《图形的位似变换》教案4
- 格式:doc
- 大小:188.50 KB
- 文档页数:2
第3章图形的相似3.6 位似课时2 平面直角坐标系中图形的位似变换【知识与技能】1.了解用坐标描述位似变换的基本原理,理解以原点为位似中心的坐标变化规律.2.能利用原点为位似中心的坐标变化规律找出对应点的坐标.3.能运用位似原理作出位似图形.【过程与方法】1.进一步提高学生利用图形的变换解决问题的能力及小组合作、共同探究的能力,养成良好的数学思维习惯.2.通过总结平移、轴对称、旋转和位似四种变换的异同,进一步理解图形变换的区别.3.让学生在应用位似知识解决问题的过程中,体验数形结合思想方法在解题中的应用.【情感态度与价值观】1.使学生亲身经历坐标系下位似变换的基本原理,感受数学学习的应用性和挑战性.2.经历坐标系下画位似图形的过程,培养学生动手操作的良好习惯,培养学生的数学应用意识.3.进一步体验合作互助及交流能力,感受数学创造的乐趣,增强学好数学的信心.运用坐标系下的位似变换原理作出位似图形.把一个图形放大或缩小后,理解点的坐标变化的规律.多媒体课件.导入一:【复习提问】(1)什么是位似图形?位似图形有什么性质?(2)如何把一个图形放大或缩小?(3)作位似图形需要注意什么?【师生活动】学生思考回答,教师点拨并补充.导入二:完成下列作图.如图,△ABC的三个顶点坐标分别为A(2,3),B(1,1),C(5,1).(1)将△ABC向左平移3个单位长度得到△A1B1C1,写出A1,B1,C1的坐标;(2)写出△ABC关于x轴对称的△A2B2C2的三个顶点A2,B2,C2的坐标;(3)将△ABC绕点O旋转180°得到△A3B3C3,写出点A3,B3,C3的坐标.【师生活动】学生通过平移、对称、旋转的规律回答变化后的坐标,教师点评,导入新课.[过渡语]在平面直角坐标系中,可以用坐标表示平移、旋转、对称等变换,类似地,位似作为一种图形变换,也可以用图形坐标之间的关系来表示,这就是我们今天要探究的内容.[设计意图]通过复习回顾位似图形的有关知识,为本节课的学习做好铺垫,以实例回顾平移、轴对称、旋转(中心对称)等变换的坐标表示,体会数与形之间的联系,激发学生探究用坐标规律表示位似的兴趣.一、位似图形的坐标(1)如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为,把线段AB缩小.观察对应点之间坐标的变化,你有什么发现?(2)如图,△AOC三个顶点的坐标分别为A(4,4),O(0,0),C(5,0).以点O为位似中心,相似比为2,将△AOC放大.观察对应顶点坐标的变化,你有什么发现?思路一【师生活动】学生在课前准备的坐标系下动手画图,然后小组交流结果.教师在巡视过程中及时关注和提醒学生画出的位似图形是否有两种,对学生展示的结果点评.观察各对应顶点坐标之间的关系,小组合作交流,师生共同归纳结论.【问题】运用这个规律时有什么限制?一般地,在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(-kx,-ky).思路二教师引导思考、操作、演示.(1)在坐标系下画以原点为位似中心的图形,你能画出几个?如何画?(如图)(1)(2)(2)在课前准备的坐标系下分别画出位似图形.(3)图(1)中点A',B'的横、纵坐标与点A,B的横、纵坐标之间有什么关系?(利用相似可得点A',B'的横、纵坐标是点A,B的横、纵坐标的)(4)图(1)中点A″,B″的横、纵坐标与点A,B的横、纵坐标之间有什么关系?(利用相似可得点A″,B″的横、纵坐标的绝对值是点A,B的横、纵坐标的)(5)在图(2)中点A″,C'的横、纵坐标与点A,C的横、纵坐标之间有什么关系?(6)你能归纳关于原点对称的图形各对应顶点坐标之间的关系吗?【师生活动】学生在教师的引导下,画出图形,证明对应顶点之间的关系,最后归纳总结结论,教师引导学生思考,对画图及回答作出点评,然后课件展示图形变化过程中坐标之间的变化,最后师生共同归纳总结结论.【课件展示】一般地,在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(-kx,-ky).[设计意图]学生通过动手操作画出图形,通过观察、讨论,得出以原点为位似中心的图形的对应点之间的坐标规律,学生经历知识的形成过程,体验成功的快乐,增强学生学习数学的自信心,同时培养学生归纳总结能力,体会从特殊到一般及数形结合在数学中的应用.二、例题讲解如图,△ABO三个顶点的坐标分别为A(-2,4),B(-2,0),O(0,0),以原点O为位似中心,画一个三角形,使它与△ABO的相似比为.【思考】(1)所要画的是三角形,所以解决问题的关键是确定哪些点的坐标?(2)确定这些点的坐标与已知点的坐标之间有什么关系?如何确定这些点的坐标?【师生活动】学生独立思考后,画出图形,小组交流答案,学生展示结果,教师点评.【追加提问】你能总结画一个图形以原点为位似中心的位似图形的步骤吗? 学生小组交流,教师补充,归纳画图步骤:(1)根据以原点为位似中心的图形坐标变化规律,求出各顶点的坐标;(2)在坐标系下根据各顶点坐标描出各点;(3)依次连接各顶点可得所求作的图形.如图,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(-1,1),点C的坐标为(-4,2),求这两个正方形的位似中心的坐标.【教师引导分析】(1)两个位似图形的特征是什么?(每对对应点与位似中心共线;对应线段平行或在同一条直线上)(2)位似中心的位置有几种?哪几种?(两种,位似图形在位似中心的同侧或异侧)(3)观察图形,当位似中心在位似图形同侧时,位似中心是不是在特殊直线上? (DG,AO在x轴上,故位似中心在x轴上)(4)当位似中心在位似图形同侧时,位似中心还在哪条与已知有关的直线上? (过对应点C,F所在的直线上或过对应点B,E所在的直线上)(5)当位似中心在位似图形同侧时,如何求位似中心的坐标?(求直线CF(或BE)与x轴的交点坐标)(6)观察图形当位似中心在位似图形异侧时,位似中心在什么位置?(直线不唯一.直线OC,DE的交点)(7)当位似中心在位似图形异侧时,如何求位似中心的坐标?(求直线OC与直线DE的交点坐标,直线不唯一)解:①当两个位似图形在位似中心同侧时,位似中心就是CF与x轴的交点.设直线CF的解析式为y=kx+b,将C(-4,2),F(-1,1)的坐标分别代入,得解得即y=-x+,令y=0得x=2,∴位似中心的坐标是(2,0).②当位似中心在两个正方形之间时,可求直线OC的解析式为y=-x,直线DE的解析式为y=x+1,得解得即位似中心的坐标为.∴位似中心的坐标为(2,0)或.[设计意图]通过例题,巩固位似图形对应点的坐标之间的关系,让学生感受运用新知识解决问题的简捷性,从而获得成功感;例题2是用坐标描述位似图形的拓展,让学生体会位似中心不在坐标原点的有关计算,开阔了学生视野,加强学生对前后知识之间的联系,体会数形结合思想在数学中的应用.三、平移、旋转、轴对称、位似四种变换的异同[过渡语]我们已经学习了平移、轴对称、旋转和位似等图形的变化方式,你能在下图的图案中找到它们吗?四种变换有什么异同?【师生活动】学生小组合作交流后回答,教师对学生的回答点评,观察角度不同,学生的答案也不同.【四种变换的异同】图形经过平移、旋转、轴对称后,图形的位置虽然改变了,但是图形的大小和形状没有改变,即两个图形是全等的;而图形经过位似变换后,图形是相似的.[设计意图]设计开放性的题目让学生回顾思考各种图形变换,并归纳异同,将平移、旋转、轴对称和位似联系,完善认知结构,与课前导入首尾呼应,使教学过程通顺、流畅.[知识拓展](1)以原点为位似中心的位似变换,其对应点的坐标关系可表示为(新图形与原图形的相似比为k):与P(x,y)位于位似中心同侧的对应点P(kx,ky);与P(x,y)位于位似中心异侧的对应点P2(-kx,-ky).当k>1时,是将1图形扩大;当0<k<1时,是将图形缩小.(2)在直角坐标系中,把一个图形进行平移、轴对称、旋转和位似变换,其对应点的坐标都有各自的变化规律:①平移变换是横坐标或纵坐标加上(或减去)平移的距离.②轴对称变换,以x轴为对称轴,则对应点的横坐标相等,纵坐标互为相反数;以y轴为对称轴,则对应点的纵坐标相等,横坐标互为相反数.③在旋转变换中,一个图形绕原点旋转180°,则旋转前后两个图形上的对应点的横坐标与纵坐标分别互为相反数.④位似变换中,当以原点为位似中心时,变换前后两个图形上的对应点的横(或纵)坐标之比的绝对值等于相似比.1.位似变换中对应点坐标的变化规律:一般地,在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(-kx,-ky). 2.平移、轴对称、旋转和位似四种变换的异同.第2课时1.位似图形的坐标2.例题讲解例1例23.平移、旋转、轴对称、位似四种变换的异同一、教材作业二、课后作业【基础巩固】1.将平面直角坐标系中某个图案的各点坐标作如下变化,其中属于位似变换的是()A.将各点的纵坐标乘2,横坐标不变B.将各点的横坐标乘2,纵坐标不变C.将各点的横坐标、纵坐标都乘2D.将各点的纵坐标都减2,横坐标都加22.如图,在平面直角坐标系中,以原点为位似中心,将△AOB扩大为原来的2倍,得到△OA'B'.若点A的坐标是(1,2),则点A'的坐标是()A.(2,4)B.(-1,-2)C.(-2,-4)D.(-2,-1)3.如图,在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)4.在平面直角坐标系中,已知E(-4,2),F(-2,-2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E'的坐标是()A.(-2,1)B.(-8,4)C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)5.如图是△AOB和△COD,它们是位似图形,则△COD与△AOB的相似比是.6.△ABO的顶点坐标分别为A(-3,3),B(3,3),O(0,0),试将△AOB缩小为△A'OB',使△A'B'O与△ABO的相似比为1∶2,且A与A'在O点同侧,则A'点的坐标为,B'点的坐标为.7.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,点A的坐标为(1,0),则E点的坐标为.【能力提升】8.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图),则小鱼上的点(a,b)对应大鱼上的点是.9.如图,在平面直角坐标系xOy中,点A,B的坐标分别为(3,0),(2,-3),△AB'O'是△ABO关于A的位似图形,且O'的坐标为(-1,0),则点B'的坐标为.10.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)求△A1B1C1与△A2B2C2的面积比,即∶=(不写解答过程,直接写出结果).【拓展探究】11.如图,在△ABC中,BC=1,AC=2,∠C=90°.(1)在图(1)中,画△A'B'C',使△A'B'C'∽△ABC,且相似比为2∶1;(2)若将(1)中△A'B'C'称为“基本图形”,请你利用“基本图形”,借助旋转、平移或轴对称变换,在图(2)中设计一个以点O为对称中心,并且以直线l为对称轴的图案.【答案与解析】1.C解析:将各点的纵坐标乘2,横坐标不变,是将图形竖直方向拉伸,将各点的横坐标乘2,纵坐标不变,是将图形水平方向拉伸,图形的形状发生变化,故A,B不属于位似变换;将各点的纵坐标都减2,横坐标都加2,是将图形平移,故D不属于位似变换;将各点的横坐标、纵坐标都乘2,是以坐标原点为位似中心的位似变换.故选C.2.C解析:根据以原点为位似中心的坐标变化规律,可得△AOB扩大为原来的2倍,对应点的坐标为(2,4)或(-2,-4).故选C.3.A解析:∵线段CD和线段AB关于原点位似,∴△ODC∽△OBA,∴==,即==,∴CD=1,OD=2,∴C(2,1).故选A.4.D解析:根据题意得点E的对应点E'的坐标是(-2,1)或(2,-1).故选D.5.3∶5解析:由图可知=,即为两三角形的相似比.6.解析:∵△ABO的顶点坐标分别为A(-3,3),B(3,3),O(0,0),△AOB缩小为△A'OB',使△A'B'O与△ABO的相似比为1∶2,且A与A'在O点同侧,∴A'点的坐标为,B'点的坐标为.7.(,)解析:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,∴OA∶OD=1∶.∵点A的坐标为(1,0),即OA=1,∴OD=.∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为(,).8.(-2a,-2b)解析:根据题意易得两个图形是以原点O为位似中心的位似图形,且大鱼与小鱼的相似比是2∶1,∴对应点的坐标是(-2a,-2b).9.解析:如图,过点B作BE⊥x轴于点E,过点B'作B'F⊥x轴于点F.∵点A,B的坐标分别为(3,0),(2,-3),△AB'O'是△ABO关于点A的位似图形,且O'的坐标为(-1,0),∴==.由题知AE=1,EO=2,BE=3,∴==,∴=,解得AF=.∴EF=,∴FO=2-=.由=,解得B'F=4,则点B'的坐标为.10.解:(1)如图的△A1B1C1即为所求. (2)如图的△A2B2C2即为所求. (3)1∶411.解:答案不唯一.(1)如图(1). (2)如图(2).通过复习回顾位似图形的有关知识,为本节课的学习做好铺垫,以实例回顾平移、轴对称、旋转等变换的坐标表示,体会数与形之间的联系,激发学生探究用坐标规律表示位似图形的兴趣.本节课的重点是探究位似图形坐标之间的规律,并能应用规律解决有关问题,通过学生动手操作、小组合作交流,共同归纳出结论,在学生探究过程中突出了学生是课堂的主体,让学生在课堂上展示自己,增强自信心.例题的设计把本节课的内容进行了拓展,即位似中心不是坐标原点的情况,联系了前后知识,开阔了学生的视野,拓展了学生的思维,提高数学思维能力.本节课是位似的第2课时,主要探究位似图形坐标的特征,并能应用探索的规律解决有关问题,在教学设计中关注学生的课堂参与,表面看课堂气氛活跃了,但是只有部分学生积极发言,调动学生的积极性的技巧还存在问题,另外例2的设计目的是把本节课知识进行拓展,但题的难度有点大,给予讨论的时间不够长,有些学生没有真正掌握,在以后的教学中,要注重难易程度的把握.。
沪科版数学九年级上册22.4图形的位似变换教学设计课题22.4图形的位似变换单元第22章学科数学年级九年级学习目标1、理解相似变换及位似相关的概念;2、掌握位似变换的性质;3、会利用位似进行图形的缩放。
重点掌握位似变换的性质,掌握利用位似进行图形的缩放难点利用位似进行图形的缩放教学过程教学环节教师活动学生活动设计意图导入新课1、到目前为止,我们已经学过的图形的哪些变换?对称:有两种轴对称与轴对称图形,对称轴中心对称与中心对称图形,对称中心。
平移:平移的方向,平移的距离。
旋转:旋转中心,旋转方向,旋转角度2、对称、平移、旋转变换,它们的共同特点是什么?这些图形变换都是全等的,把一个图形变换成一个与原来的图形的形状和大小都相同的图形,只是位置不同。
在日常生活中,我们经常见到这样一类相似的图形,这样的放大缩小,没有改变图形形状,经过放大或缩小的图形,与原图形是相似的,因此,我们可以得到真实的图片和满意的照片。
学生回顾图形的变换,为研究图形的位似变换作好准备。
为探究图形的位似变换做好准备。
学生讨论回答提出的问题。
讲授新课 活动探究:思考以下问题。
上面的相似图形具有什么特点呢?例1 要把四边形ABCD 放大为原来的2倍(即新图与原图的相似比为2)。
1、在四边形ABCD 所在平面内外任取一点O ;2、以点O 为端点作射线OA ,OB ,OC ,OD ;3、分别在线段OA 、OB 、OC 、OD 上取点A'、B'、C'、D',使得4、连接点A ′B ′、B ′C ′、C ′D ′、D ′ A ′所得四边形A ′ B ′ C ′ D ′即为所求。
本题还可以按下图方法作图1、在四边形ABCD 所在平面内任取一点O;2、分别以点A 、B 、C 、D 为端点做射线AO ,BO 、CO 、DO;3、分别在线段OA 、OB 、OC 、OD 上取点A'、B'、C'、D',使得4、连接点A ′B ′、B ′C ′、C ′D ′、D ′ A ′所得四边形A ′ B ′ C ′ D ′即为所求。
九年级数学上册4.8.1 图形的位似教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册4.8.1 图形的位似教案(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册4.8.1 图形的位似教案(新版)北师大版的全部内容。
课题:4。
8。
1 图形的位似教学目标:1.了解位似多边形的有关概念,会判断简单的位似图形及位似中心. 2.能够利用位似将一个图形放大或缩小,并能解决一些简单的实际问题.3.经历位似图形的概念形成过程和位似图形、位似变换的性质的探索过程,感受数学学习的实用性,体会学习数学的快乐. 教学重、难点:重点:位似多边形的相关定义、性质的理解,绘制位似多边形方法的掌握. 难点:位似多边形的判断,从位似中心的不同方向绘制位似多边形. 课前准备:制作多媒体课件,图钉、橡皮筋、铅笔等. 教学过程:一、创设情境,导入新课导语:同学们,色彩斑谰的世界中有许多美丽的图形,它们有的是形状、大小都相同的全等形(多媒体出示图1);有的是形状相同,大小不同的相似图形(多媒体出示图2);有的不但是相似图形,而且所处的位置也特殊(多媒体出示图3),这样的两个图形是位似图形.你知道如何画位似图形吗?你知道位似图形有哪些性质吗?本节课就让我们一起来探究位似图形的性质与画法.【板书课题:4.8图形的位似(1)】处理方式:教师播放媒体课件,学生观察生活中的存在的全等形、相似形、位似形,体会数学来源于生活,在相似形的基础上感知位似图形.设计意图:通过用多媒体课件展示生活的的图片,引入本章的学习内容:位似图形.初步图1图2图3感知位似图形,引发学生思考位似图形的特征,激发学生的求知欲及学习兴趣.为新课的学习做好情感铺垫.二、探究学习,获取新知 活动1:美图赏析(多媒体出示)请同学们欣赏这幅海报,它是由一组形状相同的图片组成.在图片①和图片②上任取一组对应点A ,A ',试问A ,A '的连线是否经过镜头中心O ?OAA O '的值与哪两条线段的比相等?在图片上换其他的点还有类似的规律吗?处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)在图片①和图片②上任取一组对应点A ,A ',它们的连线是否经过镜头中心O ?(2)OAA O '的值与哪两条线段的比相等?设计意图:通过以上问题引导学生感悟出:图片①和图片②上任意一组对应点的连线都经过镜头中心O ,而且对应点A ,A '到镜头中心O 的距离比等于两个图形的相似比.便于引出位似图形的概念.活动2:动手连一连(多媒体出示)如图,是两个相似比为k 的相似五边形,设直线A A ' 与B B '相交于点O ,那么直线C C '、D D '、?OA OB OC OD OE ,,,,有什么关系?AO②A '①处理方式:学生先自主观察这些图形的特点,然后在小组内交流自已的看法,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作以下引导:(1)直线CC'、DD'、EE'是否也都经过点O?(2)OA OB OC OD OEOA OB OC OD OE''''',,,,有什么关系?(多媒体演示三角形相似)设计意图:通过以上问题引导学生感悟出:直线CC'、DD'、EE'都经过点O,而且每一对应点到O的距离比等于两个图形的相似比.活动3:出示位似图形的概念(多媒体出示)一般地,如果两个相似多边形任意一组对应点P,P'所在的直线都经过同一点O,且有PO'=k·OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.k就是这两个相似多边形的相似比.处理方式:教师利用多媒体出示位似多边形及位似中心的概念.强调相关要点,明确k就是这两个位似多边形的相似比.设计意图:了解位似多边形及位似中心的概念,感悟位似图形的性质.活动4:位似图形的性质(多媒体出示)请观察下列两组图形,回答问题:每组图形中两个图形是否是位似图形?若是位似图形,请找出位似中心,对应边有什么特处理方式:学生先观察、连线、测量、计算,小组内交流,教师启发引导:①如何判断两②③个图形是否位似?如果两个图形位似,位似中心与两个图形;②每组对应点到位似中心的距离之比与对应边的比有什么关系?学生交流展示①、②位似,且相似比等于对应点到位似中心的距离之比,③相似但不位似;位似中心可能在对应点的同侧,也可能在它们之间.教师板书:位似图形的对应点的连线经过位似中心,且到位似中心的距离之比等于相似比;位似中心可能在对应点的同侧,也可能在它们之间;对应线段平行或在同一条直线上.设计意图:通过观察图形、猜想、测量、计算、验证结论,提高学生分析、归纳能力,体会分类的思想,进而掌握位似的性质,位运用位似放大或缩小图形做好铺垫.三、例题解析,应用新知例1 如图,已知△ABC ,DEF , 使它与△ABC 位似,且相似比为2.处理方式:给学生留时间,让学生先独立思考,并尝试到黑板展示,其余同学在练习本上完成,并进行相互点评,学生之间对比,教师提问作图依据及利用多媒体课件规范解题步骤,最后启发引导在O 点的另一侧作图,强调知识的应用及逆向思维.解:如图,⑴画射线OA ,OB ,OC ;⑵在射线OA ,OB ,OC 上分别取点D ,E ,F ,使OD =2OA ,OE =2OB ,OF =2OC ;⑶顺次连接D ,E ,F ,得△DEF ;则△DEF 与△ABC 位似,且相似比为2.设计意图:通过例题提供应用位似的性质的一个具体情境,加深学生位似图形的理解,掌握作图技巧,提高作图能力.让学生体会用所学的知识来解决问题的意识.导语:所作△DEF 与△ABC 位似,且相似比为2,即△ABC 被放大.利用位似的知识你能将任意图形进行放大或缩小吗?O · C B AFEDOCBA满足条件的△DEF 可以在点O 的另一侧吗?F 'E 'D '处理方式:教师演示并利用多媒体课件展示具体步骤,1.将两根长短相同的橡皮筋系在一起,联结处形成一个结点. 2.选取一个图形,在图形外取一点.3.将系在一起的橡皮筋的一端固定在定点,把一只铅笔固定在橡皮筋的另一端. 4.拉动铅笔,使两根橡皮筋的结点沿所选图形的边缘运动,当结点在已知图形上运动一圈时,铅笔就画出了一个新的图形.请同学们来完成“做一做”:用橡皮筋放大图形.对学生进行分组,学生根据操作步骤合作完成对已知图形的放大.设计意图:通过动手操作,拓展学生的思路,结合放大或缩小不规则图形的方法,让学生通过操作、思考,讨论,加深对前面知识的理解,感悟各种不同方法之间的内在联系,体会位似在生活中的应用.四、巩固训练,落实新知1.已知点O 在△ABC 内,以点O 为位似中心画一个三角形,使它与△ABC 位似,且相似比为12.2.如图,请把下面的五角星图样放大,使得放大前后的相似比为1∶2.要把图形放大其他的倍数应怎么办?要缩CO ·AB3.请观察:以下每组图中的两个多边形是位似多边形吗?若是,请指出位似中心.处理方式:给学生留足时间,让学生先独立完成,选代表到黑板展示,同学间相互点评.设计意图:通过练习让学生理解位似图形,能应用位似知识解决相似图形中的相关问题.五、回顾反思,提炼升华通过这节课的学习,你学习了哪些知识?你有什么收获?你有什么发现、探索? 先想一想,再分享给大家.处理方式:学生畅谈自己的收获!教师强调:⒈位似多边形的相关概念、性质,及放大、缩小图形的方法.⒉位似多边形一定是相似多边形,但相似多边形不一定位似.⒊图形变换包括:全等变换:平移、旋转、对称;位似变换.设计意图:使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.六、达标检测,反馈提高活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)⒈如果两个相似多边形任意一组对应顶点P ,P '所在的 ,那么这样的两个相似多边形叫做位似多边形,这个点叫做 .⒉如图,通过小孔点O 蜡烛在竖直的屏幕上形成倒立的实像,像的长度BD =2cm ,OA =20cm ,OB =5cm ,则蜡烛的长度为 .⒊已知,如图,A B ''∥AB ,B C ''∥BC ,且OA ':A A '=4:3,则△ABC 与 是位似图形,位似比为 ;△OAB 与 是位似图形,位似比为 .处理方式:,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,课堂延伸必做题:课本 115页 习题4。
2024《图形的位似》说课稿范文今天我将给大家说一下《图形的位似》这一课程的内容。
下面我将从以下几个方面进行阐述。
一、说教材1、《图形的位似》是人教版小学数学七年级下册第一单元的内容。
它是在学生已经学习了比例尺及其应用的基础上进行教学的,是小学数学中的重要知识点,也是几何的基础。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解位似的概念,掌握图形的位似判定方法。
②能力目标:培养学生观察、分析和推理的能力,提高解决图形位似问题的能力。
③情感目标:在图形的位似判定和应用中,培养学生的兴趣,激发学生对数学的热爱。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解位似的概念,能够判定图形的位似关系。
难点是:通过观察、分析和推理判定图形的位似关系。
二、说教法学法以学生为主体,以问题为导向是本节课的教学理念。
因此,这节课我采用的教法:启发式教学法,探究式教学法;学法是:自主学习法,合作学习法。
三、说教学准备在教学过程中,我准备了一些教具和实物图形,以便更好地帮助学生观察、比较和判定图形的位似关系。
四、说教学过程根据教材内容和教学目标,我设计了以下教学环节。
环节一、谈话引入,导入新课。
课堂开始,我会通过一道问题导入新课:如果有两个图形A和B,它们的形状相似,但是大小不一样,你们认为它们是否位似?学生可以思考一下并给予回答。
然后,我会向学生介绍位似的概念,并引导学生思考如何判定图形的位似关系。
环节二、观察实物图形,导入位似判定方法。
为了帮助学生更好地理解位似的概念和判定方法,我将准备一些实物图形,让学生观察它们的形状和大小,并让学生尝试比较和判定它们的位似关系。
通过学生的观察和比较,我将逐步引导学生总结出图形位似的判定方法。
环节三、学生合作探究,发现位似规律。
在这个环节,我会让学生分成小组,让每个小组选择一些图形进行观察和探究。
每个小组都需要观察和比较图形的形状和大小,并通过合作讨论,尝试找出位似的规律和判定方法。
《图形的位似变换》教案教学目标1.理解图形的位似概念,掌握位似图形的性质.2.会利用作位似图形的方法把一个图形进行放大或缩小.3.掌握直角坐标系屮图形的位似变化与对应点坐标变化的规律.4.经历位似图形性质的探索过程,进一步发展学生的探究、交流能力.5.利用图形的位似解决一些简单的实际问题.教学重难点图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小.教学过程一、创设情景,构建新知1、位似图形的概念下列图有什么共同特点?通过对图的观察能从生活中找到一种感觉吗?图片的形状相同,而且每组对应顶点都在由同一点11!发的一条射线上.如杲两个图形不仅形状相同,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似屮心.例如上图中的任何两个五角星都是位似图形,点0是它们的位似中心;放电影时,胶片与屏幕的画面也是位似图形,光源就是它们的位似中心.2、引导学生观察位似图形下列图形屮,每个图屮的四边形ABCD和卩4边形A' B f C D f都是相似图形.分别观察这五个图,并判断哪些是位似图形,哪些不是位似图形?为什么?每个图形中的两个四边形不仅相似,而且各对应点所在的直线都经过同一点.所以都是 位似图形.各对应点所在的直线都经过同一点的相似图形是位似图形.其相似比又叫做它们的位似 比.显然,位似图形是相似图形的特殊情形.二. 应用新知,适当提高教师详细讲解教材屮的例题.学生独立完成教材屮的练习.一般地,位似图形有以下性质:位似图形上任意一对对应点到位似屮心的距离Z 比等于位似比.作位似图形:任意画出四边形ABCD,并把ABCD 的边长放大3倍.三. 小结内容,自我反馈位似图形的定义,位似图形的性质.四. 课后作业教材课后习题. B(2)。
图形的位似教案一、教学目标1.了解图形的位似性质;2.能够通过观察图形判断是否为位似图形;3.能够通过比较图形的特征进行位似判断;4.能够应用位似性质解决实际问题。
二、教学内容图形的位似性质三、教学重点1. 图形的位似判断;2. 位似图形的特征比较。
四、教学难点位似判断的策略及应用。
五、教学过程Step1 导入新课教师拿出两个形状相似的图形,请学生观察并比较两个图形的相似之处。
引导学生思考:你们能说说两个图形有什么相似的地方?Step2 学习位似性质的定义教师引导学生讨论出位似性质的定义:如果两个图形的边可以分别成比例,且对应边之间的夹角相等,那么这两个图形就是位似图形。
Step3 学习位似性质的判断方法教师给出两对图形,让学生观察并判断其是否为位似图形。
通过讨论,引导学生总结出判断位似性质的方法:比较对应边之间的夹角是否相等,以及对应边的比值是否相等。
Step4 学习位似图形的特征比较教师给出一些图形,并让学生进行位似判断。
通过比较图形的特征,如边长,角度等,引导学生进行位似判断。
Step5 案例分析教师给出一些实际问题,让学生通过位似性质解决问题,如计算高楼外墙的项目量、计算太阳能板的面积等。
通过解答实际问题,让学生更好地理解位似性质的应用。
六、课堂小结通过本节课的学习,我们了解了图形的位似性质,并学会了通过比较对应边之间的夹角及比值进行位似判断。
同时,我们也学会了通过位似性质解决实际问题。
七、课后作业1.完成课堂练习题;2.整理图形的位似性质及应用的笔记。
♏ 25.4位似变换♐♋教学目标♌1、知识与技能:了解位似变换及位似图形的有关概念,能得用位似变换将一个图形放大或缩小。
2、过程与方法:经历图形的位似变换和平移、旋转的过程,体会图形之间的变化过程以及内在的联系。
3、情感态度与价值观:培养学生的数学应用意识以及动手动脑的良好习惯。
♋重点难点♌1、重点:了解位似图形的有关概念及性质,能利用位似变换将一个图形放大或缩小。
2、难点:运用图形的相似解决实际问题。
♋教学用具♌课件、多媒体、直尺。
♋教学过程♌讲练结合、探究式教学。
♋教学过程♌一、复习引入1、相似多边形的定义及判定:2、相似多边形的性质:3、我们已学过的图形变换有哪些?它们的性质是什么二、新课讲解做一做:以点O为位似中心,位似比为2,画出△ABC在这个位似变换下的像。
2word 格式支持编辑,如有帮助欢迎下载支持。
①两个位似图形上的每一对对应点都与位似中心在一条直线上;思考:⑴如上图已知点D ,如何画出其对应点D ′? ⑵我们作图时可得k OC OC OB OB OA OA ===''',ODOD '是否为k ? ②位似图形与原图形上对应点到位似中心的距离之比等于位似比。
动动手:以0.5为位似比,画出矩形ABCD 的位似图形。
抽象:利用位似变换可以把一个图形放大或缩小。
当k 时,一个图形就被放大成原图形的k 倍;当k 时,一个图形就被缩小成原图形的k 倍。
观察:图形⑴经过什么变换得到图形⑵?图形⑵经过哪些变换得到图形⑶?可见:图形⑵与图形⑴是什么关系?图形⑶与图形⑵是什么关系?图形⑶与图形⑴是什么关系?图形⑶与图形⑴的关系表明:一个图形经过位似变换和平移、旋转,最后得到的图形与原图形是 图形。
三、巩固练习1、判断题:位似图形是相似图形( )相似图形是位似图形( )2、位似图形上某一点与原图形上的对应点到位似中心的距离分别为5cm 和10cm ,则它们的位似比为_________。
图形的位似教案教案标题:图形的位似教案教学目标:1. 理解图形的位似概念,并能够运用位似的性质解决相关问题。
2. 能够识别和描述位似图形的特征。
3. 能够使用比例关系计算位似图形的边长、面积和体积。
教学重点:1. 图形的位似概念和特征的理解。
2. 运用位似的性质解决相关问题。
3. 使用比例关系计算位似图形的边长、面积和体积。
教学准备:1. 教师准备:投影仪、电脑、幻灯片、白板、白板笔。
2. 学生准备:教科书、练习册、尺子、计算器。
教学过程:引入(5分钟):1. 利用幻灯片展示两个位似图形的例子,并引导学生观察并讨论它们之间的相似之处。
2. 引导学生思考图形的位似概念,并解释位似图形的定义和性质。
探究(15分钟):1. 将学生分成小组,每组给予一组位似图形的卡片。
2. 学生自主探究位似图形的特征,如边长比例、角度比例等,并记录下自己的观察结果。
3. 每个小组派一名代表向全班汇报他们的观察结果,并与其他小组进行讨论和比较。
讲解(10分钟):1. 教师通过幻灯片和白板,总结和讲解位似图形的特征和性质。
2. 强调位似图形的边长比例、面积比例和体积比例的关系。
练习(15分钟):1. 学生个人或小组完成教科书上的位似图形练习题。
2. 学生互相检查答案,并向教师提问和讨论解题过程中的困惑。
拓展(10分钟):1. 提供更复杂的位似图形问题,要求学生运用位似的性质进行解答。
2. 引导学生思考位似图形在实际生活中的应用,如地图缩放、建筑设计等。
总结(5分钟):1. 教师对本节课的内容进行总结,并强调位似图形的重要性和应用。
2. 学生回答教师提出的总结问题,检查他们对位似图形的理解程度。
作业:1. 教师布置位似图形的练习题作业,要求学生运用位似的性质解答。
2. 学生完成作业后,将答案写在练习册上,并在下节课前提交。
教学反思:本节课通过引入、探究、讲解、练习等环节,使学生逐步理解和掌握图形的位似概念和性质。
在教学过程中,学生通过小组合作和个人练习,培养了他们的观察、分析和解决问题的能力。
22.4图形的位似变换
学习要求
1.理解位似图形的有关概念,能利用位似变换将一个图形放大或缩小. 2.能用坐标表示位似变形下图形的位置.
课堂学习检测
1.已知:四边形ABCD 及点O ,试以O 点为位似中心,将四边形放大为原来的两倍.
(1) (2)
(3) (4)
2.如图,以某点为位似中心,将△AOB 进行位似变换得到△CDE ,记△AOB 与△CDE 对应边的比为k ,则位似中心的坐标和k 的值分别为( )
A .(0,0),2
B .(2,2),2
1
C .(2,2),2
D .(2,2),3 综合、运用、诊断
3.已知:如图,四边形ABCD 的顶点坐标分别为A (-4,2),B (-2,-4),
C (6,-2),
D (2,4).试以O 点为位似中心作四边形A 'B 'C 'D ′,使四边形ABCD 与四边形A ′B ′C ′D ′的相似比为1∶2,并写出各对应顶点的
坐标.
4.已知:如下图,是由一个等边△ABE 和一个矩形BCDE 拼成的一个图形,其B ,C ,D 点的坐标分别为(1,2),(1,1),(3,1).
(1)求E 点和A 点的坐标;
(2)试以点P (0,2)为位似中心,作出相似比为3的位似图形A 1B 1C 1D 1E 1,
并写出各对应点的坐标;
(3)将图形A 1B 1C 1D 1E 1向右平移4个单位长度后,再作关于x 轴的对称图形,
得到图形A 2B 2C 2D 2E 2,这时它的各顶点坐标分别是多少?
拓展、探究、思考
5.在已知三角形内求作内接正方形. 6.在已知半圆内求作内接正方形. 答案与提示 1.略. 2.C .
3.图略.A '(-2,1),B '(-1,-2),C '(3,-1),D '(1,2). 4.(1));32,2(),2,3(+A E
(2)).332,6(1+A B 1(3,2),C 1(3,-1),D 1(9,-1),E 1(9,2); (3)),332,10(2--A B 2(7,-2),C 2(7,1),D 2(13,1),E 2(13,-2). 5.方法1:利用位似形的性质作图法(图16)
图16
作法:(1)在AB 上任取一点G ',作G 'D '⊥BC ; (2)以G 'D '为边,在△ABC 内作一正方形D 'E 'F 'G '; (3)连结BF ',延长交AC 于F ;
(4)作FG ∥CB ,交AB 于G ,从F ,G 各作BC 的垂线FE ,GD ,那么DEFG 就是所求作的内接正方形. 方法2:利用代数解析法作图(图17)
图17
(1)作AH (h )⊥BC (a );
(2)求h +a ,a ,h 的比例第四项x ; (3)在AH 上取KH =x ;
(4)过K 作GF ∥BC ,交两边于G ,F ,从G ,F 各作BC 的垂线GD ,FE ,那么DEFG 就是所求的内接正方形. 6.提示:
正方形EFGH 即为所求.。