10kV线路基本知识
- 格式:rtf
- 大小:702.41 KB
- 文档页数:32
1、对10/0.4KV的变电所。
10KV系统为小接地电流系统。
单相接地故障电流可达30A。
当高低压装备公用接地装置时。
应保证公用接地装置的接地电阻≤1Ω(R=50V/30A=1.7Ω)。
以保证10KV系统产生接地故障时人身和装备的安全。
2、变电所的接地装置。
除利用自然接地体外。
还应敷设人工接地网。
人工接地网的外缘应闭合。
⑴当变压器容量为400~1000KV*A时。
接地线封闭回路导线采取-40X4的镀锌扁钢;⑵当变压器容量为315KV*A及以下时。
接地线封闭回路导线采取-50X5的镀锌扁钢;⑶当变压器容量为1250~2000KV*A时。
接地线封闭回路导线采取-60X6的镀锌扁钢。
零线和地线都接地,零线在未形成回路前叫中线,在变压器处与大地相连,形成回路后就叫零线,零线也可能电人,如果回路中线断开,那么零线和火线等电压。
地线起保护作用,在用电设备最近处接地,对地电压为零。
零线一般对地电压不未零。
在三相四线制中零线、地线可直接连在一起,但有安全隐患,在三相五线制中零线和地线必须分开否则漏保跳开。
在三相4线制中从道理上讲可接地线,但在现实生活中不去接地线,主要是考虑安全,如果对地不良,那么从不良处望上全带电2、在早期的70年代以前.我国农村很多地区曾采用一线一地制民用照明电路!个别还有采用两线一地制动力电路!原因是线材缺乏和经济条件太差!上述两类供电方法虽说是省了线材.但安全性却差了!触电事故频频发生!其原因就是大地成了电路的一相!失去了保护回路的作用!此时的大地是有电流通过的!此类无奈的过度办法早已被淘汰!今天的地线已非昨日的地线了!现在的地线是零线的多端接地端!只用来构成漏电时的保护回路!平时是没有电流通过的!真正的回路是零线!在用大地做回路时要有量好的接地措施.虽然大地电阻很大!但面积也很大!可视为电阻率虽高.但截面积很大的载流体.载流性也很好!3、变压器的零线虽然接地,因大地的电阻较大、阻值也随着条件不断的变化(干,湿,成分等)所以你不能真正的把它当作零线使用,使用当中必须将零线和火线一样引人电器。
10kv配电工程设计手册【原创实用版】目录1.10kV 配电工程设计基础知识2.10kV 配电系统的组成3.10kV 配电工程设计流程4.10kV 配电设备的选型与设计5.10kV 配电系统的保护与控制6.10kV 配电工程的设计规范和标准7.10kV 配电工程的案例分析正文一、10kV 配电工程设计基础知识10kV 配电工程是指对 10 千伏电压等级的电力进行分配、控制和保护的系统,是电力系统中重要的环节。
在 10kV 配电工程设计中,需要掌握一些基本的知识,包括电力系统的基本概念、电力设备的分类和性能、电力网络的结构和布局等。
二、10kV 配电系统的组成10kV 配电系统主要由电源、配电设备、输电线路、变电站、配电站和用电设备等组成。
其中,电源是指提供电能的设备,如发电机、变压器等;配电设备是指对电能进行分配和控制的设备,如开关、断路器、隔离器等;输电线路是指连接电源和配电设备的电力线路;变电站和配电站是指对电压和电流进行变换和分配的场所;用电设备是指消耗电能的设备,如照明、电机、电器等。
三、10kV 配电工程设计流程10kV 配电工程设计一般分为以下几个步骤:1.确定设计任务和设计目标2.收集和分析设计资料3.制定设计方案4.进行设计计算和分析5.编制设计图纸和设计说明书6.进行设计评审和修改7.完成设计报告和设计文件四、10kV 配电设备的选型与设计10kV 配电设备的选型与设计是配电工程设计的重要环节,需要根据设计任务和设计目标,结合设计资料和设计方案,进行设备的选型和设计。
主要设备包括开关、断路器、隔离器、变压器、互感器、避雷器等。
五、10kV 配电系统的保护与控制10kV 配电系统的保护与控制是保证配电系统安全稳定运行的重要措施,需要根据配电系统的特点和设计要求,进行保护与控制的设计。
主要内容包括保护装置的选型与设计、控制装置的选型与设计、保护与控制方式的选择等。
六、10kV 配电工程的设计规范和标准10kV 配电工程的设计需要遵循国家和行业的相关规范和标准,以保证设计质量和设计安全。
10KV架空线路基础知识一、送电线路的主要设备:送电线路是用绝缘子以及相应金具将导线及架空地线悬空架设在杆塔上,连接发电厂和变电站,以实现输送电能为目的的电力设施。
主要由导线、架空地线、绝缘子、金具、杆塔、基础、接地装置等组成。
1.导线:其功能主要是输送电能。
线路导线应具有良好的导电性能,足够的机械强度,耐振动疲劳和抵抗空气中化学杂质腐蚀的能力。
线路导线目前常采用钢芯铝绞线或钢芯铝合金绞线。
为了提高线路的输送能力,减少电晕、降低对无线电通信的干扰,常采用每相两根或四根导线组成的分裂导线型式。
2.架空地线:主要作用是防雷。
由于架空地线对导线的屏蔽,及导线、架空地线间的藕合作用,从而可以减少雷电直接击于导线的机会。
当雷击杆塔时,雷电流可以通过架空地线分流一部分,从而降低塔顶电位,提高耐雷水平。
架空地线常采用镀锌钢绞线。
目前常采用钢芯铝绞线,铝包钢绞线等良导体,可以降低不对称短路时的工频过电压,减少潜供电流。
兼有通信功能的采用光缆复合架空地线。
架空线路常用的导线型号及符号的含义:架空线路常用的导线有裸导线和绝缘导线.按导线的结构可分为单股,多股及空芯导线.按导线使用材料分为铜导线,铝导线.钢芯铝导线,铝合金导线和钢导线等.送、配电架空电力线路采用多股裸导线,低压配电架空线路可使用单股裸铜导线.常用的裸导线有以下几种:1裸铜导线(TJ)、2裸铝导线(LJ)、3钢芯铝导线(LGJ,LGJQ,LGJJ)、4铝合金导线(HLJ)、5钢导线(GJ)•导线型号中的拼音字母的含义T-铜导线 J-绞线 L-铝导线 G-钢芯 Q-轻型 H-合金型号中一字线后的数字表示导线的截面积平方毫米3.绝缘子:是将导线绝缘地固定和悬吊在杆塔上的物件。
送电线路常用绝缘子有:盘形瓷质绝缘子、盘形玻璃绝缘子、棒形悬式复合绝缘子。
(1)盘形瓷质绝缘子:国产瓷质绝缘子,存在劣化率很高,需检测零值,维护工作量大。
遇到雷击及污闪容易发生掉串事故,目前已逐步被淘汰。
10千伏电力基础知识一、电力基础知识概述电力是一种重要的能源形式,广泛应用于各个领域。
10千伏电力指的是电力系统中的电压等级,意味着电力系统的运行电压为10千伏(千伏即千伏特,1千伏等于1000伏)。
二、电力系统组成一个完整的电力系统主要由发电厂、变电站、输电线路和配电网四部分组成。
1. 发电厂:发电厂是电力系统的起点,通过燃煤、燃气、水力、核能等方式将其他形式的能源转化为电能。
发电厂产生的电能一般为高压电,通过变压器升压至10千伏电压等级后送往变电站。
2. 变电站:变电站是电力系统的重要环节,主要功能是将发电厂输送过来的高压电转换为适合输电和配电的电压等级。
变电站中的变压器可以将电压升高或降低,使电能在输电线路中传输时损耗降低。
3. 输电线路:输电线路是将变电站产生的电能传输至各个用电单位的重要通道。
输电线路分为高压输电线路和低压配电线路两部分。
其中,高压输电线路一般采用10千伏以上的电压等级,以减少输电过程中的能量损耗。
4. 配电网:配电网将输电线路传输过来的电能供应给各个用电单位。
配电网分为高压配电网和低压配电网两部分,其中高压配电网的电压等级为10千伏,低压配电网的电压等级一般为380伏。
三、10千伏电力的优势相对于低压电力系统,10千伏电力系统具有以下几个优势:1. 输电损耗小:10千伏电力系统通过升高输电线路的电压等级,可以减少输电过程中的能量损耗,提高能源利用效率。
2. 传输距离远:10千伏电力系统可以实现远距离的电能传输,适用于大范围的电力供应。
3. 负载能力强:10千伏电力系统的电压等级较高,能够满足大型工业企业和城市的用电需求,负载能力强。
4. 安全性高:10千伏电力系统在输电过程中,电流相对较小,减少了电线触及人体时产生的电击危险。
四、10千伏电力的应用领域10千伏电力广泛应用于以下几个领域:1. 工业用电:10千伏电力系统能够满足大型工业企业的用电需求,应用于钢铁、化工、制造等行业。
一、变压器配置相关知识
1、三相变压器的一、二次电流计算
S=1.732*U*I ,得到:I=S/(1.732*U) 比如变压器容量S=1000KVA,高压侧10.5KV I=54.99 A 低压侧400V I=1443A
变压器参数
2、变压器供电半径:
400kVA变台低压供电半径不宜超过250m,繁华地区不宜超过160m;200kV A变台低压供电半径不宜超过350m;100kV A变台低压供电半径不宜超过500m,超过上述半径时应进行电压校验。
二、10千伏50平方毫米的铝线最大能用多大的容量的变压器
裸线的话,一般最大不超过3400千伏安。
还要看你是不是独自使用此线。
铝线每平方按照4A电流考虑就可以了。
再大供电局就不让接了。
三、架空绝缘导线。
10KV架空线路知识摘要:该文叙述架空绝缘导线在lOkV配电线路中的应用,对架空绝缘导线性能、应用区域,以及设计、施工中应注意的问题进行分析,并对线路投资进行分析比较。
关键词:配电架空绝缘导线配电线路随着配电网的飞速发展,供电区域被树木覆盖,严重的腐蚀、台风等诸多因素的影。
向,使配电网的可靠性面临新的困难。
受到自然界对配电网构成的这种或那种威胁,从而产生了分裂架空绝缘导线。
架空绝缘导线与普通架空裸导线相比,具有许多优点,可解决常规裸导线在运行过程中遇到的一些难题,价格又比地埋电缆便宜得多,因此,在配电网中得到广泛的应用。
1 架空绝缘导线的主要特点(1)绝缘性能好。
架空绝缘导线由于多了一层绝缘层,比裸导线优越的绝缘性能,可减少线路相间距离,降低对线路的支持件的绝缘要求,提高同杆架设线路的回路数。
(2)防腐蚀性能好。
架空绝缘导线由于外层有绝缘层,比裸导线受氧化腐蚀的程度小,抗腐蚀能力较强,可延长线路的使用寿命。
(3)防外力破坏。
减少受树木,飞飘金属膜和灰尘等外在因素的影响,减少相间短路及接地事故。
(4)强度达到要求。
绝缘导线虽然少了钢心,但坚韧,使整个导线的机械强度能达到应力设计的要求。
2 架空绝缘导线的规格(1)线心。
架空绝缘导线有铝心和铜心两种。
在配电网中,铝心应用比较多,主要是铝材比较轻,而且较便宜,对线路连接件和支持件的要求低,加上原有的配电网也以钢心铝绞线为主,选用铝心线便于原有网络的连接。
在实际使用中也多选用铝心线。
铜心线主要是作为变压器及开关设备的引下线。
(2)绝缘材料。
架空绝缘导线的绝缘保护层有厚绝缘(3.4mm)和薄绝缘(2.5mm)两种。
厚绝缘的运行时允许与树木频繁接触,薄绝缘的只允许与树木短时接触。
绝缘保护层又分为交联聚乙烯和轻型聚乙烯,交联聚乙烯的绝缘性能更优良。
常用的lOkV架空绝缘导线如表1所示。
3 架空绝缘导线的敷设方式(1)单根常规敷设方式。
这种架设方式就是采用目前裸导线的常规水泥电杆、铁附件及陶瓷绝缘子配件,按裸体导线架设方式进行架设,比较适合于老线路进行改造和走廊较充分的区域。
一、设计依据依据的规程、规范有:1《66kV及以下架空电力线路设计规范》GB50061-972《架空配电线路设计技术规程》SDJ-206-873《架空送电线路杆塔结构设计技术规定》DL/T5154-20024《环型混凝土电杆》GB396-19945《架空送电线路钢管杆设计技术规定》DL/T5130-20016《电力设备过电压保护设计技术规程》SDJ7-797《送电线路基础设计技术规定》SDGJ62-848《农村低压电力技术规程》DL/T499-2001二、设计流程1:明确起点,终点,导线截面2:收集地形图,选定路径方案3:进行现场踏勘测量绘制路径图4:根据工程气象条件线路导线截面,档距,转角及现场地形地质等实际情况选择杆塔形式5:根据以上资料开列设备材料清册6:根据设计资料,套用现行定额、计费程序,编制工程预算书;7:对方案进行技术经济对比分析,确定最佳方案8:对确定的最佳方案进行资料完善、整理,形成全套设计资料三、图集1,杆塔部分:钢管塔,砼杆,钢管杆等2,机电部分:金具及接地装置3,铁塔基础4,铁塔加工5,部件部分:混泥土部件,铁件部件四、气象条件气象条件是选择导线和确定档距的重要依据五、架空线路1,导线选择:一般选择钢芯铝绞线,一般结合当地电网发展规划,一般采用LGJ-150/20,LGJ-185/25,LGJ-240/30等。
2,导线的安全系数:一般根据导线选择4~6之间。
3,导线排列:单回路一般采用三角形或垂直排列,双回路采用垂直排列铁塔部分垂直排列横担间距离为1000mm,双回路铁塔不同相导线间的水平距离为1800mm,四回路铁塔不同相导线间的水平距离为1000~1600mm。
直线砼杆垂直排列横担间距离基本为800mm,单回路耐张砼杆垂直排列横担间距离为1000mm。
4,档距:城镇地区配电线路的档距一般取40~50米,郊区及农村地区配电线路的档距一般取60~100米,高差较大的地区取60~200米,线路耐张段长度不宜大于1千米。
10kv配电工程设计手册【原创版】目录1.10kV 配电工程设计基础知识2.10kV 配电系统的主要组成部分3.10kV 配电工程的设计流程4.10kV 配电系统的安全防护措施5.10kV 配电工程的注意事项正文一、10kV 配电工程设计基础知识10kV 供配电系统是指从电源侧到用电负荷侧,通过变电站、配电柜等设备将电能传输、分配和控制的系统。
在设计过程中,需要掌握一些基本的电气知识和设计规范。
二、10kV 配电系统的主要组成部分10kV 配电系统主要包括以下几个部分:1.变电站:接受高压电能,通过变压器将电压降至 10kV,并向各个配电柜供电。
2.配电柜:将电能分配给各个用电设备,如电机、灯具等。
3.配电线路:连接变电站、配电柜和用电设备的导线,包括架空线路和电缆线路。
4.电气设备:包括变压器、断路器、隔离开关、负荷开关、接触器、继电器等。
三、10kV 配电工程的设计流程1.确定设计任务和设计范围2.收集相关资料,进行现场勘察3.确定设计方案,包括系统结构、设备选型、线路走向等4.进行设计计算,包括负荷计算、短路计算、接地电阻计算等5.编制设计图纸,如电气主接线图、设备布置图、线路走向图等6.编写设计说明书,包括设计依据、设计原则、设备参数等四、10kV 配电系统的安全防护措施1.设备接地:对配电系统的所有金属设备进行接地,以减小触电风险。
2.短路保护:设置短路保护装置,如断路器、熔断器等,以防止短路故障。
3.过载保护:设置过载保护装置,如热继电器、电流互感器等,以防止过载运行。
4.漏电保护:设置漏电保护装置,如漏电断路器、漏电继电器等,以防止漏电故障。
五、10kV 配电工程的注意事项1.在设计过程中,应严格按照国家和行业的设计规范和标准进行。
2.所选设备应具有国家认证的资质,并符合设计要求。
3.设计图纸应清晰、完整,便于施工和验收。
4.在施工过程中,应严格按照设计图纸进行,并进行质量控制。
(十)10kV以下架空线路1、工地运输,是指估价表内未计价材料从集中材料堆放点或工地仓库运至杆位上的工程运输,分人力运输和汽车运输,以“10t·km”为计量单位。
运输量计算公式如下:工程运输量=施工图用量×(1+损耗率)预算运输重量=工程运输量+包装物重量(不需要包装的可不计算包装物重量)运输重量可按下表的规定进行计算:注:①W为理论重量;②未列入者均按净重计算。
2、土石方量计算(1)无底盘、卡盘的电杆坑,其挖方体积V=0.8×0.8×h(h——坑深m)(2)电杆坑的马道土、石方量按每坑0.2m3计算(3)施工操作裕度按底、拉盘底宽每边增加0.1m。
(4)电杆坑(放边坡)计算公式:V=h÷[6〔ab+(a+a1)×(b+b1)+a1b1〕]式中:V——土(石)方体积(m3)h——坑深(m)a(b)——坑底宽(m),a(b)=底、拉盘底宽+2×每边操作裕度;a1(b1)——坑口宽(m),a1(b1)=a(b)+2×h×边坡系数放坡系数注:a.土方量计算公式亦适用于拉线坑;b.双接腿杆坑按带底盘的土方量计算;c.木杆按不带底盘的土方量计算。
3.各类土质的放坡系数按下表计算各类土质的放坡系数土质普通土、水坑坚土松砂石泥水、流砂、岩石放坡系数1∶0.31∶0.251∶0.2不放坡4、冻土厚度大于300mm时,冻土层的挖方量按挖坚土项目,其基价乘以系数2.5。
其他土层仍按土质性质执行本册估价表。
5、杆坑土质按一个坑的主要土质而定,如一个坑大部分为普通土,少量为坚土,则该坑应全部按普通土计算。
6、带卡盘的电杆坑,如原计算的尺寸不能满足卡盘安装时,因卡盘超长而增加的土(石)方量另计。
7、底盘、卡盘、拉线盘按设计用量以“块”为计量单位。
8、杆塔组立,分别杆塔形式和高度按设计数量以“根”为计量单位。
9、拉线制作安装按施工图设计规定,分别不同形式,以“组”为计量单位。
10kv高压线磁场强度计算高压线是指电力输送线路中的高压电线,其工作电压一般在10千伏(10kV)以上。
对于高压线的磁场强度计算,我们需要了解一些基本的物理知识和公式。
在本文中,我将向您介绍关于高压线磁场强度计算的相关内容。
首先,我们需要了解高压线产生磁场的原理。
根据安培环路定理,电流通过的导线会产生一个闭合的磁场,其大小与电流的大小和导线的形状有关。
在高压线电流比较大的情况下,其产生的磁场强度可以达到一定的数值。
对于直线高压线,我们可以使用比奥萨伐尔定律来计算其产生的磁场强度。
比奥萨伐尔定律可以表述为:一段无限长直导线在距离r处产生的磁场强度H与电流I成正比,与距离r的平方成反比。
其公式表达为:H = (μ₀ * I) / (2 * π * r)其中,H表示磁场强度,μ₀表示真空中的磁导率,I表示电流强度,r表示距离导线的距离。
需要注意的是,该公式假设导线是无限长的,实际上高压线是有限长的,所以在计算时需要将高压线划分为若干段,然后分别计算每段导线产生的磁场强度,最后将所有段的磁场强度叠加得到最终结果。
在实际计算中,我们往往采用较为精确的数值方法,比如有限元分析等,来考虑导线的形状和导线之间的相互影响等因素。
这些方法可以更准确地计算出高压线产生的磁场强度。
除了直线高压线,还有一种常见的高压线形式是平行线档。
平行线档是指两根或多根高压线平行排列,其中的每根线都承载一部分电流。
对于平行线档的磁场强度计算,由于各线间有互相影响,所以计算稍微复杂一些。
对于平行线档的磁场强度计算,可以采用互感耦合的方法。
该方法中,我们先计算单根高压线产生的磁场强度,然后考虑其对其他线的影响,最终通过迭代计算得到稳定的结果。
除了高压线自身产生的磁场,附近地面的磁场也会受到影响。
地面磁场主要与高压线的磁场强度、电流的大小以及距离地面的高度等因素有关。
这一点在实际计算中也需要加以考虑。
总之,高压线磁场强度的计算是一个相对复杂的问题,需要考虑导线的形状、电流的大小以及导线之间的互相影响等因素。
10KV架空线路基础知识一、送电线路的主要设备:送电线路是用绝缘子以及相应金具将导线及架空地线悬空架设在杆塔上,连接发电厂和变电站,以实现输送电能为目的的电力设施。
主要由导线、架空地线、绝缘子、金具、杆塔、基础、接地装置等组成。
1.导线:其功能主要是输送电能。
线路导线应具有良好的导电性能,足够的机械强度,耐振动疲劳和抵抗空气中化学杂质腐蚀的能力。
线路导线目前常采用钢芯铝绞线或钢芯铝合金绞线。
为了提高线路的输送能力,减少电晕、降低对无线电通信的干扰,常采用每相两根或四根导线组成的分裂导线型式。
2.架空地线:主要作用是防雷。
由于架空地线对导线的屏蔽,及导线、架空地线间的藕合作用,从而可以减少雷电直接击于导线的机会。
当雷击杆塔时,雷电流可以通过架空地线分流一部分,从而降低塔顶电位,提高耐雷水平。
架空地线常采用镀锌钢绞线。
目前常采用钢芯铝绞线,铝包钢绞线等良导体,可以降低不对称短路时的工频过电压,减少潜供电流。
兼有通信功能的采用光缆复合架空地线。
架空线路常用的导线型号及符号的含义:架空线路常用的导线有裸导线和绝缘导线.按导线的结构可分为单股,多股及空芯导线.按导线使用材料分为铜导线,铝导线.钢芯铝导线,铝合金导线和钢导线等.送、配电架空电力线路采用多股裸导线,低压配电架空线路可使用单股裸铜导线.常用的裸导线有以下几种:1裸铜导线(TJ),2裸铝导线(LJ),3钢芯铝导线(LGJ,LGJQ,LGJJ)4铝合金导线(HLJ)5钢导线(GJ)•导线型号中的拼音字母的含义T-铜导线J-绞线L-铝导线G-钢芯Q-轻型H-合金常用高压电缆的种类和型号型号中一字线后的数字表示导线的截面积平方毫米10kv高压电缆型号:1、适用于交联额定电压U (Um )为10(12)KV 的架空电力传输线路。
2、电缆敷设温度应不低于-20℃。
3、短路时(≤5s )导体的最高温度:XLPE 绝缘250℃。
4、电缆导体的最高长期允许工作温度为:a.有承载结构电缆:XLPE 绝缘为90℃;b.无承载结构电缆:GB 还未规定,鉴于实际情况不应超过“a ”规定值。
5、电缆的允许弯曲半径应不小于a.单芯电缆为20(D+d )±5%mm ,TR 结构为20Dmm ;b.多芯电缆为15(D +d )±5%mm10kv 高压3.绝缘子:是将导线绝缘地固定和悬吊在杆塔上的物件。
送电线路常用绝缘子有:盘形瓷质绝缘子、盘形玻璃绝缘子、棒形悬式复合绝缘子。
(1)盘形瓷质绝缘子:国产瓷质绝缘子,存在劣化率很高,需检测零值,维护工作量大。
遇到雷击及污闪容易发生掉串事故,目前已逐步被淘汰。
(2)盘形玻璃绝缘子:具有零值自爆,但自爆率很低(一般为万分之几)。
维护不需检测,钢化玻璃件万一发生自爆后其残留机械强度仍达破坏拉力的80%以上,仍能确保线路的安全运行。
遇到雷击及污闪不会发生掉串事故。
在Ⅰ、Ⅱ级污区已普遍使用。
(3)棒形悬式复合绝缘子:具有防污闪性能好、重量轻、机械强度高、少维护等优点,在Ⅲ级及以上污区已普遍使用。
4.金具送电线路金具,按其主要性能和用途可分为:线夹类、连接金具类、接续金具类、防护金具类、拉线金具类。
(1)线夹类:悬式线夹:用于将导线固定在直线杆塔的悬垂绝缘子串上,或将架空地线悬挂在直线杆塔的架空地线支架上。
耐张线夹:是用来将导线或架空地线固定在耐张绝缘子串上,起锚固作用。
耐张线夹有三大类,即:螺栓式耐张线夹;压缩型耐张线夹;楔型线夹。
螺栓式耐张线夹:是借U型螺丝的垂直压力与线夹的波浪形线槽所产生的摩擦效应来固定导线。
压缩型耐张线夹:它是由铝管与钢锚组成。
钢锚用来接续和锚固钢芯铝绞线的钢芯、然后套上铝管本体,以压力使金属产生塑性变形,从而使线夹与导线结合为一整体,采用液压时,应用相应规格的钢模以液压机进行压缩。
采用爆压时,可采用一次爆压或二次爆压的方式,将线夹和导线(架空地线)压成一个整体。
楔型线夹:用来安装钢绞线,紧固架空地线及拉线杆塔的拉线。
它利用楔的劈力作用,使钢绞线锁紧在线夹内。
(2)连接金具类:连接金具是用来将绝缘子串与杆塔之间,线夹与绝缘子串之间,架空地线线夹与杆塔之间进行连接的金具。
常用的连接金具有:球头挂环、碗头挂板、U型挂环、直角挂板等。
(3)接续金具类:用于导线的接续及架空地线的接续,耐张杆塔跳线的接续。
定型的接续金具有:钳压接续金具、液压接续金具、螺栓接续金具、爆压接续金具。
(4)防护金具类:用于防护导线,架空地线振动的防震锤、护线条、阻尼线;用于抑制次档距振动的间隔棒;用于防护绝缘子串产生电晕的屏蔽环及均压环等。
(5)拉线金具类:用于调整和稳固杆塔拉线的金具有:可调式UT型线夹;钢线卡子、及双拉线联板等。
5.杆塔:杆塔是支承架空线路导线和架空地线,并使导线与导线之间,导线和架空地线之间,导线与杆塔之间,以及导线对大地和交叉跨越物之间有足够的安全距离。
架空线路的各种电杆,按其作用可分为直线杆、耐张杆、转角杆、终端杆、分支杆、跨越杆。
1. 直线杆位于线路的直线段上,在正常情况下承受导线重量和水平风力载荷,不考虑承受顺线路方向导线的拉力,稳定性较差。
2 .耐张杆位于线路直线段上几个直线杆之间。
在正常情况下除承受导线重量和水平风力载荷外,还要承受邻档导线拉力差所引起的顺线路方向的拉力。
在断线事故和架线紧线情况下,还能承受一侧导线的拉力,稳定性比直线杆好。
3. 转角杆位于线路改变方向的地方,在正常情况下除承受导线的垂直载荷和内角平分线方向风力水平载荷外,还要承受内角平分线方向导线全部拉力的合力,稳定性最好。
4.终端杆位于线路的首端和终端,在正常情况下除承受导线的垂直载荷和水平风力外,由于只有一侧有导线,所以顺线路方向要承受全部导线的拉力。
5 .分支杆位于线路的分支处,在正常情况下除承受主线路所承受的载荷外,还要承受分支导线的垂直载荷和水平风载荷及顺分支线方向导线的全部拉力。
这种电杆在主线路方向上有直线杆和耐张杆两种,在分支方向则为耐张杆。
6 .跨越杆位于跨越铁路、通航河道、公路和电力线等大跨度需要特殊考虑的地方。
常规杆塔型号表示方法:(1)按杆塔用途分类代号含义:6.基础:基础的作用主要是稳定杆塔,能承受杆塔、导线、架空地线的各种荷载所产生的上拔力、下压力和倾覆力矩。
电杆及拉线宜采用预制装配式基础。
铁塔宜采用现浇钢筋混凝土基础或混凝土基础。
有条件时,应优先采用原状基础。
包括有:岩石基础、机扩桩基础、掏挖(半掏挖)基础、爆扩桩基础和钻孔桩基础等。
拉线的作用(1)电杆架设后,发生了受力不平衡的现象,拉线可以平衡导线张力,保持电杆稳固。
(2)电杆基础不牢,不能保持电杆稳固,用拉线可进行基础补强。
(3)因载荷超过电杆的安全强度,利用拉线减少电杆所受的弯曲力矩。
1.7.2 拉线的种类按拉线用途和作用的不同,可分为以下几种。
(1)普通拉线,主要用来平衡固定性的不平衡拉力。
(2)人字拉线(又叫防风拉线),用于基础不坚固和交叉跨越加高杆或较长耐张段中间的直线杆上,加强防风倾倒。
(3)水平拉线(又叫高桩拉线),用于跨越公路、渠道和交通要道处。
(4)自身拉线(又叫弓形拉线),用于受地形限制,不能采用一般拉线处。
(5)V 形拉线,用于电杆较高、横担较多、架空多条线路,因而受力不均匀,可在上、下两处各安装一条拉线。
(6)共用拉线、十字拉线、撑杆等7.接地装置:主要由连接架空地线的接地引下线及埋入杆塔地里的接地体(极)所组成。
接地装置的主要作用是,能迅速将雷电流在大地中扩散泄导,以保持线路有一定的耐雷水平。
杆塔接地电阻值愈小,其耐雷水平就愈高。
二、送电线路专业术语1.档距:相邻两基杆塔之间的水平直线距离,称为档距,一般用L表示。
2.弧垂:对于水平架设的线路来说,导线相邻两个悬挂点之间的水平连线与导线最低点的垂直距离,称为弧垂或弛度。
用f表示。
3.限距:导线对地面或对被跨越设施的最小距离。
一般指导线最低点到地面的最小允许距离,常用h表示。
4.水平档距:相邻两档距之和的一半,称为水平档距5.垂直档距:相邻两档距间导线最低点之间的水平距离,称为垂直档距,6.代表档距:一个耐张段里,除弧立档外,往往有多个档距。
由于导线跨越的地形、地物不同,各档距的大小不相等,导线的悬挂点标高也不一样,各档距的导线受力情况也不同。
而导线的应力和弧垂跟档距的关系非常密切,档距变化,导线的应力和弧垂也变化,如果每个档距一个一个计算,会给导线力学计算带来困难。
但一个耐张段里同一相导线,在施工时是一道收紧起来的,因此,导线的水平拉力在整个耐张段里是相等的,即各档距弧垂最低点的导线应力是相等的。
我们把大小不等的一个多档距的耐张段,用一个等效的假想档距来代替它,这个能够表达整个耐张力学规律的假想档距,称之为代表档距或称为规律档距,用LO表示。
导线悬挂点等高情况:导线悬挂点不等高情况:式中:LO—规律档距(米)Ln—各档档距(米)Qn—悬挂点高差角(度)7.杆塔高度:杆塔最高点至地面的垂直距离,称为杆塔高度。
用H1表示。
8.杆塔呼称高度:杆塔最下层横担至地面的垂直距离称为杆塔呼称高度,简称呼称高,用H2表示。
9.悬挂点高度:导线悬挂点至地面的垂直距离,称为导线悬挂点高度,用H3表示。
10.线间距离:两相导线之间的水平距离,称为线间距离,用D表示。
11.根开:两电杆根部或塔脚之间的水平距离,称为根开。
用A表示。
12.架空地线保护角:架空地线和边导线的外侧连线与架空地线铅垂线之间的夹角,称为架空地线保护角。
13.杆塔埋深:电杆(塔基)埋入土壤中的深度称为杆塔埋深。
用h0表示。
14.跳线:连接承力杆塔(耐张、转角和终端杆塔)两侧导线的引线,称为跳线,也称引流线或弓子线。
15.导线的初伸长:当导线初次受到外加拉力而引起的永久性变形(延着导线轴线伸长),称为导线初伸长。
16.分裂导线:一相导线由多根(有2根、3根、4根)组成型式,称为分裂导线。
它相当于加粗了导线的“等效直径”,改善导线附近的电场强度,减少电晕损失,降低了对无线电的干扰,及提高送电线路的输送能力。
17.导线换位:送电线路的导线排列方式,除正三角形排列外,三根导线的线间距离是不相等。
而导线的电抗取决于线间距离及导线半径,因此,导线如不进行换位,三相阻抗是不平衡的,线路愈长,这种不平衡愈严重。
因而,会产生不平衡电压和电流,对发电机的运行及无线电通信产生不良的影响。
送电线路设计规程规定“在中性点直接接地的电力网中,长度超过100km的送电线路均应换位”。
一般在换位塔进行导线换位。
18.导(地)线振动:在线路档距中,当架空线受到垂直于线路方向的风力作用时,就会在其背风面形成按一定频率上下交替的稳定涡流(如图2-3示),在涡流升力分量的作用下,使架空线在其垂直面内产生周期性振荡,称为架空线振动。