有机质子酸掺杂聚苯胺的结构与导电性能
- 格式:doc
- 大小:331.50 KB
- 文档页数:8
导电聚苯胺的化学合成及导电性能魏渊石圆圆罗亚茹刘正伦(广州大学化学化工学院化工系)摘要导电聚苯胺是结构和性能最稳定的导电高分子材料, 有较广泛的应用前景。
本实验用化学氧化合成方法,研究了氧化剂种类、用量以及介质酸的浓度等因素对苯胺聚合反应及产物性能的影响,并运用四探针法在电阻率测试仪上完成了PAn的电导率测试。
关键词导电聚苯胺,化学合成,掺杂,电导率前言传统的有机化合物由于分子间的相互作用弱,一般皆认为是绝缘体。
因而过去一直只注重高分子材料的力学性能和化学性能。
20世纪50年代初人们发现有些有机物具有半导体性质;60年代末又发现了一些具有特殊晶体结构的电荷转移复合物;70年代初发现了具有一定的导电性的四硫富瓦烯一四睛代对苯醒二甲烷(TTF一TCNQ)。
1977年人们发现:聚乙炔化学掺杂后电导率急剧增加,可以达到金属秘的导电性能。
此后人们开始关注高分子材料的导电性,逐渐开发出各种导电性高分子材料,如聚乙炔、聚毗咯、聚噬吩和聚苯胺等。
直到1984年聚苯胺才被MacDiarmid等人重新开发,他们在酸性条件下制备了高电导率的聚苯胺;1987年,日本桥石公司和精工电子公司联合制得了用聚苯胺为电极制成的钮扣式二次电池作为商品投向市场,使聚苯胺很快成为导电高分子中的研究热点[1]。
本实验采用盐酸进行掺杂,使苯胺氧化聚合为聚苯胺,而且就氧化剂的种类与用量、介质酸的浓度等因素对苯胺聚合产物的产率和导电性能的影响等进行了探究。
其聚合反应历程如0.1所示【2】图0.1 Radical reaction course of PANI polymerization 聚合反应可以分为三步:链引发、链增长和链终止。
首先,苯胺被慢速氧化形成阳离子自由基,苯胺阳离子自由基的形成是决定反应速率主要的一步。
接着,这个自由基阳离子可能失去质子或电子,与苯胺单体结合生成一个苯胺的二聚体,这种结合主要是以头尾相连接的方式结合,二聚体一旦形成,就可以被氧化剂迅速的氧化成醒亚胺结构,这是因为它的氧化潜能低于苯胺的氧化潜能。
导电聚苯胺(PAn )的特性及应用X陆 珉 吴益华 姜海夏(上海交通大学应用化学系,上海,200240)摘 要 聚苯胺是导电高分子化合物中的一种极有应用前途的高分子材料。
本文旨在介绍导电聚苯胺的各种特性及各个方面的应用前景。
关键词 聚苯胺 导电高分子材料 特性 应用1 引 言自从第一种导电高聚物—掺碘的聚乙炔发现以来,人们又陆继开发出了聚苯胺、聚吡咯、聚噻吩等导电高分子材料。
在众多的高分子材料中,聚苯胺有原料易得、合成简便、耐高温及抗氧化性能良好等众多优点。
聚苯胺是由还原单元和氧化单元构成,其结构式为其中y 值用于表征聚苯胺的氧化-还原程度。
不同的y值对应于不同的结构、组份和颜色及电导率,完全还原型(y =1)和完全氧化型(y =0)都为绝缘体。
只有氧化单元数和还原单元数相等(y =0.5)的中间氧化态通过质子酸掺杂后可变成导体。
聚苯胺的主要缺点是不溶不熔,这成为其应用前景中的致命问题。
现今这一问题已得以解决。
U NI X 公司通过选择合适的有机酸掺杂制得的聚苯胺可溶于一些普通有机溶剂[1,2],且还可获得有一定的热塑性的聚苯胺[3]。
IBM 公司则制得了水溶性的聚苯胺[4](专利技术,未公布)。
由于这一加工问题的解决,聚苯胺能够很容易地制成定向膜或纤维[5]。
因而成为最具开发应用前景的导电高分子材料。
现今,已有A pper -ling Kessler &Co .,A llied Singa l Inc 及A menidem Inc 等公司[6~7]都已开始批量生产聚苯胺(商品名为V ersico n),以聚苯胺为基的许多产品也相继问世。
然而,对于聚苯胺的认识并未止步。
人们正期待着开发出聚苯胺更多的应用领域,欧、美及日本等国在聚苯胺的研究和开发上投入了大量的资金和技术力量,并将其列为本世纪末的重点研究课题。
我国也将聚苯胺的应用研究列入国家自然科学基金资助项目。
本文仅就聚苯胺的特性及应用前景等方面的研究进展,作一扼要介绍。
导电聚合物聚苯胺吸波材料的研究应用摘要:导电聚合物又称为导电高分子,是一类既具有高分子材料的性质又具有导电体性质的聚合物材料。
导电聚合物具有质量轻、易成型、电导率范围宽且可调、成本低、结构多变、等优点,其独特的电学、光学及磁学性质使得导电聚合物在电极材料、电磁屏蔽材料、隐身材料、防腐材料、传感器材料、电致变色材料等领域具有广泛的。
聚苯胺(PANI)因为具有环境稳定性好、掺杂电导率高、制备简单、原料易得等优点在科研与应用上都引起了人们的广泛关注,成为近年来材料领域的研发热点。
本文综述了聚苯胺的合成与掺杂,阐明其导电机理以及其作为吸波材料方面的性能研究。
关键词:导电聚合物聚苯胺吸波机理掺杂正文:一.概况吸波材料是指能够将投射到它表面的电。
磁波能量吸收,并通过材料的电磁损耗使之转变为热能的材料。
随着电子信息技术的不断进步,基于军事上武器装备对雷达波的隐身及民用领域内对电子产品进行电磁屏蔽的需要,吸波材料在不断地发展更新之中。
随着雷达探测技术的迅猛发展,世界各国的军事防御体系以及飞行器被敌方探测、跟踪和攻击的可能性越来越大,军事目标的生存能力和武器系统的突防能力受到了前所未有的威胁。
为了提高军事目标的生存能力和武器系统的突防能力,大力发展隐身技术就理所当然成了军事技术发展的重要方向之一,而作为隐身技术最重要组成部分——吸波材料的研究与开发,就成为各军事强国进行军事高科技竞争的热点之一。
随着电子技术的迅猛发展,各种新型雷达和先进探测器以及精密制导武器相继问世,世界各国的空防能力和反导能力日益增强,这使得飞机、导弹、舰艇、坦克等大型作战武器所面临的威胁与日俱增。
因此,作为提高武器系统在战争中的生存、防卫和攻击能力的隐身技术,普遍受到世界各国的重视。
尽管隐身技术由多方面组成,但吸波材料所起到的作用一般能占整体隐身效果的40%左右。
因而可以说,吸波材料的发展是隐身技术发展的关键。
由于海湾战争中 F-117 隐形战斗机成功的轰动效应,世界各国投巨资加大对吸波材料研究的力度,积极致力于开发新型高效吸波材料,并对吸波机理进行了深层次的研究。
自1984年MacDiarmid 在酸性条件下,由苯胺单体聚合所得的导电性聚苯胺至今,聚苯胺成为现在研究进展最快的导电聚合物之一。
其原因在于聚苯胺具有以下诱人的独特优势:合成简单,良好的环境稳定性,独特的掺杂现象,电化学性能、潜在的溶液和熔融加工等性能。
聚苯胺被认为是最有希望在实际中得到应用的导电高分子材料。
以导电聚苯胺为基础材料,目前正在开发许多新技术,例如电磁屏蔽技术、抗静电技术、全塑金属防腐技术、电致变色、传感器元件和隐身技术等。
1、聚苯胺的结构与其导电机理聚苯胺是典型的有机导电聚合物,是一种具有金属光泽的粉末,聚苯胺可以看做是苯二胺和醌二亚胺的共聚基金项目:渭南师范学院研究生项目(09YKZ2018)聚苯胺导电性能的研究进展刘展晴 渭南师范学院化学化工系 714000物。
高分子材料能导电,必须具备两个条件,要能产生足够数量的载流子(电子、空穴或离子等),以及大分子链内和链间要能形成导电通道。
聚苯胺属于共轭结构型导电聚合物。
其导电机理与金属和半导体均不同,而这类共轭型导电聚合物的载流子是“离域”p-电子和由掺杂剂形成的孤子、极化子、双极化子等构成。
聚苯胺的电活性源于分子链中的π电子共轭结构:随分子链中π电子体系的扩大,π成键态和π*反键态分别形成价带和导带, 这种非定域的π电子共轭结构经掺杂可形成P 型和N 型导电态。
聚苯胺在掺杂中,由于掺杂的质子酸分解产生H +和对阴离子(如Cl -、SO 42-等)进入主链,与胺和亚胺基团中N 原子结合形成极子和双极子离域到整个分子链的π键中 ,从而使聚苯胺呈现较高的导电性。
2、聚苯胺的导电性2.1 不同类型的酸掺杂对聚苯电导率的影响自MacDiarmid 在酸性条件下聚合苯胺单体获得具有导电性聚合物以来,在国内外广受关注。
聚苯胺具有独特的掺杂机制,研究表明:用酸性较强无机酸掺杂时,电导率高;酸性弱时,相应的电导率降低。
但同时也发现无机酸掺聚苯胺其溶解性差,为了解决此问题。
聚苯胺导电态聚苯胺是一种具有导电性能的高分子材料,其导电态被广泛应用于电子器件和能源领域。
本文将从聚苯胺导电态的形成机制、导电性能的特点以及应用领域等方面进行介绍。
聚苯胺导电态的形成主要是通过掺杂的方式实现的。
在聚苯胺分子中,苯环上的氮原子可以接受或者捐赠电子,从而形成带正电或者带负电的离子。
常用的掺杂剂有酸、碱和氧化剂等。
其中,酸掺杂可以将聚苯胺分子中的某些氮原子负离子化,从而提高电子的导电性能;碱掺杂可以将聚苯胺分子中的某些氮原子正离子化,增加电子的输运性能;氧化剂掺杂可以使聚苯胺分子中的苯环形成氧化还原对,提高电子的传导性能。
聚苯胺导电态的特点主要体现在其导电性能方面。
聚苯胺导电态的电导率可以在10^-3~10^3 S/cm之间变化,具有较高的导电性。
此外,聚苯胺导电态的导电性能还可以通过掺杂剂的种类和浓度进行调控。
例如,酸掺杂的聚苯胺导电态具有较高的导电性能,而碱掺杂的聚苯胺导电态具有较好的电子传输性能。
聚苯胺导电态在电子器件和能源领域有着广泛的应用。
在电子器件方面,聚苯胺导电态可以用作导电电极材料,如柔性电极和透明导电薄膜等。
聚苯胺导电态还可以用于制备有机场效应晶体管(OFET)和有机光电器件等。
在能源领域方面,聚苯胺导电态可以用于制备超级电容器电极材料,具有高能量密度和高功率密度的特点。
此外,聚苯胺导电态还可以用于制备柔性锂离子电池和柔性太阳能电池等。
总结起来,聚苯胺导电态是一种具有导电性能的高分子材料,其导电态的形成主要通过掺杂的方式实现。
聚苯胺导电态具有较高的导电性能和电子传输性能,可以在电子器件和能源领域中得到广泛的应用。
随着对聚苯胺导电态的深入研究,相信其在未来的应用中将发挥更加重要的作用。
纯净和掺杂聚苯胺的结构和力学性能的研究Vinodini Shaktawat, N.S. Saxena and Kananbala SharmaSemiconductor and Polymer Science Laboratory, Department of Physics,University of Rajasthan, Jaipur 302055, India;Department of Physics,Jaipur Engineering College, Kukas, Jaipur 303101, India( Received 29 June 2010; final version received 21 October 2010) 不同质子酸掺杂的聚苯胺化学合成使用过硫酸铵作为氧化剂。
这些样本的扫描电子显微镜的X射线光谱和傅里叶变换红外光谱的特征,都证实了这些样本中存在酸掺杂。
复合弹性模量的变化和力学损耗因素已经通过导电聚苯胺颗粒的温度被研究。
它已经表明复合弹性模量随温度降低的原因是薄膜的热膨胀。
另一方面,tan δ增加了特征温度,超越了它显示的对融化的下降趋势。
纯净PANI的相变温度是106.1℃,而用质子酸掺杂的聚苯胺使其转变到更高的温度像137.1℃ 134℃ 138.8℃ 118.3℃和109.7℃。
关键词:聚苯胺掺杂结构特征化学性质相变1、简介近年来,内中含有共轭双键的聚合物备受材料专家的关注,是因为它们的商业应用如能源存储设备,气体传感器,电磁干扰(EMI)屏蔽,静电耗散,有机发光二极管(OLED)和灵活的显示设备,防腐材料,电致变色材料,和电子导电织物[1,2]。
这些导电聚合物中聚苯胺和聚吡咯具有更好的应用前景,因为它们合成简便,在不同环境下导电性能稳定。
可以预见,如果聚苯胺被压缩成颗粒贮存,它的稳定性会提高(或老化时间会延长)。
即使经过长期贮存这些材料的电学性能和机械性能保持如初,这就表明了聚苯胺材料自身的稳定性。
酸掺杂聚苯胺的研究进展石玉;师杰【摘要】聚苯胺是最有应用价值的导电高分子之一,介绍了聚苯胺的结构,重点综述了单一无机酸掺杂、单一有机酸掺杂、复合酸掺杂、掺杂-脱掺杂-再掺杂、制备掺杂态聚苯胺的研究进展.最后,提出了聚苯胺的研究方向.%Polyaniline is one of the most application value conducting polymers. In this paper , structure of polyaniline was introduced .Research progress in preparing doped polyaniline by single inorganic acid doping, single organic aciddoping ,composite doping or doping - dedoping - doping were discussed. At last, research trend of polyaniline was predicted.【期刊名称】《当代化工》【年(卷),期】2011(040)001【总页数】4页(P66-68,99)【关键词】酸掺杂;聚苯胺;研究进展【作者】石玉;师杰【作者单位】西安工业大学材料与化工学院,陕西,西安,710032;西安工业大学材料与化工学院,陕西,西安,710032【正文语种】中文【中图分类】TQ3161984年MacDiarmid首先报道PANI的质子酸掺杂具有导电特性以来,国内外对其制备及性能进行了大量的研究工作。
由于聚苯胺原料廉价易得、合成方法简单、耐高温、抗氧化以及可逆的掺杂特性等诸多优异的特性,其在二极管、电致变色、传感器、二次电池、电磁屏蔽[1-5]等方面有广泛的应用前景。
但是聚苯胺分子链上的苯环结构,导致高分子链的刚性较大,并且分子间氢键导致其难溶、难熔、可加工性能比较差。
有机质子酸掺杂聚苯胺的结构与导电性能摘要:聚苯胺是导电高分子化合物中的一种极有应用前途的高分子材料。
本文概述了聚苯胺的掺杂机制,以及列举了几种有机质子酸掺杂聚苯胺的结构与导电性能的关系,并对聚苯胺研究的前景进行了展望。
聚苯胺最早合成与1862年,在20世纪80年代,由于其导电性能,被人们广泛研究。
1,2,3聚苯胺是由还原单元和氧化单元构成,其结构单元可表示为:,其中y 表示氧化-还原程度。
氧化度不同的聚苯胺表现出不同的组分、结构、颜色及电导特性,其结构如图1。
从完全还原态(Leuco-emeraldiline,LB y =1,能带隙宽= 4 eV ) 向完全氧化态(pernigraniline,PB y = 0,能带隙宽= 2 eV )转化的过程中,随氧化度的提高聚苯胺依次表现为黄色、绿色、深蓝、深紫色和黑色。
不同氧化态中,完全还原态(LB) 和完全氧化态( PB) 都是绝缘体,只有氧化单元数和还原单元数相等的中间氧化态( Emeraldiline,EB y = 0.5) 经质子酸掺杂后才可以成为导体。
聚苯胺的电活性源于分子链中的π电子共轭结构:随分子链中π电子体系的扩大,π成键态和π﹡反键态分别形成价带和导带,这种非定域的π电子共轭结构经掺杂可形成P型和N型导电态。
不同于其他导电高分子在氧化剂作用下产生阳离子空位的掺杂机制,聚苯胺的掺杂过程中电子数目不发生改变,而是由掺杂的质子酸分解产生H+和对阴离子(如Cl-、SO42-、PO43-等) 进入主链,与胺和亚胺基团中N 原子结合形成极子和双极子离域到整个分子链的π键中,从而使聚苯胺呈现较高的导电性4,5,6。
这种独特的掺杂机制使得聚苯胺的掺杂和脱掺杂完全可逆,掺杂度受pH 值和电位等因素的影响,并表现为外观颜色的相应变化,聚苯胺也因此具有电化学活性和电致变色特性7,8。
91.聚苯胺的掺杂机制通过化学氧化或电化学氧化所合成的固体聚苯胺,同酸反应后导电率提高大约10个数量级,达到5~200 S/cm ,再同碱反应,又回到绝缘状态。
MacDiarmid首先将这种行为称为质子酸掺杂和反掺杂。
质子酸掺杂,是聚苯胺区别于其它导电高分子的重要特征,它涉及质子的捕获和释放,但不涉及电子的得失,因而在表观上,不是一种氧化还原过程。
但是,掺杂反应究竟是怎样进行的,掺杂态的聚苯胺究竟是什么结构,在很长一段时间内,是不清楚的。
MacDiarmid根据聚苯胺的酸碱滴定曲线10和掺杂聚苯胺具有强顺磁性的试验事实,提出了聚半醌自由基正离子模型,即极化子模型:这个模型表明,掺杂聚苯胺中有两种不同的N 原子和一种芳环。
中科院长春应用化学研究所的景遐斌等根据得到的可溶性聚苯胺的UV-Vis、IR、Raman 以及NMR谱图可以看出,在HCl掺杂和NH3反掺杂过程中,能发生可逆的变化11,12。
分析这些变化,得到几个基本的结论:(1)聚苯胺原有的苯环和醌环结构在掺杂态中不复存在,所变成的新结构又互不相同;(2)某些N原子被质子化,由质子携带的正电荷被离域到邻近的芳环上;(3)发生了从苯环至醌环的电荷转移。
这些结构用极化子晶格模型是无法解释的,于是,他们提出了“四环苯醌变体”模型13:它表示一个重复单元由3种共4个芳环(Q′+2B1′+2B2′)和两种氮原子(Nδ+,Nδ++)组成;在重复单元内存在正电荷的分布;掺杂剂负离子处于Q′环的附近,但不一定连接在哪一个氮原子上。
将聚甲基苯胺跟适当的氧化剂和还原剂反应,可以获得不同氧化程度的稳定的聚合物,它们都可以同酸反应,但反应产物的导电率却有很大差别,最高氧化态和最高还原态的聚合物的酸化产物,导电率很低,导电率最高的酸化产物是由苯二胺和醌二亚胺摩尔比1∶1 的聚合物得到的14,15。
这说明苯二胺和醌二亚胺的相邻并存,是聚苯胺掺杂导电的必要条件。
从这个实验,还得出一个结论,不同氧化态的聚苯胺都可以与酸反应生成盐,但不一定是掺杂;掺杂是一个特殊的成盐反应,它的特殊性就在于伴有分子链上的部分的电荷转移和氧化还原。
这样“成盐”和“掺杂”这两个概念就被完全区别开来了。
根据上述模型,他们推断聚苯胺的掺杂反应如下[28~30 ]16:它说明(1)聚苯胺的掺杂,从醌二亚胺上氮原子的质子化开始;(2) 醌亚胺环得到电子而部分还原,苯二胺单元失去电子而部分氧化,这样本来由质子携带的正电荷离域化到4个芳环的范围,换句话说,聚苯胺的质子酸掺杂,本质上是一种分子内的氧化还原反应; (3) 掺杂后的分子依然记忆着掺杂前的结构,分子链上的电荷转移和氧化还原,并没有使分子链完全均匀化。
172. 有机质子酸掺杂剂能够提供较高H+浓度的浓盐酸、浓硫酸等无机强酸是过去研究中常用的掺杂剂,但是,在电子应用中,小分子无机酸会缓慢的释放并腐蚀其它器件,同时伴随着电导率的下降,特别是在高温和潮湿的环境中更剧烈。
因此,有机质子酸被用来取代无机强酸,特别是樟脑磺酸(CSA) 和十二烷基苯磺酸(DBSA) 等有机酸在提高电导率和改善掺杂聚苯胺溶解性等方面表现出的良好潜力。
2.1 磺酸基化合物有机磺酸基化合物由于酸性较强,一直以来都是掺杂聚苯胺的重要的研究对象。
Majidi 等在对樟脑磺酸掺杂的聚苯胺研究中,通过圆振二色性光谱的观察,证明聚苯胺在有机酸掺杂时具有对映选择性,随樟脑磺酸中不同位置阴离子的参与,会优先产生单螺旋的聚合物链。
18Cao 等报道了十二烷基苯磺酸(DBSA)和樟脑磺酸(CSA)掺杂的聚苯胺可以溶于氯仿或邻甲酚等有机溶剂。
19,20可以通过这种特性制作柔软的光发射二极管。
21Jamshid等通过研究樟脑磺酸掺杂聚苯胺指出,掺杂的聚苯胺在溶液中的链构象,影响了其制成固体器件的导电性。
22在溶液中,聚合物链的膨胀,使得链旋转而造成的聚苯胺骨架的π键的结合缺陷减少,增加了高分子链的极子离域效应,使聚苯胺的导电性增强。
樟脑磺酸掺杂的聚苯胺溶于邻甲酚浇铸成膜后其电导率可达400 S/cm。
23Zhang 等24比较了对甲苯磺酸(TSA),甲基磺酸(MSA)对聚苯胺的掺杂效果。
相对于TSA,分子体积较小的MSA更容易扩散到聚苯胺固体颗粒中,掺杂效果更好,得到的电导率更高(32。
5 S/cm)。
另外,MSA的挥发性比盐酸弱,因此用MSA掺杂后的聚苯胺的电导率也高于使用盐酸掺杂的聚苯胺。
a bFig. 2 . a. Molecular structure of hydrogensulfated fullerenol b. Schematic representation of the zipping effect by doping of polyaniline emeraldine base chains with the hydrogensulfated fullerenol derivatives containing multiple -OSO3H groups.Dai等研究了磺酸取代富勒烯掺杂聚苯胺发现掺杂聚苯胺产生了非定域极化和间带跃迁。
25除了初级掺杂,通过-OSO3H基团的质子酸掺杂,磺酸取代富勒烯也作二次掺杂剂使聚苯胺产生离域极化,从而拉直聚苯胺分子链。
由于磺酸取代富勒烯上的-OSO3H的“多臂结构”与聚苯胺链的“多点连接”形成如图2.b的“之”字形结构的二次掺杂展开了聚苯胺链的卷曲结构。
该掺杂化合物的电导率在室温下可达100 S/cm。
2.2 苯磷酸由于当温度高于100℃时,含磺酸基的化合物会发生去磺酸化反应,因此Chan等使用更耐热的磷酸基化合物掺杂聚苯胺。
26他们使用正丁基/乙基磷酸掺杂聚苯胺(PANI-Bu/EtPA)、正癸烷基磷酸掺杂聚苯胺(PANI-DcPA)和苯甲基磷酸掺杂聚苯胺(PANI-BnPA)。
XPS显示掺杂后的聚苯胺表面的P/N比总体的P/N要高出8-14倍。
由于长链脂肪酸基磷酸和苯甲基磷酸与聚苯胺骨架的相容性不好,因此含磷酸集团的化合物多聚体在表面,造成掺杂后聚苯胺表面的P/N比偏高,其顺序为PANI-Bu/EtPA> PANI-DcPA>> PANI-BnPA,这种相分离在60℃干燥过夜的情况下就可以发生。
另外,由于正癸烷基磷酸在所使用的溶剂中的极性不好,因此PANI-DcPA的掺杂度比较低。
PANI-BnPA和PANI-Bu/EtPA的电导率分别可以达到9×10-2和7.5×10-2。
在Hagiwara 27等发现盐酸掺杂的聚苯胺在100℃真空存放2h,电导率就会下降两个数量级,但是在同样的条件下,磷酸基有机物掺杂的聚苯胺的电导率却没有显著下降。
在150-300℃时,磷酸基与苯胺中亚胺基发生缩合反应生成如图所示结构,使聚苯胺分子链发生交联,从而失去的导电性能。
Fig. 3. Cross-linked structures due to condensation2.3 苯甲酸及其衍生物Amarnath等制备了苯甲酸及其衍生物掺杂的聚苯胺。
28使用0.012-0.225M的苯甲酸时,每单元的苯胺中的酸掺杂量由0.07升至0.3,当苯甲酸的用量是0.225-0.3M时,每单元苯胺中酸掺杂量维持在0.30-0.31。
当苯甲酸的用量是0.012-0.20M时,聚苯胺的电导率从2.0×10-5 S/cm 增长到1.0×10-2 S/cm,之后,即使苯甲酸的用量增加,电导率仍维持在1.0×10-2 S/cm,不再增长。
使用0.225M的苯甲酸及其衍生物掺杂聚苯胺,其电导率见表1。
可以看出,使用苯甲酸掺杂的聚苯胺的电导率要高于使用苯甲酸的衍生物掺杂的聚苯胺。
Table 1. The conductivity percentage of dopant and dopant per aniline unit of the PANI salts prepared using different substituted benzoic acidsAcid Conductivity(S/cm)Amount ofdopant (%)Dopant peraniline unitBenzoic acid 1.0×10-228.5 0.32-Hydroxybenzoic acid 6.0×10-328.5 0.272-Chlorobenzoic acid 2.0×10-328.5 0.244-Nitrobenzoic acid 2.0×10-426.0 0.202-Methoxybenzoic acid 2.0×10-426.5 0.223-Methylbenzoic acid 8.0×10-525.0 0.234-Methylbenzoic acid 1.0×10-426.5 0.243-Aminobenzoic acid 1.0×10-523.0 0.204-Aminobenzoic acid 2.0×10-523.5 0.21a. Polyaniline base was doped with 0.225M of different substituted benzoic acids。