中考数学精学巧练备考秘籍第5章图形的性质第33课时圆的有关计算0707222含答案
- 格式:doc
- 大小:732.52 KB
- 文档页数:13
2017年中考数学精学巧练备考秘籍第5章图形的性质第34课时视图与投影编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学精学巧练备考秘籍第5章图形的性质第34课时视图与投影)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学精学巧练备考秘籍第5章图形的性质第34课时视图与投影的全部内容。
第5章图形的性质【精学】考点一、平移1、定义把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2、性质(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动(2)连接各组对应点的线段平行(或在同一直线上)且相等。
考点二、轴对称1、定义把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴.考点三、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
2024年中考重点之圆的基本性质与计算圆作为几何图形中的重要概念,在数学中起着重要的作用。
本文将探讨圆的基本性质和计算方法。
一、圆的定义与特点圆由一个固定的点(圆心)和到该点距离相等的所有点(圆周)组成。
圆的基本特点包括:1. 圆心距:圆上任意一点到圆心的距离都相等,等于圆的半径。
2. 直径:穿过圆心的线段,且两端的点都在圆上。
直径是圆的最长线段,其长度等于半径的两倍。
3. 弧:圆周上的一段弯曲线段,两个端点属于圆上。
4. 弦:连接圆上任意两点的线段。
二、圆的基本计算公式1. 圆的周长:圆的周长也称为圆的长度,可以用公式C = 2πr来计算,其中r代表圆的半径,π取近似值3.14或3.1416。
2. 圆的面积:圆的面积可以用公式A = πr²来计算,其中r代表圆的半径,π取近似值3.14或3.1416。
三、圆的性质与定理1. 圆的各条弦的性质:- 弦长相等的弦,其对应的弧长也相等。
- 相等弧周角(一个圆心角)所对的弦等长。
- 垂直弦上的两个弧的和等于180度。
2. 圆周角定理:- 圆周角等于其对应的圆心角的一半。
3. 切线与弦的性质:- 切线与半径垂直相交。
四、圆的常见应用圆作为数学中常见的几何图形,在实际应用中也有广泛的运用,如:1. 圆形的轮胎和车轮:圆的旋转特性使得车辆能够平稳行驶。
2. 圆形的钟表和计时器:钟表和计时器的盘面通常为圆形,通过刻度和指针来进行时间的测量和记录。
3. 圆形的器皿和容器:如圆形的盘子、碗、杯子等,常见于生活中的餐具和容器。
综上所述,圆作为几何图形的重要概念,具有许多基本性质和特点,并且在实际生活中有广泛的应用。
熟练掌握圆的基本性质和计算方法,将有助于中考数学题目的解答和实际问题的解决。
同学们要通过大量的练习和实践,深入理解圆的性质与计算,从而在中考中取得好的成绩。
2021年中考数学精学巧练备考秘籍第5章图形的性质第33课时圆的有关计算【精学】考点一、正多边形和圆1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
考点二、与正多边形有关的概念1、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。
3、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
考点三、正多边形的对称性1、正多边形的轴对称性正多边形都是轴对称图形。
一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
2、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3、正多边形的画法先用量角器或尺规等分圆,再做正多边形。
考点四、弧长和扇形面积1、弧长公式n°的圆心角所对的弧长l的计算公式为2、扇形面积公式其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。
3、圆锥的侧面积其中l是圆锥的母线长,r是圆锥的地面半径。
【巧练】题型一弧长、扇形的面积例1.(xx•湖北荆门)如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是()A.12cm B.6cm C.3cm D.2cm【答案】C【分析】圆的半径为2,那么过圆心向AC引垂线,利用相应的三角函数可得AC的一半的长度,进而求得AC的长度,利用弧长公式可求得弧BC的长度,圆锥的底面圆的半径=圆锥的弧长÷2π.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.题型二圆锥的侧面积和全面积(xx•浙江宁波)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()例2.A.30πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.题型三不规则阴影部分的面积例3.(xx•重庆)如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.B.C.D.+【答案】A【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△A O C=S△B O C,然后根据扇形的面积公式计算图中阴影部分的面积.故选A.【点评】本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.题型四正多边形对称性的应用例4(xx•宁夏)如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(﹣1,0),则点C的坐标为.【答案】(,)【分析】先连接OE,由于正六边形是轴对称图形,并设EF交Y轴于G,那么∠GOE=30°;在Rt△GOE 中,则GE=,OG=.即可求得E的坐标,和E关于Y轴对称的F点的坐标,其他坐标类似可求出.【点评】本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识.【限时突破】1.(xx•福建泉州)如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A.3 B.6 C.3πD.6π2.(xx•四川自贡)圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2D.(4+16)πcm23.(xx•山东青岛)如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm24.(xx•云南)若扇形面积为3π,圆心角为60°,则该扇形的半径为( )A.3B.95.(xx•四川成都)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2, B.2,π C., D.2,6.(xx•玉林)如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A.B.C.D.17.(xx•山东潍坊)如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣8.(xx•湖北十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cmC.10cm D.20cm9.(xx•青岛)如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为(1,1),(﹣1,1),把正方形ABCD绕原点O逆时针旋转45°得正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分所形成的正八边形的边长为2﹣2 .10.(xx·四川巴中)如图,在平面直角坐标系xOy中,以点O为圆心的圆分别交x轴的正半轴于点M,交y轴的正半轴于点N.劣弧的长为π,直线y=﹣x+4与x轴、y轴分别交于点A、B.(1)求证:直线AB与⊙O相切;(2)求图中所示的阴影部分的面积(结果用π表示)【答案解析】1.【分析】直接根据弧长公式即可得出结论.【解答】解:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,∴2πr=,解得r=3.故选A.【点评】本题考查的是圆锥的计算,熟记弧长公式是解答此题的关键.2.【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.3.【分析】贴纸部分的面积等于扇形ABC减去小扇形的面积,已知圆心角的度数为120°,扇形的半径为25cm和10cm,可根据扇形的面积公式求出贴纸部分的面积.【解答】解:∵AB=25,BD=15,∴AD=10,∴S贴纸=﹣=175πcm2,故选A.【点评】本题主要考查扇形面积的计算的应用,解答本题的关键是熟练掌握扇形面积计算公式,此题难度一般.4.【分析】根据扇形的面积公式:S=代入计算即可解决问题.【解答】解:设扇形的半径为R,由题意:3π=,解得R=±,∵R>0,∴R=cm,∴这个扇形的半径为cm.故选C.【点评】本题考查扇形的面积公式,关键是记住扇形的面积公式:S==LR(L是弧长,R是半径),属于中考常考题型.5.分析:正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.解答:解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选D.点评:本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.6.【分析】先根据正多边形的内角和公式可求正八边形的内角和,根据周角的定义可求正八边形外侧八个扇形(阴影部分)的内角和,再根据半径相等的扇形面积与圆周角成正比即可求解.【解答】解:∵正八边形的内角和为(8﹣2)×180°=6×180°=1080°,正八边形外侧八个扇形(阴影部分)的内角和为360°×8﹣1080°=2880°﹣1080°=1800°,∴==.故选:B.【点评】考查了扇形面积的计算,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.7.【分析】连接连接OD、CD,根据S阴=S△A B C﹣S△A C D﹣(S扇形O C D﹣S△O C D)计算即可解决问题.∵BC=2,∴AB=4,AC=6,∴S阴=S△A B C﹣S△A C D﹣(S扇形O C D﹣S△O C D)=×6×2﹣×3×﹣(﹣×32)=﹣π.故选A.【点评】考查了扇形面积的计算,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.8.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9. 分析:如图,首先求出正方形的边长、对角线长;进而求出OA′的长;证明△A′MN为等腰直角三角形,求出A′N的长度;同理求出D′M′的长度,即可解决问题.解答:解:如图,由题意得:正方形ABCD的边长为2,∴该正方形的对角线长为2,∴OA′=;而OM=1,∴A′M=﹣1;由题意得:∠MA′N=45°,∠A′MN=90°,∴∠MNA′=45°,∴MN=A′M=;由勾股定理得:A′N=2﹣;同理可求D′M′=2﹣,∴MN=2﹣(4﹣2)=2﹣2,∴正八边形的边长为2﹣2.点评:该题主要考查了旋转变换的性质、正方形的性质、勾股定理等几何知识点及其应用问题;应牢固掌握旋转变换的性质、正方形的性质等几何知识点,这是灵活运用、解题的基础和关键.10.【分析】(1)作OD⊥AB于D,由弧长公式和已知条件求出半径OM=,由直线解析式求出点A和B的坐标,得出OA=3,OB=4,由勾股定理求出AB=5,再由△AOB面积的计算方法求出OD,即可得出结论;(2)阴影部分的面积=△AOB的面积﹣扇形OMN的面积,即可得出结果.∵直线y=﹣x+4与x轴、y轴分别交于点A、B,当y=0时,x=3;当x=0时,y=4,∴A(3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∵△AOB的面积=AB•OD=OA•OB,∴OD===半径OM,∴直线AB与⊙O相切;(2)解:图中所示的阴影部分的面积=△AOB的面积﹣扇形OMN的面积=×3×4﹣π×()2=6﹣π."26021 65A5 斥)030848 7880 碀26106 65FA 旺37630 92FE 鋾I30124 75AC 疬Ppb34951 8887 袇22534 5806 堆。
第22讲 圆的基本性质1.圆的有关概念考试内容考试要求圆的定义 定义1:在一个平面内,一条线段绕着它固定的一个端点旋转一周,另一个端点所形成的图形叫做圆.b定义2:圆是到定点的距离 定长的所有点组成的图形.弦 连结圆上任意两点的 叫做弦.直径 直径是经过圆心的 ,是圆内最 的弦. 弧圆上任意两点间的部分叫做弧,弧有____________________之分,能够完全重合的弧叫做____________________.a等圆 能够重合的两个圆叫做等圆. 同心圆圆心相同的圆叫做同心圆.2.圆的对称性考试内容考试要求圆的对称性 圆是轴对称图形,其对称轴是任意一条经过 的直线. c圆是中心对称图形,对称中心为____________________.圆心角、弧、弦之间的关系 在同圆或等圆中,如果两个圆心角、两条弧或两条弦中有一组量 ,那么它们所对应的其余各组量也分别相等.3.圆周角考试内容考试要求圆周角的顶点在圆上,并且 都和圆相交的角叫做圆周角.b定义圆周角定理一条弧所对的圆周角等于它所对的圆心角的.c 推论1 同弧或等弧所对的圆周角.推论2半圆(或直径)所对的圆周角是;90°的圆周角所对的弦是.推论3 圆内接四边形的对角.4.点与圆的位置关系考试内容考试要求位置关系点在圆内点在圆上点在圆外b 数量(d与r)的大小关系(设圆的半径为r,点到圆心的距离为d)_________________ _________________ _____________考试内容考试要求基本思想分类讨论思想:在很多没有给定图形的题目中,常常不能根据题目的条件把图形确定下来,因此会导致解的不唯一性.对于这种多解题必须要分类讨论,分类时要注意标准一致,不重不漏.如:圆周角所对的弦是唯一的,但是弦所对的圆周角不是唯一的.c 基本方法辅助线:有关直径的问题,如图,常作直径所对的圆周角.1.(2016·绍兴)如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30°2.(2015·宁波)如图,⊙O 为△ABC 的外接圆,∠A =72°,则∠BCO 的度数为( )A .15°B .18°C .20°D .28°3.(2017·绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A 在⊙O 上,边AB ,AC 分别与⊙O 交于点D ,E ,则∠DOE 的度数为____________________.第3题图 第4题图4.(2017·湖州)如图,已知在△ABC 中,AB =AC.以AB 为直径作半圆O ,交BC 于点D.若∠BAC=40°,则AD ︵的度数是____________________度.【问题】如图,四边形ABCD 内接于⊙O,CE 是直径.(1)观察图形,你能得到哪些信息?(2)若∠ADC=130°,则∠B=______,∠AOC =______,AE ︵的度数为____; (3) 若AC =6,AO =5,则AE =________.【归纳】通过开放式问题,归纳、疏理圆的有关性质,弦、弧、圆心角的关系定理及推论,圆周角定理,圆的内接四边形等.类型一 圆的有关概念例1 下列语句中,正确的是__________________.①半圆是弧;②长度相等的弧是等弧;③相等的圆心角所对的弧相等;④圆是轴对称图形,任何一条直径所在直线都是对称轴;⑤经过圆内一定点可以作无数条直径;⑥三个点确定一个圆;⑦直径是圆中最长的弦;⑧一个点到圆的最小距离为6cm ,最大距离为9cm ,则该圆的半径是1.5cm 或7.5cm ;⑨⊙A 的半径为6,圆心A(3,5),则坐标原点O 在⊙A 内.【解后感悟】圆中相关概念经常会出现错误,需要辨析,如在同圆或等圆中,相等的圆心角所对的弧相等.1.(1)A 、B 是半径为5cm 的⊙O 上两个不同的点,则弦AB 的取值范围是( ) A .AB>0 B .0<AB<5 C .0<AB<10 D .0<AB ≤10 (2)下列说法中,正确的是( )A .同一条弦所对的两条弧一定是等弧B .相等圆周角所对弧相等C .正多边形一定是轴对称图形D .三角形的外心到三角形各边的距离相等(3) (2017·河北模拟)如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是____________________.类型二圆的内接多边形例2(2017·陕西模拟)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.【解后感悟】本题主要考查圆内接四边形的对角互补;圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补.2.(1)(2015·杭州)圆内接四边形ABCD中,已知∠A=70°,则∠C=( )A.20°B.30°C.70°D.110°(2)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45°B.50°C.60°D.75°(3)(2015·南京)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=____________________.类型三圆心角与圆周角的关系例3(1)如图,AB为⊙O的直径,诸角p,q,r,s之间的关系①p=2q;②q=r;③p +s=180°中,正确的是( )A.只有①和②B.只有①和③C.只有②和③D.①,②和③(2)(2015·台州)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.①若∠CBD=39°,求∠BAD的度数;②求证:∠1=∠2.【解后感悟】解题利用图形联想,揭示数量关系,如等腰三角形、圆周角定理、圆内接四边形等知识;圆周角定理及其推论建立了圆心角、弦、弧、圆周角之间的关系,最终实现了圆中的角(圆心角和圆周角)的转化;当图中出现同弧或等弧时,常常考虑到弧所对的圆周角或圆心角,“一条弧所对的圆周角等于该弧所对的圆心角的一半”,通过弧把角联系起来.注意掌握数形结合思想的应用.3.(1)(2017·衢州模拟)如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O 的弦,∠ABD=58°,则∠BCD等于____________________.(2)(2017·巴中模拟)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE 上,连结AE,∠E=36°,则∠ADC的度数是____________________.(3)(2017·潍坊模拟)如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于____________________.类型四圆的综合运用例4(2017·台州)如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C 重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.【解后感悟】解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,注意数形结合的应用.4.(2017·丽水)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.【探索研究题】(2017·杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O 交于点G,设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:α30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于α的函数表达式,γ关于α的函数表达式,并给出证明;(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【方法与对策】本题涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,这样要联想,并及时调整图形,揭示数量关系特征,从而解决问题,这是中考命题的热点.【忽视圆周角顶点可能在优弧上,也可能在劣弧上】一条弦的长度等于它所在的圆的半径,那么这条弦所对的圆周角的度数是________.参考答案第22讲圆的基本性质【考点概要】1.等于线段弦长优弧、半圆、劣弧等弧2.圆心圆心相等 3.两边一半相等直角直径互补 4.d<r d=r d >r【考题体验】1.D 2.B 3.90° 4.140【知识引擎】【解析】(1)由圆心角、圆周角定理,圆的内接四边形可知:∠B=∠E=12∠AOC, ∠B+∠D =180°, ∠CAE =90°等; (2)50°,100°,80°; (3)8.【例题精析】 例1 ①④⑦⑧⑨例2 (1)∠E=∠F,∵∠DCE =∠BCF,∴∠ADC =∠E+∠DCE,∠ABC =∠F+∠BCF,∴∠ADC =∠ABC; (2)由(1)知∠ADC=∠ABC,∵∠EDC =∠ABC,∴∠EDC =∠ADC,∴∠ADC =90°,∴∠A =90°-42°=48°; (3)连结EF ,如图,∵四边形ABCD 为圆的内接四边形,∴∠ECD =∠A,∵∠ECD =∠1+∠2,∴∠A =∠1+∠2,∵∠A +∠1+∠2+∠E+∠F =180°,∴2∠A+α+β=180°,∴∠A =90°-α+β2. 例3 (1)A ;(2)①∵BC=CD ,∴BC ︵=DC ︵.∴∠BAC =∠CAD=∠CBD.∵∠CBD=39°,∴∠BAC =∠CAD=39°.∴∠BAD =∠BAC+∠CAD=78°.②∵EC =BC ,∴∠CBE =∠CEB,∵∠CBE =∠1+∠CBD,∠CEB =∠2+∠BAC ,又∵∠BAC=∠CBD,∴∠1=∠2.例4 (1)∵AB=AC ,∠BAC =90°,∴∠C =∠ABC=45°,∴∠AEP =∠ABP=45°,∵PE 是直径,∴∠PAE =90°,∴∠APE =∠AEP=45°,∴AP =AE ,∴△PAE 是等腰直角三角形. (2)作PM⊥AC 于M ,PN ⊥AB 于N ,则四边形PMAN 是矩形,∴PM =AN ,∵△PCM ,△PNB 22PA=)2PN +22(AN =)2PN +22(PM =2PB +2PC ,∴PN 2=PB ,PM 2=PC ,∴都是等腰直角三角形)是直角三角形PBE ,△△ACP≌△ABE 也可以证明4.(=22=2PE =【变式拓展】1.(1)D (2)C (3)3<r<5 2.(1)D (2)C (3)215° 3.(1)32° (2)54° (3)3 4.(1)连结OD ,∵DE 是切线,∴∠ODE =90°,∴∠ADE +∠BDO=90°,∵∠ACB =90°,∴∠A +∠B=90°,∵OD =OB ,∴∠B =∠BDO,∴∠ADE=∠A. (2)连结CD.∵∠ADE=∠A,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =10,∴AC =2DE =20,在Rt △ADC 中,DC =202-162=12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2-202,∴x 2+122=(x +16)2-202,解得x =9,∴BC =122+92=15.11 / 11【热点题型】【分析与解】(1)猜想:β=α+90°,γ=-α+180°,连结OB ,∴由圆周角定理可知:2∠BCA=360°-∠BOA,∵OB =OA ,∴∠OBA =∠OAB=α,∴∠BOA =180°-2α,∴2β=360°-(180°-2α),∴β=α+90°,∵D 是BC 的中点,DE ⊥BC ,∴OE 是线段BC 的垂直平分线,∴BE =CE ,∠BED =∠CED,∠EDC =90°,∵∠BCA =∠EDC+∠CED,∴β=90°+∠CED,∴∠CED =α,∴∠CED =∠OBA=α,∴O 、A 、E 、B 四点共圆,∴∠EBO +∠EAG=180°,∴∠EBA +∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA =90°,∠BCE =45°,由(1)可知:O 、A 、E 、B 四点共圆,∴∠BEC =90°,∵△ABE 的面积为△ABC 的=BCE ,∵∠6=2CD =BC 可知:(1)由,x =AC ,3x =CE 设,3=CE AC ,∴4=AEAC ,∴倍4面积的AC ,23=CE =BE ,∴2=x ,26=2(3x)+2(3x)由勾股定理可知:,∴3x =BE =CE °,∴45AB ,∴2)2(4+2)2(3=2AB 由勾股定理可知:,中ABE △Rt 在,24=CE +AC =AE ,∴2=2AB由勾股定理可知:,r 设半径为,中AOB △Rt 在°,90=AOB °,∴∠45=BAO ,∵∠25= 5.半径的长为O ,∴⊙5=r ,∴22r =【错误警示】30°或150°。
中考数学复习专练知识考点:圆的有关性质中考数学温习专练知识考点:圆的有关性质纲要求:1.了解圆的有关概念和性质,了解圆心角、弧、弦之间的关系.命题趋向:2.了解圆心角与圆周角及其所对弧的关系,掌握垂径定理及推论.中考主要考察圆的有关概念和性质,与垂径定理有关的计算,与圆有关的角的性质及其运用.题型以选择题、填空题为主.知识梳理一、圆的有关概念及其对称性1.圆的定义(1)圆是平面内到一定点的距离等于定长的一切点组成的图形.这个定点叫做________,定长叫做________;(2)平面内一个动点绕一个定点旋转一周所构成的图形叫做圆,定点叫做圆心,定点与动点的连线段叫做半径.2.圆的有关概念(1)衔接圆上恣意两点的________叫做弦;(2)圆上恣意两点间的________叫做圆弧,简称弧.(3)________相等的两个圆是等圆.(4)在同圆或等圆中,可以相互________的弧叫做等弧. 3.圆的对称性(1)圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;(2)圆的中心对称性:圆是以圆心为对称中心的中心对称图形;(3)圆是旋转对称图形:圆绕圆心旋转恣意角度,都能和原来的图形重合.这就是圆的旋转不变性.二、垂径定理及推论1.垂径定理垂直于弦的直径________这条弦,并且________弦所对的两条弧.2.推论1(1)平分弦(________)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过________,并且平分弦所对的________弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3.推论2圆的两条平行弦所夹的弧________.4.(1)过圆心;(2)平分弦(不是直径);(3)垂直于弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧.假定一条直线具有这五项中恣意两项,那么必具有另外三项.三、圆心角、弧、弦之间的关系1.定理在同圆或等圆中,相等的圆心角所对的弧________,所对的弦________.2.推论同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等.三项中有一项成立,那么其他对应的两项也成立.四、圆心角与圆周角1.定义顶点在________上的角叫做圆心角;顶点在________上,角的两边和圆都________的角叫做圆周角.2.性质(1)圆心角的度数等于它所对的______的度数.(2)一条弧所对的圆周角的度数等于它所对________的度数的一半.(3)同弧或等弧所对的圆周角________,同圆或等圆中相等的圆周角所对的弧________.(4)半圆(或直径)所对的圆周角是______,90的圆周角所对的弦是________.五、圆内接四边形的性质圆内接四边形的对角互补.。
第5章图形的性质【精学】考点一、直线、射线和线段1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、直线的概念一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
4、射线的概念直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
5、线段的概念直线上两个点和它们之间的部分叫做线段。
这两个点叫做线段的端点。
6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
7、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。
它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
8、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
2017年中考数学精学巧练备考秘籍第5章图形的性质第30课时图形的相似编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学精学巧练备考秘籍第5章图形的性质第30课时图形的相似)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学精学巧练备考秘籍第5章图形的性质第30课时图形的相似的全部内容。
第5章 图形的性质【精学】考点一、比例线段 1、比例线段的相关概念如果选用同一长度单位量得两条线段a,b 的长度分别为m ,n,那么就说这两条线段的比是,或写成a:b=m :n在两条线段的比a:b 中,a 叫做比的前项,b叫做比的后项.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段 若四条a,b,c,d满足或a:b =c:d,那么a ,b,c,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c叫做比例内项,线段的d 叫做a ,b,c 的第四比例项. 如果作为比例内项的是两条相同的线段,即cbb a =或a:b=b:c ,那么线段b叫做线段a,c 的比例中项。
2、比例的性质(拓展) (1)基本性质①a:b =c :d ⇔ad =b c②a:b =b :cac b =⇔2(2)更比性质(交换比例的内项或外项)d bc a =(交换内项) ⇒=dcb a ac bd =(交换外项)abc d =(同时交换内项和外项) (3)反比性质(交换比的前项、后项):cd a b d c b a =⇒= (4)合比性质:dd c b b a d c b a ±=±⇒= (5)等比性质:ba n f db m ec a n fd b n m fe d c b a =++++++++⇒≠++++==== )0( 3、黄金分割把线段AB 分成两条线段AC,BC(AC 〉B C),并且使AC 是AB 和BC 的比例中项,叫做把线段A B黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-AB ≈0.618AB 考点二、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例. 推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
第5章图形的性质【精学】考点一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab考点二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形 4、菱形的面积S 菱形=底边长×高=两条对角线乘积的一半 考点三、正方形 1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质 (2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角 (4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种: 先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下: 先证明它是平行四边形; 再证明它是菱形(或矩形); 最后证明它是矩形(或菱形) 4、正方形的面积设正方形边长为a ,对角线长为bS 正方形=222b a【巧练】题型一、矩形的性质及判定的应用例1.(2016广东广州)如图6,矩形ABCD 的对角线AC 、BD 相交于点O ,若AB =AO , 求∠ABD 的度数.图6ODA BC【答案】∠ABD=60°.【解析】试题分析:根据矩形的对角线相等且互相平分可得:AO=BO ,则△AOB 为等边三角形,进而得到∠ABD=60°. 试题解析:∵ 四边形ABCD 为矩形 ∴AO=BO 又∵AB=AO ∴AB=AO=BO∴△ABD 为等边三角形 ∴∠ABD=60°题型二、菱形的性质及判定的应用例2.(2016•兰州)如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CE ∥BD ,DE ∥AC ,AD=2,DE=2,则四边形OCED 的面积( )A .2B .4C .4D .8【答案】A【分析】连接OE ,与DC 交于点F ,由四边形ABCD 为矩形得到对角线互相平分且相等,进而得到OD=OC ,再由两组对边分别平行的四边形为平行四边形得到ODEC 为平行四边形,根据邻边相等的平行四边形为菱形得到四边形ODEC 为菱形,得到对角线互相平分且垂直,求出菱形OCEF 的面积即可. 【解答】解:连接OE ,与DC 交于点F , ∵四边形ABCD 为矩形,∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,∵OD∥CE,OC∥DE,∴四边形ODEC为平行四边形,∵OD=OC,∴四边形ODEC为菱形,∴DF=CF,OF=EF,DC⊥OE,∵DE∥OA,且DE=OA,∴四边形ADEO为平行四边形,∵AD=2,DE=2,∴OE=2,即OF=EF=,在Rt△DEF中,根据勾股定理得:DF==1,即DC=2,则S菱形ODEC=OE•DC=×2×2=2.故选A【点评】此题考查了矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键.题型三、正方形的性质及判定的应用例3.(2016•郴州)如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AE B=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()A.7 B.8C.7 D.7【答案】C【分析】由正方形的性质得出∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,由SSS证明△ABE≌△CDF,得出∠ABE=∠CDF,证出∠ABE=∠DAG=∠CDF=∠BCH,由AAS证明△ABE≌△ADG,得出AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果.【解答】解:如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∴∠BAE+∠DAG=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SSS),∴∠ABE=∠CDF,∵∠AEB=∠CF D=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∴∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在△ABE和△ADG中,,∴△ABE≌△ADG(AAS),∴AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∴EG=GF=FH=EF=12﹣5=7,∵∠GEH=180°﹣90°=90°,∴四边形EGFH是正方形,∴EF=EG=7;故选:C .【点评】本题考查了正方形的判定与性质、全等三角形的判定与性质;熟练掌握正方形的判定与性质,证明三角形全等是解决问题的关键. 【限时突破】 1.(2016河北)关于ABCD 的叙述,正确的是( )A .若AB ⊥BC ,则ABCD 是菱形B .若AC ⊥BD ,则ABCD 是正方形 C .若AC=BD ,则 ABCD 是矩形D .若AB=AD ,则ABCD 是正方形2.(2016山东枣庄)如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于( )A .524B .512C .5D .43.(2016•攀枝花)下列关于矩形的说法中正确的是( )A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分4.(2016•绥化)如图,矩形ABC D的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED 的周长为()A.4 B.8C.10 D.125.(2016·黑龙江龙东)如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.6.(2016吉林省长春市)如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为.7.(2016山东省菏泽市)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC= .8. (2016·四川达州)如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.9.(2016山东滨州)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.【答案解析】1.【答案】C.【解析】试题分析:根据矩形的判定可得A、C项应是矩形;根据菱形的判定可得B、D项应是菱形,故答案选C. 2.【答案】A.【解析】试题分析:如图,四边形ABCD是菱形,AC=8,BD =6,根据菱形的性质可得OA=4,OB=3,由勾股定理可得AB =5,再由,即可求得·故答案选A.3.【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.【点评】本题考查了矩形的性质和判定的应用,能熟记矩形的性质和判定定理是解此题的关键.4.【分析】由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B【点评】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键.5.【分析】利用平行四边形的判定与性质得到四边形DBCE为平行四边形,结合“对角线相等的平行四边形为矩形”来添加条件即可.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.6.【答案】﹣2.【解析】试题分析:∵正方形ABCD的对称中心与原点重合,顶点A坐标为(-1,1),∴B(1,1)1).∵点B在直线y=kx+3上,∴1=k+3,解得k=一2考点:1.一次函数图象上点的坐标特征;2.正方形的性质.7.【答案】1 3.【解析】试题分析:作EF⊥BC于F,如图,设DE=CE=a,∵△CDE为等腰直角三角形,∴CD=2CE=2a,∠DCE=45°,∵四边形ABCD为正方形,∴CB=CD=2a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF=22CE=22a,在Rt△BEF中,tan∠EBF=EFBF22222aa a=13,即∠EBC=13.故答案为:1 3.8.【分析】(1)由角平分线的作法容易得出结果,在AD上截取AF=AB,连接EF;画出图形即可;(2)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由(1)得:AF=AB,得出BE=AF,即可得出结论.【解答】解:(1)如图所示:(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE∥AF,∴四边形ABEF是平行四边形,∵AF=AB,∴四边形ABEF是菱形.9.【答案】(1)四边形EBGD是菱形,理由见解析;(2)10.【解析】试题分析:(1)四边形EBGD是菱形,根据已知条件易证△EFD≌△GFB,可得ED=BG,所以BE=ED=DG=GB,即可判定四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题.试题解析:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,∴EM=BE=,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=,MN=DE=2,在RT△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=,∴MC=3,在RT△EMC中,∵∠EMC=90°,EM=.MC=3,∴EC===10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.考点:平行四边形的判定和性质;菱形的判定和性质;角平分线的性质;垂直平分线的性质;勾股定理.。
第5章 图形的性质【精学】考点一、正多边形和圆 1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
考点二、与正多边形有关的概念 1、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。
3、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
考点三、正多边形的对称性 1、正多边形的轴对称性正多边形都是轴对称图形。
一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。
2、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3、正多边形的画法先用量角器或尺规等分圆,再做正多边形。
考点四、弧长和扇形面积 1、弧长公式n°的圆心角所对的弧长l 的计算公式为180rn l π= 2、扇形面积公式lR R n S 213602==π扇 其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长。
3、圆锥的侧面积rl r l S ππ=∙=221其中l 是圆锥的母线长,r 是圆锥的地面半径。
【巧练】题型一 弧长、扇形的面积例1.(2016•湖北荆门)如图,从一块直径为24cm 的圆形纸片上剪出一个圆心角为90°的扇形ABC ,使点A ,B ,C 在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( )A .12cmB .6cmC .3cmD .2cm【答案】C【分析】圆的半径为2,那么过圆心向AC 引垂线,利用相应的三角函数可得AC 的一半的长度,进而求得AC 的长度,利用弧长公式可求得弧BC 的长度,圆锥的底面圆的半径=圆锥的弧长÷2π.故选C .【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.题型二圆锥的侧面积和全面积例2.(2016•浙江宁波)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.题型三不规则阴影部分的面积例3.(2016•重庆)如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.B.C.D.+【答案】A【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△A O C=S△B O C,然后根据扇形的面积公式计算图中阴影部分的面积.故选A.【点评】本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.题型四正多边形对称性的应用例4(2015•宁夏)如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(﹣1,0),则点C的坐标为.【答案】(,)【分析】先连接OE,由于正六边形是轴对称图形,并设EF交Y轴于G,那么∠GOE=30°;在Rt△GOE 中,则GE=,OG=.即可求得E的坐标,和E关于Y轴对称的F点的坐标,其他坐标类似可求出.【点评】本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识.【限时突破】1.(2016•福建泉州)如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A.3 B.6 C.3πD.6π2.(2016•四川自贡)圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2D.(4+16)πcm23.(2016•山东青岛)如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm24.(2015•云南)若扇形面积为3π,圆心角为60°,则该扇形的半径为( )A.3B.95.(2015•四川成都)如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2, B.2,π C., D.2,6.(2016•玉林)如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A.B.C.D.17.(2016•山东潍坊)如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣8.(2016•湖北十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cmC.10cm D.20cm9.(2015•青岛)如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为(1,1),(﹣1,1),把正方形ABCD绕原点O逆时针旋转45°得正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分所形成的正八边形的边长为2﹣2 .10.(2016·四川巴中)如图,在平面直角坐标系xOy中,以点O为圆心的圆分别交x轴的正半轴于点M,交y轴的正半轴于点N.劣弧的长为π,直线y=﹣x+4与x轴、y轴分别交于点A、B.(1)求证:直线AB与⊙O相切;(2)求图中所示的阴影部分的面积(结果用π表示)【答案解析】1.【分析】直接根据弧长公式即可得出结论.【解答】解:∵圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,∴2πr=,解得r=3.故选A.【点评】本题考查的是圆锥的计算,熟记弧长公式是解答此题的关键.2.【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.3.【分析】贴纸部分的面积等于扇形ABC减去小扇形的面积,已知圆心角的度数为120°,扇形的半径为25cm和10cm,可根据扇形的面积公式求出贴纸部分的面积.【解答】解:∵AB=25,BD=15,∴AD=10,∴S贴纸=﹣=175πcm2,故选A.【点评】本题主要考查扇形面积的计算的应用,解答本题的关键是熟练掌握扇形面积计算公式,此题难度一般.4.【分析】根据扇形的面积公式:S=代入计算即可解决问题.【解答】解:设扇形的半径为R,由题意:3π=,解得R=±,∵R>0,∴R=cm,∴这个扇形的半径为cm.故选C.【点评】本题考查扇形的面积公式,关键是记住扇形的面积公式:S==LR(L是弧长,R是半径),属于中考常考题型.5.分析:正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.解答:解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选D.点评:本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.6.【分析】先根据正多边形的内角和公式可求正八边形的内角和,根据周角的定义可求正八边形外侧八个扇形(阴影部分)的内角和,再根据半径相等的扇形面积与圆周角成正比即可求解.【解答】解:∵正八边形的内角和为(8﹣2)×180°=6×180°=1080°,正八边形外侧八个扇形(阴影部分)的内角和为360°×8﹣1080°=2880°﹣1080°=1800°,∴==.故选:B .【点评】考查了扇形面积的计算,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.7.【分析】连接连接OD 、CD ,根据S 阴=S △A B C ﹣S △A C D ﹣(S 扇形O C D ﹣S △O C D )计算即可解决问题.∵BC=2,∴AB=4,AC=6, ∴S阴=S △A B C ﹣S △A C D ﹣(S 扇形O C D ﹣S △O C D )=×6×2﹣×3×﹣(﹣×32)=﹣π.故选A .【点评】考查了扇形面积的计算,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.8.【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆的半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r ,然后利用勾股定理计算出圆锥的高.【解答】解:过O 作OE ⊥AB 于E ,∵OA=OD=60cm ,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm ,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9. 分析:如图,首先求出正方形的边长、对角线长;进而求出OA′的长;证明△A′MN为等腰直角三角形,求出A′N的长度;同理求出D′M′的长度,即可解决问题.解答:解:如图,由题意得:正方形ABCD的边长为2,∴该正方形的对角线长为2,∴OA′=;而OM=1,∴A′M=﹣1;由题意得:∠MA′N=45°,∠A′MN=90°,∴∠MNA′=45°,∴MN=A′M=;由勾股定理得:A′N=2﹣;同理可求D′M′=2﹣,∴MN=2﹣(4﹣2)=2﹣2,∴正八边形的边长为2﹣2.点评:该题主要考查了旋转变换的性质、正方形的性质、勾股定理等几何知识点及其应用问题;应牢固掌握旋转变换的性质、正方形的性质等几何知识点,这是灵活运用、解题的基础和关键.10.【分析】(1)作OD⊥AB于D,由弧长公式和已知条件求出半径OM=,由直线解析式求出点A和B的坐标,得出OA=3,OB=4,由勾股定理求出AB=5,再由△AOB面积的计算方法求出OD,即可得出结论;(2)阴影部分的面积=△AOB的面积﹣扇形OMN的面积,即可得出结果.∵直线y=﹣x+4与x轴、y轴分别交于点A、B,当y=0时,x=3;当x=0时,y=4,∴A(3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∵△AOB的面积=AB•OD=OA•OB,∴OD===半径OM,∴直线AB与⊙O相切;(2)解:图中所示的阴影部分的面积=△AOB的面积﹣扇形OMN的面积=×3×4﹣π×()2=6﹣π.。