②或③C.①或③D.只有②5.(·开封模拟)如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H、G分别为BC,CD的中点,则( )A.BD∥平面EFGH,且四边形EFGH是矩形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是菱形D.EH∥平面ADC,且四边形EFGH是平行四边形6.(·山西四校联考)在空间内,设l,m,n是三条不同的直线,α,β,γ是三个不同的平面,则下列命题中为假命题的是( )A.α⊥γ,β⊥γ,α∩β=l,则l⊥γB.l∥α,l∥β,α∩β=m,则l∥mC.α∩β=l,β∩γ=m,γ∩α=n,l∥m,则l∥nD.α⊥γ,β⊥γ,则α⊥β或α∥β7.设a,b为空间的两条直线,α,β为空间的两个平面,给出下列命题:①若a∥α,a∥β,则α∥β;②若a⊥α,a⊥β,则α∥β;③若a∥α,b∥α,则a∥b;④若a⊥α,b⊥α,则a∥b.上述命题中,所有真命题的序号是________.8.已知平面α∥β,P∉α且P∉β,过点P的直线m与α,β分别交于A.C,过点P的直线n与α,β分别交于B,D,且PA=6,AC=9,PD=8则BD的长为________.9.(·浙江模拟)下列四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出直线AB∥平面MNP的图形的序号是________.(写出所有符合要求的图形序号)10.(·西安模拟)如图,FD垂直于矩形ABCD所在平面,CE∥DF,∠DEF=90°.(1)求证:BE∥平面ADF;(2)若矩形ABCD的一边AB=3,EF=23,则另一边BC的长为何值时,三棱锥F-BDE的体积为3?11.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在,请说明理由.12.(·潍坊二模)如图,点C是以AB为直径的圆上一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DE∥BC,DC⊥BC,DE=12BC=2,AC=CD=3.(1)证明:EO∥平面ACD;(2)证明:平面ACD⊥平面BCDE;(3)求三棱锥E-ABD的体积.1.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内与过B点的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线2.(·南宁二模)如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________________.3.(·北京东城区模拟)一个多面体的直观图和三视图如图所示,其中M ,N 分别是AB ,AC 的中点,G 是DF 上的一动点.(1)求该多面体的体积与表面积; (2)求证:GN ⊥AC ;(3)当FG =GD 时,在棱AD 上确定一点P ,使得GP ∥平面FMC ,并给出证明. [答 题 栏]A 级1._________2._________3._________4._________5.__________6._________B 级1.______2.______7.__________8.__________9.__________答 案高考数学(文)一轮:一课双测A+B 精练(四十三)A 级1.D2.D3.D4.C5.选B 由AE ∶EB =AF ∶FD =1∶4知EF 綊15BD ,∴EF ∥面BCD.又H ,G 分别为BC ,CD 的中点,∴HG 綊12BD ,∴EF ∥HG 且EF ≠HG.∴四边形EFGH 是梯形.6.选D 对于A ,∵如果两个相交平面均垂直于第三个平面,那么它们的交线垂直于第三个平面,∴该命题是真命题;对于B ,∵如果一条直线平行于两个相交平面,那么该直线平行于它们的交线,∴该命题是真命题;对于C ,∵如果三个平面两两相交,有三条交线,那么这三条交线交于一点或相互平行,∴该命题是真命题;对于D ,当两个平面同时垂直于第三个平面时,这两个平面可能不垂直也不平行,∴D 不正确.7.解析:①错误.因为α与β可能相交;③错误.因为直线a 与b 还可能异面、相交.答案:②④8.解析:如图1,∵AC ∩BD =P , ∴经过直线AC 与BD 可确定平面PCD.∵α∥β,α∩平面PCD =AB ,β∩平面PCD =CD , ∴AB ∥CD. ∴PA AC =PB BD ,即69=8-BD BD. ∴BD =245.如图2,同理可证AB ∥CD. ∴PA PC =PB PD, 即63=BD -88. ∴BD =24.综上所述,BD =245或24.答案:245或249.解析:对于①,注意到该正方体的经过直线AB 的侧面与平面MNP 平行,因此直线AB 平行于平面MNP ;对于②,注意到直线AB 和过点A 的一个与平面MNP 平行的平面相交,因此直线AB 与平面MNP 相交;对于③,注意到直线AB 与MP 平行,且直线AB 位于平面MNP 外,因此直线AB 与平面MNP 平行;对于④,易知此时AB 与平面MNP 相交.综上所述,能得出直线AB 平行于平面MNP 的图形的序号是①③.答案:①③10.解:(1)证明:过点E 作CD 的平行线交DF 于点M ,连接AM. 因为CE ∥DF ,所以四边形CEMD 是平行四边形.可得EM =CD 且EM ∥CD ,于是四边形BEMA 也是平行四边形, 所以有BE ∥AM.而AM ⊂平面ADF ,BE ⊄平面ADF , 所以BE ∥平面ADF.(2)由EF =23,EM =AB =3, 得FM =3且∠MFE =30°. 由∠DEF =90°可得FD =4, 从而得DE =2.因为BC ⊥CD ,BC ⊥FD , 所以BC ⊥平面CDFE.所以,VF -BDE =VB -DEF =13S △DEF ×BC.因为S △DEF =12DE ×EF =23,VF -BDE =3,所以BC =32.综上当BC =32时,三棱锥F -BDE 的体积为 3.11.解:存在这样的点F ,使平面C1CF ∥平面ADD1A1,此时点F 为AB 的中点,证明如下:∵AB ∥CD ,AB =2CD ,∴AF 綊CD ,∴四边形AFCD 是平行四边形, ∴AD ∥CF.又AD ⊂平面ADD1A1,CF ⊄平面ADD1A1. ∴CF ∥平面ADD1A1.又CC1∥DD1,CC1⊄平面ADD1A 1, DD1⊂平面ADD1A1, ∴CC1∥平面ADD1A1,又CC1,CF ⊂平面C1CF ,CC1∩CF =C , ∴平面C1CF ∥平面A DD1A1.12.解:(1)证明:如图,取BC 的中点M ,连接OM ,ME. 在△ABC 中,O 为AB 的中点,M 为BC 的中点, ∴OM ∥AC.在直角梯形BCDE 中,DE ∥BC , 且DE =12BC =CM ,∴四边形MCDE 为平行四边形. ∴EM ∥DC.∴平面EMO ∥平面ACD , 又∵EO ⊂平面EMO , ∴EO ∥平面ACD.(2)证明:∵C 在以AB 为直径的圆上, ∴AC ⊥BC.又∵平面BCDE ⊥平面ABC , 平面BCDE ∩平面ABC =BC. ∴AC ⊥平面BCDE. 又∵AC ⊂平面ACD , ∴平面ACD ⊥平面BCDE. (3)由(2)知AC ⊥平面BCDE.又∵S △BDE =12×DE ×CD =12×2×3=3,∴VE -ABD =VA -BDE =13×S △BDE ×AC =13×3×3=3.B 级1.选A 当直线a 在平面β内且经过B 点时,可使a ∥平面α,但这时在平面β内过B 点的所有直线中,不存在与a 平行的直线,而在其他情况下,都可以存在与a 平行的直线.2.解析:连接AM 并延长,交CD 于E ,连接BN ,并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN ∥AB.因此,MN ∥平面ABC且MN ∥平面ABD.答案:平面ABC ,平面ABD3.解:(1)由题中图可知该多面体为直三棱柱,在△ADF 中,AD ⊥DF ,DF =AD =DC =a ,所以该多面体的体积为12a3.表面积为12a2×2+2a2+a2+a2=(3+2)a2.(2)连接DB ,FN ,由四边形ABCD 为正方形,且N 为AC 的中点知B ,N ,D 三点共线,且AC ⊥DN.又∵FD ⊥AD , FD ⊥CD , AD ∩CD =D , ∴FD ⊥平面ABCD.∵AC ⊂平面ABCD ,∴FD ⊥AC. 又DN ∩FD =D ,∴AC ⊥平面FDN. 又GN ⊂平面FDN , ∴GN ⊥AC.(3)点P 与点A 重合时,GP ∥平面FMC. 取FC 的中点H ,连接GH ,GA ,MH. ∵G 是DF 的中点, ∴GH 綊12CD.又M 是AB 的中点,∴AM 綊12CD.∴GH ∥AM 且GH =AM.∴四边形GHMA 是平行四边形. ∴GA ∥MH.∵MH ⊂平面FMC ,GA ⊄平面FMC ,∴GA ∥平面FMC ,即当点P 与点A 重合时,GP ∥平面FMC.高考数学(文)一轮:一课双测A +B 精练(四十六) 两直线的位置关系1.(·海淀区期末)已知直线l1:k1x +y +1=0与直线l2:k2x +y -1=0,那么“k1=k2”是“l1∥l2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.当0<k <12时,直线l1:kx -y =k -1与直线l2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.(·长沙检测)已知直线l1的方程为3x +4y -7=0,直线l2的方程为6x +8y +1=0,则直线l1与l2的距离为( )A.85B.32 C .4D .84.若直线l1:y =k(x -4)与直线l2关于点(2,1)对称,则直线l2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)5.已知直线l1:y =2x +3,若直线l2与l1关于直线x +y =0对称,又直线l3⊥l2,则l3的斜率为( )A .-2B .-12C.12D .2 6.(·岳阳模拟)直线l 经过两直线7x +5y -24=0和x -y =0的交点,且过点(5,1).则l 的方程是( )A .3x +y +4=0B .3x -y +4=0C .x +3y -8=0D .x -3y -4=07.(·郑州模拟)若直线l1:ax +2y =0和直线l2:2x +(a +1)y +1=0垂直,则实数a 的值为________.8.已知平面上三条直线x +2y -1=0,x +1=0,x +ky =0,如果这三条直线将平面划分为六部分,则实数k 的所有取值为________.9.(·临沂模拟)已知点P(4,a)到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.10.(·舟山模拟)已知1a +1b =1(a >0,b >0),求点(0,b)到直线x -2y -a =0的距离的最小值.11.(·荆州二检)过点P(1,2)的直线l 被两平行线l1:4x +3y +1=0与l2:4x +3y +6=0截得的线段长|AB|=2,求直线l 的方程.12.已知直线l :3x -y +3=0,求: (1)点P(4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程.1.点P 到点A(1,0)和直线x =-1的距离相等,且点P 到直线y =x 的距离为22,这样的点P 的个数是( )A .1B .2C .3D .42.(·福建模拟)若点(m ,n)在直线4x +3y -10=0上,则m2+n2的最小值是( ) A .2B .22 C .4D .233.在直线l :3x -y -1=0上求一点P ,使得P 到A(4,1)和B(0,4)的距离之差最大. [答 题 栏]A 级1._________2._________3._________4._________5.__________6._________B 级1.______2.______7.__________8.__________9.__________ 答 案高考数学(文)一轮:一课双测A+B 精练(四十六)A 级1.C2.B3.B4.B5.选A 依题意得,直线l2的方程是-x =2(-y)+3, 即y =12x +32,其斜率是12,由l3⊥l2,得l3的斜率等于-2.6.选C 设l 的方程为7x +5y -24+λ(x -y)=0,即(7+λ)x +(5-λ)y -24=0,则(7+λ)×5+5-λ-24=0.解得λ=-4.l 的方程为x +3y -8=0.7.解析:由2a +2(a +1)=0得a =-12.答案:-128.解析:若三条直线有两条平行,另外一条与这两条直线相交,则符合要求,此时k =0或2;若三条直线交于一点,也符合要求,此时k =1,故实数k 的所有取值为0,1,2.答案:0,1,29.解析:由题意得,点到直线的距离为|4×4-3×a -1|5=|15-3a|5.又|15-3a|5≤3,即|15-3a|≤15,解得,0≤a ≤10,所以a ∈[0,10].答案:[0,10]10.解:点(0,b)到直线x -2y -a =0的距离为d =a +2b 5=15(a +2b)⎝ ⎛⎭⎪⎫1a +1b =15⎝⎛⎭⎪⎫3+2b a +a b ≥15(3+22)=35+2105,当且仅当a2=2b2,a +b =ab ,即a =1+2,b =2+22时取等号.所以点(0,b)到直线x -2y -a =0的距离的最小值为35+2105. 11.解:设直线l 的方程为y -2=k(x -1),由⎩⎪⎨⎪⎧ y =kx +2-k ,4x +3y +1=0,解得A ⎝⎛⎭⎪⎫3k -73k +4,-5k +83k +4;由⎩⎪⎨⎪⎧y =kx +2-k ,4x +3y +6=0,解得B ⎝⎛⎭⎪⎫3k -123k +4,8-10k 3k +4.∵|AB|=2, ∴⎝ ⎛⎭⎪⎫53k +42+⎝ ⎛⎭⎪⎫5k 3k +42=2, 整理,得7k2-48k -7=0, 解得k1=7或k2=-17.因此,所求直线l 的方程为x +7y -15=0或7x -y -5=0.12.解:设P(x ,y)关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′).∵kPP ′·kl =-1,即y ′-yx ′-x ×3=-1.①又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y 2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95,③ y ′=3x +4y +35.④(1)把x =4,y =5代入③④得x ′=-2, y ′=7,∴P(4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0.B 级1.选C ∵点P 到点A 和定直线距离相等, ∴P 点轨迹为抛物线,方程为y2=4x. 设P(t2,2t),则22=|t2-2t|2,解得t1=1,t2=1+2,t3=1-2,故P 点有三个.2.选C 设原点到点(m ,n)的距离为d ,所以d2=m2+n2,又因为(m ,n)在直线4x +3y -10=0上,所以原点到直线4x +3y -10=0的距离为d 的最小值,此时d =|-10|42+32=2,所以m2+n2的最小值为4.3.解:如图所示,设点B 关于l 的对称点为B ′,连接AB ′并延长交l 于P ,此时的P 满足|PA|-|PB|的值最大.设B ′的坐标为(a ,b),则kBB ′·kl =-1, 即3·b -4a =-1.则a +3b -12=0.①又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且在直线l 上,则3×a 2-b +42-1=0,即3a -b -6=0.②解①②,得a =3,b =3,即B ′(3,3). 于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.解⎩⎪⎨⎪⎧3x -y -1=0,2x +y -9=0,得⎩⎪⎨⎪⎧x =2,y =5,即l 与AB ′的交点坐标为P(2,5).高考数学(文)一轮:一课双测A+B精练(四十)空间几何体的结构特征及三视图和直观图1.(·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A.②③④B.①②③C.①③④D.①②④2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1B.2C.3D.43.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是( )5.如图△A′B′C′是△ABC的直观图,那么△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形6.(·东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A.2+3B.1+3C.2+23D.4+37.(·昆明一中二模)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为1,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号) 2①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆8.(·安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.9.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.10.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.11.(·银川调研)正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?12.(·四平模拟)已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.1.(·江西八所重点高中模拟)底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( )A.23B.3C.3D.42.(·深圳模拟)如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=3,且当规定正视方向垂直平面ABCD时,该几何体的侧视图的面积为22.若M,N分别是线段DE,CE上的动点,则AM+MN+NB的最小值为________.3.一个多面体的直观图、正视图、侧视图如图1和2所示,其中正视图、侧视图均为边长为a的正方形.(1)请在图2指定的框内画出多面体的俯视图;(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(3)求该多面体的表面积.[答题栏]A级1._________2._________3._________4._________5._________6._________B级 1.______2.______ 7.__________8.__________9.__________答案高考数学(文)一轮:一课双测A+B精练(四十)A级1.A2.A3.C4.B5.选B由斜二测画法知B正确.6.选D依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7.解析:如图1所示,直三棱柱ABE-A1B1E1符合题设要求,此时俯视图△A BE是锐角三角形;如图2所示,直三棱柱ABC-A1B1C1符合题设要求,此时俯视图△ABC是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD-A1B1C1D1符合题设要求,此时俯视图(四边形ABCD)是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin60°×2-13×12×2×2sin60°×1=533.答案:5339.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而PA =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2210.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体. 11.解:如图所示,正四棱锥S -ABCD 中, 高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中,OA =SA2-OS2=2,∴AC =4. ∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高, 在Rt △SOE 中,∵OE =12BC =2,SO =3,∴SE =5,即侧面上的斜高为 5.12.解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=12=23,∴S △VBC =12×23×23=6.B 级1.选A 当正视图的面积达最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为2 3.2.解析:依题意得,点E 到直线AB 的距离等于32-⎝ ⎛⎭⎪⎫222=2,因为该几何体的左(侧)视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC =2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA =∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB2=AE2+BE2-2AE ·BEcos120°=9,即AB =3,即AM +MN +NB 的最小值为3.答案:33.解:(1)根据多面体的直观图、正视图、侧视图,得到俯视图如下:(2)证明:如图,连接AC ,BD ,交于O 点,连接OE. ∵E 为AA1的中点,O 为AC 的中点, ∴在△AA1C 中,OE 为△AA1C 的中位线. ∴OE ∥A1C.∵OE ⊄平面A1C1C ,A1C ⊂平面A1C1C , ∴OE ∥平面A1C1C.(3)多面体表面共包括10个面,SABCD =a2, SA1B1C1D1=a22,S △ABA1=S △B1BC =S △C 1DC =S △ADD1=a22,S △AA1D1=S △B1A1B =S △C1B1C =S △DC1D1 =12×2a 2×32a 4=3a28, ∴该多面体的表面积S =a2+a22+4×a22+4×3a28=5a2.。
两直线的位置关系考纲要求1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知识梳理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=x 2-x 12+y 2-y 12.特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. (2)点到直线的距离公式平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.4.对称问题(1)点P (x 0,y 0)关于点A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有⎩⎪⎨⎪⎧y ′-y0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x2+b ,可求出x ′,y ′.1.两直线平行的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行的充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). 2.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0. 3.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案 (1)× (2)× (3)√ (4)√ 解析 (1)两直线l 1,l 2有可能重合.(2)如果l 1⊥l 2,若l 1的斜率k 1=0,则l 2的斜率不存在.2.两条平行直线3x +4y -12=0与ax +8y +11=0之间的距离为( ) A.235 B .2310C .7D .72答案 D解析 由题意知a =6,直线3x +4y -12=0可化为6x +8y -24=0,所以两平行直线之间的距离为|11+24|36+64=72. 3.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 答案 -9解析 由⎩⎪⎨⎪⎧ y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9.4.(2021·银川联考)若直线ax +4y -2=0与直线2x -5y +b =0垂直,垂足为(1,c ),则a +b +c =( ) A .-2 B .-4 C .-6 D .-8答案 B解析 ∵直线ax +4y -2=0与直线2x -5y +b =0垂直,∴-a 4×25=-1,∴a =10,∴直线ax +4y -2=0的方程即为5x +2y -1=0. 将点(1,c )的坐标代入上式可得5+2c -1=0, 解得c =-2.将点(1,-2)的坐标代入方程2x -5y +b =0得2-5×(-2)+b =0,解得b =-12. ∴a +b +c =10-12-2=-4.故选B.5.(2020·淮南二模)设λ∈R ,则“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 A解析 当λ=-3时,两条直线的方程分别为6x +4y +1=0,3x +2y -2=0,此时两条直线平行;若两条直线平行,则2λ×(1-λ)=-6(1-λ),所以λ=-3或λ=1,经检验,两者均符合,综上,“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的充分不必要条件,故选A.6.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P到直线x +y =0的距离的最小值是________. 答案 4解析 法一 由题意可设P ⎝⎛⎭⎫x 0,x 0+4x 0(x 0>0), 则点P 到直线x +y =0的距离d =⎪⎪⎪⎪x 0+x 0+4x 02=⎪⎪⎪⎪2x 0+4x 02≥22x 0·4x 02=4,当且仅当2x 0=4x 0,即x 0=2时取等号. 故所求最小值是4.法二 设P ⎝⎛⎭⎫x 0,4x 0+x 0(x 0>0),则曲线在点P 处的切线的斜率为k =1-4x 20.令1-4x 20=-1,结合x 0>0得x 0=2,∴P (2,32),曲线y =x +4x (x >0)上的点P 到直线x +y =0的最短距离即为此时点P 到直线x +y =0的距离,故d min =|2+32|2=4.考点一 两直线的平行与垂直【例1】 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解 (1)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a2x -3,l 2:y =11-a x -(a +1),l 1∥l 2⇔⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-a +1,解得a =-1,综上可知,当a =-1时,l 1∥l 2. 法二 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎪⎨⎪⎧aa -1-1×2=0,a a 2-1-1×6≠0⇔⎩⎪⎨⎪⎧a 2-a -2=0,a a 2-1≠6,可得a =-1, 故当a =-1时,l 1∥l 2.(2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2,故a =0不成立; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝⎛⎭⎫-a 2·11-a =-1,得a =23.法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0,可得a =23.感悟升华 1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 【训练1】 (1)(2020·宁波期中)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( ) A .6x -4y -3=0 B .3x -2y -3=0 C .2x +3y -2=0D .2x +3y -1=0(2)已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________. 答案 (1)A (2)1解析 (1)因为抛物线y 2=2x 的焦点坐标为⎝⎛⎭⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝⎛⎭⎫x -12,化为一般式,得6x -4y -3=0. (2)由题意知 m -4-2-m=1,所以m -4=-2-m ,所以m =1.考点二 两直线的交点与距离问题【例2】 (1)(2020·淮南模拟)已知直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限,则实数k 的取值范围为( ) A.⎝⎛⎭⎫-32,-1 B.⎝⎛⎭⎫-∞,-32∪(-1,+∞) C.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫-13,12(2)(2021·广州模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.答案 (1)D (2)[0,10]解析 (1)联立⎩⎪⎨⎪⎧kx -y +2k +1=0,2x +y -2=0,解得x =1-2k 2+k ,y =2+6k2+k(k ≠-2).∵直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限, ∴1-2k 2+k >0,且2+6k2+k >0. 解得-13<k <12.故选D.(2)由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解之得0≤a ≤10,所以a 的取值范围是[0,10].感悟升华 1.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.2.利用距离公式应注意:(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;(2)应用两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为对应相等.【训练2】 (1)(2021·贵阳诊断)与直线2x +y -1=0的距离等于55的直线方程为( ) A .2x +y =0 B .2x +y -2=0C .2x +y =0或2x +y -2=0D .2x +y =0或2x +y +2=0(2)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为________________. 答案 (1)C (2)5x +3y -1=0解析 (1)设与直线2x +y -1=0的距离等于55的直线方程为2x +y +m =0(m ≠-1), ∴|-1-m |22+12=55,解得m =0或m =-2. ∴与直线2x +y -1=0的距离等于55的直线方程为2x +y =0或2x +y -2=0. (2)先解方程组⎩⎪⎨⎪⎧3x +2y -1=0,5x +2y +1=0,得l 1,l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0.考点三 对称问题角度1 点关于点对称【例3】 过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.感悟升华 1.点关于点的对称:点P (x ,y )关于M (a ,b )对称的点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .2.直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解.角度2 点关于线对称【例4】 一束光线经过点P (2,3)射在直线l :x +y +1=0上,反射后经过点Q (1,1),则入射光线所在直线的方程为________. 答案 5x -4y +2=0解析 设点Q (1,1)关于直线l 的对称点为Q ′(x ′,y ′),由已知得⎩⎪⎨⎪⎧y ′-1x ′-1=1,x ′+12+y ′+12+1=0,解得⎩⎪⎨⎪⎧x ′=-2,y ′=-2, 即Q ′(-2,-2),由光学知识可知,点Q ′在入射光线所在的直线上,又k PQ ′=3--22--2=54, ∴入射光线所在直线的方程为y -3=54(x -2),即5x -4y +2=0.感悟升华 1.若点A (a ,b )与点B (m ,n )关于直线Ax +By +C =0(A ≠0,B ≠0)对称,则直线Ax +By +C =0垂直平分线段AB ,即有⎩⎪⎨⎪⎧n -b m -a ·⎝⎛⎭⎫-A B =-1,A ·a +m 2+B ·b +n2+C =0.2.几个常用结论(1)点(x ,y )关于x 轴的对称点为(x ,-y ),关于y 轴的对称点为(-x ,y ).(2)点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ). (3)点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x,2b -y ). 角度3 线关于线对称【例5】 (1)(2021·成都诊断)与直线3x -4y +5=0关于x 轴对称的直线的方程是( ) A .3x -4y +5=0 B .3x -4y -5=0 C .3x +4y -5=0D .3x +4y +5=0(2)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________________.答案 (1)D (2)x -2y +3=0解析 (1)设所求直线上点的坐标(x ,y ),则关于x 轴的对称点(x ,-y )在已知的直线3x -4y +5=0上,所以所求对称直线方程为3x +4y +5=0,故选D. (2)设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0), 由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0,即x -2y +3=0.感悟升华 求直线l 1关于直线l 对称的直线l 2有两种处理方法:(1)在直线l 1上取两点(一般取特殊点),利用点关于直线的对称的方法求出这两点关于直线l 的对称点,再用两点式写出直线l 2的方程.(2)设点P (x ,y )是直线l 2上任意一点,其关于直线l 的对称点为P 1(x 1,y 1)(P 1在直线l 1上),根据点关于直线对称建立方程组,用x ,y 表示出x 1,y 1,再代入直线l 1的方程,即得直线l 2的方程.【训练3】 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A 对称的直线l ′的方程. 解 (1)设A ′(x ,y ),则⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,即A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧ 2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎨⎧ a =613,b =3013,即M ′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0, 得N (4,3).又m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(3)法一 在l :2x -3y +1=0上任取两点,如P (1,1),N (4,3),则P ,N 关于点A 的对称点P ′,N ′均在直线l ′上.易知P ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二 设Q (x ,y )为l ′上任意一点,则Q (x ,y )关于点A (-1,-2)的对称点为Q ′(-2-x ,-4-y ),∵Q ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.活用直线系方程具有某些共同特点的所有直线的全体称为直线系,直线系方程问题是高中数学中的一类重要问题,在解题中有着重要的应用.在直线方程求解中,可以由特定条件设出直线系方程,再结合题目中其他条件求出具体直线,这个解题思路在解决许多问题时,往往能起到化繁为简,化难为易的作用.一、相交直线系方程【例1】 已知两条直线l 1:x -2y +4=0和l 2:x +y -2=0的交点为P ,求过点P 且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解 法一 解l 1与l 2组成的方程组得到交点P (0,2),因为k 3=34,所以直线l 的斜率k =-43,方程为y -2=-43x ,即4x +3y -6=0. 法二 设所求直线l 的方程为4x +3y +c =0,由法一可知P (0,2),将其代入方程,得c =-6,所以直线l 的方程为4x +3y -6=0.法三 设所求直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0,因为直线l 与l 3垂直,所以3(1+λ)-4(λ-2)=0,所以λ=11,所以直线l 的方程为4x +3y -6=0.二、平行直线系方程【例2】 已知直线l 1与直线l 2:x -3y +6=0平行,l 1与x 轴、y 轴围成面积为8的三角形,请求出直线l 1的方程.解 设直线l 1的方程为x -3y +c =0(c ≠6),令y =0,得x =-c ;令x =0,得y =c 3,依照题意有12×|-c |×⎪⎪⎪⎪c 3=8,c =±4 3.所以l 1的方程是x -3y ±43=0. 【例3】 已知直线方程3x -4y +7=0,求与之平行且在x 轴、y 轴上的截距和是1的直线l 的方程.解 法一 设存在直线l :x a +y b =1,则a +b =1和-b a =34组成的方程组的解为a =4, b =-3.故l 的方程为x 4-y 3=1,即3x -4y -12=0. 法二 根据平行直线系方程可设直线l 为3x -4y +c =0(c ≠7),则直线l 在两坐标轴上截距分别对应的是-c 3,c 4,由-c 3+c 4=1,知c =-12.故直线l 的方程为3x -4y -12=0. 三、垂直直线系方程【例4】 求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解 因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +c =0,又直线过点A (2,1),所以有2-2×1+c =0,解得c =0,即所求直线方程为x -2y =0.思维升华 直线系方程的常见类型1.过定点P (x 0,y 0)的直线系方程是y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0);2.平行于已知直线Ax +By +C =0的直线系方程是Ax +By +λ=0(λ是参数且λ≠C );3.垂直于已知直线Ax +By +C =0的直线系方程是Bx -Ay +λ=0(λ是参数);4.过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ,但不包括l 2).A 级 基础巩固一、选择题1.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A. 2B .2- 2 C.2-1D .2+1答案 C解析 由题意得|a -2+3|1+1=1. 解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.2.(2021·郑州调研)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( )A .2B .-3C .2或-3D .-2或-3 答案 C解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2,故m =2或-3.3.已知直线l 过点(0,7),且与直线y =-4x +2平行,则直线l 的方程为( )A .y =-4x -7B .y =4x -7C .y =4x +7D .y =-4x +7 答案 D解析 过点(0,7)且与直线y =-4x +2平行的直线方程为y -7=-4x ,即直线l 的方程为y =-4x +7,故选D.4.已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y -1=0垂直,则ab 的最小值为() A .1 B .2 C .2 2 D .2 3 答案 B解析 由已知两直线垂直可得(b 2+1)-ab 2=0,即ab 2=b 2+1,又b >0,所以ab =b +1b .由基本不等式得b +1b ≥2b ·1b =2,当且仅当b =1时等号成立,所以(ab )min =2.故选B.5.坐标原点(0,0)关于直线x -2y +2=0对称的点的坐标是( )A.⎝⎛⎭⎫-45,85 B .⎝⎛⎭⎫-45,-85C.⎝⎛⎭⎫45,-85 D .⎝⎛⎭⎫45,85答案 A解析 设对称点的坐标为(x 0,y 0),则⎩⎪⎨⎪⎧ x 02-2×y 02+2=0,y 0=-2x 0,解得⎩⎨⎧ x 0=-45,y 0=85,即所求点的坐标是⎝⎛⎭⎫-45,85.6.(2020·上海浦东新区期末)直线x -2y +2=0关于直线x =1对称的直线方程是( )A .x +2y -4=0B .2x +y -1=0C .2x +y -3=0D .2x +y -4=0答案 A解析 设P (x ,y )为所求直线上的点,该点关于直线x =1的对称点为(2-x ,y ),且该对称点在直线x -2y +2=0上,代入可得x +2y -4=0.故选A.7.(2021·豫西五校联考)过点P (1,2)作直线l ,若点A (2,3),B (4,-5)到它的距离相等,则直线l 的方程为( )A .4x +y -6=0或x =1B .3x +2y -7=0C .4x +y -6=0或3x +2y -7=0D .3x +2y -7=0或x =1答案 C解析 若A ,B 位于直线l 的同侧,则直线l ∥AB .k AB =3+52-4=-4,∴直线l 的方程为y -2=-4(x -1),即4x +y -6=0;若A ,B 位于直线l 的两侧,则直线l 必经过线段AB 的中点(3,-1),∴k l =2--11-3=-32, ∴直线l 的方程为y -2=-32(x -1),即3x +2y -7=0. 综上,直线l 的方程为4x +y -6=0或3x +2y -7=0,故选C.8.(2020·宝鸡模拟)光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( )A .a =13,b =6 B .a =-3,b =16 C .a =3,b =-16D .a =-13,b =-6 答案 D解析 由题意,直线y =-3x +b 与直线y =ax +2关于直线y =-x 对称,所以直线y =ax +2上的点(0,2)关于直线y =-x 的对称点(-2,0)在直线y =-3x +b 上, 所以(-3)×(-2)+b =0,所以b =-6,所以直线y =-3x -6上的点(0,-6)关于直线y =-x 的对称点(6,0)在直线y =ax +2上,所以6a +2=0,所以a =-13. 二、填空题 9.(2021·南昌联考)已知直线l 1:y =2x ,则过圆x 2+y 2+2x -4y +1=0的圆心且与直线l 1垂直的直线l 2的方程为________.答案 x +2y -3=0解析 由题意可知圆的标准方程为(x +1)2+(y -2)2=4,所以圆的圆心坐标为(-1,2),由已知得直线l 2的斜率k =-12,所以直线l 2的方程为y -2=-12(x +1),即x +2y -3=0. 10.直线x -2y -3=0关于定点M (-2,1)对称的直线方程是________.答案 x -2y +11=0解析 设所求直线上任一点(x ,y ),则关于M (-2,1)的对称点(-4-x,2-y )在已知直线上,∴所求直线方程为(-4-x )-2(2-y )-3=0,即x -2y +11=0.11.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则PQ 的最小值为________.答案 2910解析 因为36=48≠-125,所以两直线平行, 将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910. 12.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________. 答案 25解析 因为k AB =5-11-4=-43,k DC =2--2-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形.又k AD ·k AB =-1,即AD ⊥AB ,故四边形ABCD 为矩形.故S 四边形ABCD =|AB |·|AD |=1-42+5-12×0-42+-2-12=25.B 级 能力提升13.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线的方程分别是x =0,y =x ,则直线BC 的方程是( )A .y =3x +5B .y =2x +3C .y =2x +5D .y =-x 2+52 答案 C解析 A 关于直线x =0的对称点是A ′(-3,-1),关于直线y =x 的对称点是A ″(-1,3),由角平分线的性质可知,点A ′,A ″均在直线BC 上,所以直线BC 的方程为y =2x +5.故选C.14.已知点P (-2,0)和直线l :(1+3λ)x +(1+2λ)y -(2+5λ)=0(λ∈R),则点P 到直线l 的距离d 的最大值为( )A .2 3B .10C .14D .215 答案 B解析 由(1+3λ)x +(1+2λ)y -(2+5λ)=0,得(x +y -2)+λ(3x +2y -5)=0,此方程是过直线x +y -2=0和3x +2y -5=0交点的直线系方程.解方程组⎩⎪⎨⎪⎧x +y -2=0,3x +2y -5=0,可知两直线的交点为Q (1,1),故直线l 恒过定点Q (1,1),如图所示,可知d =|PH |≤|PQ |=10,即d 的最大值为10.故选B.15.已知直线l 经过直线2x +y -5=0与x -2y =0的交点,若点A (5,0)到直线l 的距离为3,则l 的方程为________.答案 x =2或4x -3y -5=0解析 法一 两直线交点为(2,1),当斜率不存在时,所求直线方程为x -2=0, 此时A 到直线l 的距离为3,符合题意;当斜率存在时,设其为k ,则所求直线方程为y -1=k (x -2),即kx -y +(1-2k )=0. 由点到线的距离公式得d =|5k +1-2k |k 2+1=3,解得k =43,故所求直线方程为4x -3y -5=0. 综上知,所求直线方程为x -2=0或4x -3y -5=0.法二 经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0,所以|10+5λ-5|2+λ2+1-2λ2=3,解得λ=2或λ=12. 所以l 的方程为x =2或4x -3y -5=0.16.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________. 答案 2解析 因为点P 是曲线y =x 2-ln x 上任意一点,所以当点P 处的切线和直线y =x -2平行时,点P 到直线y =x -2的距离最小.因为直线y =x -2的斜率等于1,函数y =x 2-ln x 的导数y ′=2x -1x (x >0),令y ′=1,可得x =1或x =-12(舍去),所以在曲线y =x 2-ln x 上与直线y =x -2平行的切线经过的切点坐标为(1,1),所以点P 到直线y =x -2的最小距离为 2.。
2014高考数学(文)一轮:一课双测A+B 精练(四十六) 两直线
的位置关系
1.(2012·海淀区期末)已知直线l 1:k 1x +y +1=0与直线l 2:k 2x +y -1=0,那么“k 1
=k 2”是“l 1∥l 2”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
2.当0<k <1
2时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.(2012·长沙检测)已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为( )
A.8
5 B.32 C .4
D .8
4.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4)
B .(0,2)
C .(-2,4)
D .(4,-2)
5.已知直线l 1:y =2x +3,若直线l 2与l 1关于直线x +y =0对称,又直线l 3⊥l 2,则
l 3的斜率为( )
A .-2
B .-12
C.1
2
D .2
6.(2012·岳阳模拟)直线l 经过两直线7x +5y -24=0和x -y =0的交点,且过点(5,1).则l 的方程是( )
A .3x +y +4=0
B .3x -y +4=0
C .x +3y -8=0
D .x -3y -4=0
7.(2012·郑州模拟)若直线l 1:ax +2y =0和直线l 2:2x +(a +1)y +1=0垂直,则实数a 的值为________.
8.已知平面上三条直线x +2y -1=0,x +1=0,x +ky =0,如果这三条直线将平面划分为六部分,则实数k 的所有取值为________.
9.(2013·临沂模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.
10.(2013·舟山模拟)已知1a +1
b
=1(a >0,b >0),求点(0,b )到直线x -2y -a =0的
距离的最小值.
11.(2012·荆州二检)过点P (1,2)的直线l 被两平行线l 1:4x +3y +1=0与l 2:4x +3y +6=0截得的线段长|AB |=2,求直线l 的方程.
12.已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;
(2)直线x -y -2=0关于直线l 对称的直线方程.
1.点P 到点A (1,0)和直线x =-1的距离相等,且点P 到直线y =x 的距离为2
2
,这样的点P 的个数是( )
A .1
B .2
C .3
D .4
2.(2012·福建模拟)若点(m ,n )在直线4x +3y -10=0上,则m 2
+n 2
的最小值是( ) A .2 B .2 2 C .4
D .2 3
3.在直线l :3x -y -1=0上求一点P ,使得P 到A (4,1)和B (0,4)的距离之差最大. [答 题 栏]
1._________
2._________
3._________
答 案
2014高考数学(文)一轮:一课双测A+B 精练(四十六)
A 级
1.C 2.B 3.B 4.B
5.选A 依题意得,直线l 2的方程是-x =2(-y )+3, 即y =12x +32,其斜率是12
,
由l 3⊥l 2,得l 3的斜率等于-2.
6.选C 设l 的方程为7x +5y -24+λ(x -y )=0,即(7+λ)x +(5-λ)y -24=0,则(7+λ)×5+5-λ-24=0.解得λ=-4.l 的方程为x +3y -8=0.
7.解析:由2a +2(a +1)=0得a =-1
2.
答案:-1
2
8.解析:若三条直线有两条平行,另外一条与这两条直线相交,则符合要求,此时k =0或2;若三条直线交于一点,也符合要求,此时k =1,故实数k 的所有取值为0,1,2.
答案:0,1,2
9.解析:由题意得,点到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |
5≤3,
即|15-3a |≤15,解得,0≤a ≤10,所以a ∈[0,10].
答案:[0,10]
10.解:点(0,b )到直线x -2y -a =0的距离为d =
a +2b
5
=
1
5(a +2b )⎝ ⎛⎭⎪⎫1a +1b =
1
5
⎝ ⎛⎭⎪⎫3+2b a +a b ≥15
(3+22)=35+2105,当且仅当a 2=2b 2,a +b =ab ,即a =1+2,b =
2+22时取等号.所以点(0,b )到直线x -2y -a =0的距离的最小值为35+210
5
. 11.解:设直线l 的方程为y -2=k (x -1),
由⎩
⎪⎨
⎪⎧ y =kx +2-k ,4x +3y +1=0,
解得A ⎝
⎛⎭
⎪
⎫3k -73k +4,-5k +83k +4;
由⎩
⎪⎨
⎪⎧
y =kx +2-k ,4x +3y +6=0,
解得B ⎝
⎛⎭
⎪
⎫3k -123k +4,8-10k 3k +4.
∵|AB |=2, ∴
⎝ ⎛⎭⎪⎫53k +42+⎝ ⎛⎭
⎪⎫5k 3k +42=2, 整理,得7k 2
-48k -7=0, 解得k 1=7或k 2=-1
7
.
因此,所求直线l 的方程为x +7y -15=0或7x -y -5=0.
12.解:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′). ∵k PP ′·k l =-1,即
y ′-y
x ′-x
×3=-1.① 又PP ′的中点在直线3x -y +3=0上, ∴3×
x ′+x 2
-
y ′+y
2
+3=0.②
由①②得⎩⎪⎨⎪⎧
x ′=-4x +3y -95
, ③ y ′=3x +4y +3
5. ④
(1)把x =4,y =5代入③④得x ′=-2,
y ′=7,
∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).
(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -9
5-
3x +4y +3
5
-2=0, 化简得7x +y +22=0.
B 级
1.选C ∵点P 到点A 和定直线距离相等, ∴P 点轨迹为抛物线,方程为y 2
=4x .
设P (t 2,
2t ),则22=|t 2
-2t |
2
,解得t 1=1,t 2=1+2,t 3=1-2,故P 点有三个.
2.选C 设原点到点(m ,n )的距离为d ,所以d 2=m 2+n 2
,又因为(m ,n )在直线4x +3y -10=0上,所以原点到直线4x +3y -10=0的距离为d 的最小值,此时d =|-10|42
+3
2
=2,所
以m 2
+n 2
的最小值为4.
3.解:如图所示,设点B 关于l 的对称点为B ′,连接AB ′并延长
交l 于P ,此时的P 满足|PA |-|PB |的值最大.设B ′的坐标为(a ,b ),
则k BB ′·k l =-1, 即3·
b -4
a
=-1. 则a +3b -12=0.①
又由于线段BB ′的中点坐标为⎝ ⎛⎭
⎪⎫a 2,
b +42,且在直线l 上,
则3×a 2-b +4
2
-1=0,即3a -b -6=0.②
解①②,得a =3,b =3,即B ′(3,3).
于是AB ′的方程为y -13-1=x -4
3-4
,即2x +y -9=0.
解⎩
⎪⎨
⎪⎧
3x -y -1=0,2x +y -9=0,得⎩
⎪⎨
⎪⎧
x =2,
y =5,
即l 与AB ′的交点坐标为P (2,5).。