北师大版用频率估算概率
- 格式:ppt
- 大小:1002.50 KB
- 文档页数:14
北师大版九年级上册2用频率估计概率教学设计一、教学目标通过本节课的教学活动,学生将能够:1.理解频率和概率的概念,了解它们之间的关系;2.学会如何用频率估计概率;3.通过多种实例练习,掌握用频率估计概率的方法和技巧;4.发展学生的团队合作精神和实际解决问题的能力。
二、教学内容1.频率和概率的概念及它们之间的关系;2.用频率估计概率的方法和技巧;3.多种实例练习。
三、教学方法1.讲授法:通过教师讲解,帮助学生建立起频率和概率的概念,并了解它们之间的关系;2.实验法:通过小组实验,让学生掌握用频率估计概率的方法和技巧;3.情境法:通过实例,让学生深入理解频率和概率的概念,并掌握如何用频率估计概率。
四、教学步骤步骤一:导入1.教师介绍本节课的教学目标和内容;2.引出频率和概率的概念,并介绍它们之间的关系。
步骤二:讲解1.教师通过PPT讲解频率和概率的概念和计算方法;2.对频率和概率的关系进行逐一解释。
步骤三:实验1.学生分成小组,每组四人;2.每组选出一人为实验员,根据老师提供的实验题目,进行实验;3.实验员将实验结果统计并记录在实验表格中;4.使用实验数据估计概率;5.小组分享实验结果,讨论实验过程中出现的问题。
步骤四:情境练习1.通过实际情境案例进行练习;2.按照教师要求,使用数据计算并估计概率;3.学生分为小组,共同完成习题练习;4.教师巡视督促、引导学生,解答他们的疑惑。
5.小组分享练习结果。
步骤五:课堂总结1.教师进行课堂总结,强调频率和概率的概念及它们之间的关系;2.总结本节课的教学目标;3.对学生的表现给与肯定和鼓励。
五、教学评估1.实验员的实验表格和记录;2.小组练习的成果和讨论情况;3.学生的日常作业和考试成绩。
六、教学反思1.教师要根据学生的实际掌握情况,动态调整教学方法和步骤;2.在教学过程中,教师需多与学生互动,引导他们探究知识,促进语言交流;3.教师应该鼓励学生在小组协作中进行思考和讨论,并且在讨论的过程中及时给予反馈和指导,提高学生的学习效果和兴趣。
用频率估计概率-北师大版九年级数学上册教案在我们的日常生活中,概率应用非常广泛。
比如说,在天气预报中,我们会听到天气预报员说“明天的降雨概率是60%”。
那么,这个“60%”到底是怎么算出来的呢?其实,这涉及到了用频率估计概率的知识。
一、理解频率在介绍频率之前,先来回顾一下我们在初中学习的关于“试验”的知识。
什么是试验?试验就是一系列具有某些特征的随机事件组成的过程。
比如说,掷一个骰子,这个过程就是一个试验。
每次掷骰子,可能出现1、2、3、4、5或者6这六个数字中的一个,我们称之为随机事件。
如果我们把这个试验重复进行很多次,比如说进行10000次,那么每一个数字出现的次数就可能不同。
如果我们把每个数字出现的次数记下来,就得到了这样一张表格:数字出现次数1 16502 17123 16724 16815 16446 1641这个表格告诉我们每个数字出现的频率,也就是它们出现的次数除以总次数。
比如说,1这个数字出现的频率为1650/10000=0.165,也就是约为0.17。
二、用频率估计概率了解了什么是频率之后,我们来看看如何用频率来估计概率。
在前面的例子中,我们重复进行了一万次试验,这样做是为了让每个数字出现的次数更接近于它们理论上出现的次数。
如果这个试验只进行了一次,那么每个数字出现的次数就只有0或者1,这样的话,我们无法从中计算出概率。
但是,现实生活中,我们也很难做到重复进行数万次试验。
因此,我们通常是通过重复进行相对较少次数的试验,然后通过统计相应的频率来估计概率。
比如说,在天气预报中,我们实际上并不会重复进行许多次“明天是否下雨”的试验,因为这样做是不可能的。
但是,我们可以根据历史的气象数据,计算出过去每个月份下雨的总次数和总天数,从而得出下雨的频率。
然后,我们就可以用这个频率来估计未来某一天下雨的概率了。
三、用频率估计概率的误差用频率来估计概率是一种常用的方法,但是,它并不是一个完美的方法。
知识点总结用频率估计概率在随机事件中,一个随机事件发生与否事先无法预测,表面上看似无规律可循,但当我们做大量重复试验时,这个事件发生的频率呈现出稳定性,因此做了大量试验后,可以用一个事件发生的频率作为这个事件的概率的估计值。
一般地,在大量重复试验中,如果事件A发生的频率稳定于某一个常数P,那么事件A发生的频率P(A)=p 。
1、利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
(1)频率=频数/总数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
(2)概率①如果用P表示一个事件A发生的概率,则0≤P(A)≤1;P(必然事件)=1;P(不可能事件)=0;②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③大量的重复实验时频率可视为事件发生概率的估计值;2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
3、随机数在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。
把这些随机产生的数据称为随机数。
习题精析在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,好将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率为;(3)求不透明的盒子里黑、白两种颜色的球各有多少只?解析:试题分析:(1)求出所有试验得出来的频率的平均值即可;(2)摸一次的概率和大量实验得出来的概率相同;(3)根据频数=总数×频率进行计算即可.试题解析:(1)摸到白球的频率=(0.63+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为5000次时,摸到白球的频率将会接近0.6.(2)摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)∵白球的频率=0.6,∴白球个数=40×0.6=24,黑球=40-24=16.答:不透明的盒子里黑球有16个,白球有24个.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率m0.580.610.580.590.6050.601 n根据表中的数据可估算出口袋中白球约有只.解析:试题分析:先根据表中的数据,估计出摸到白球的频率,利用摸到白球的频率即可求出摸到白球的概率,即可求出口袋中白颜色的球有多少只.试题解析:答:根据题意可得当n很大时,摸到白球的频率将会接近0.6;∵当n很大时,摸到白球的频率将会接近0.6;∴摸到白球的概率是所以口袋中白种颜色的球有白球是故答案为:12.通常,选择题有4个选择支,其中只有1个选择支是正确的.现有20道选择题,小明认为只要在每道题中任选1个选择支,其中必有5题的选择结果是正确的.你认为小明的推断正确吗?说说你的理由.解析:试题分析:根据大量重复试验中事件发生的频率约等于事件发生的概率即可求解.试题解析:小明的推断是不正确的,因为20题的题量较小,只有当题量很大时,在每道选择题中任选1个选择支,其选择结果正确的频率才能在常数0.25附近摆动,由此才可以估计其选择的结果正确的概率为0.25.每日一题在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为()A.4B.6C.8D.12习题答案试题分析:(1)让所求的情况数除以总情况数即为所求的概率;(2)算出相应的平均收益,比较即可.试题解析:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率(2)∵两红的概率两白的概率一红一白的概率∴甲品牌化妆品获礼金券的平均收益是:乙品牌化妆品获礼金券的平均收益是:∴我选择甲品牌化妆品.导学案设计学习要求会根据一个随机事件发生的频率估计这个事件发生的概率,学会用试验估计某事件出现的概率的操作过程.课堂学习检测一、填空题1.当实验次数很大时,同一事件发生的频率稳定在相应的______附近,所以我们可以通过多次实验,用同一个事件发生的______来估计这事件发生的概率.(填“频率”或“概率”)2.50张牌,牌面朝下,每次抽出一张记下花色后放回,洗匀后再抽,抽到红桃、黑桃、梅花、方片的频率依次是16%、24%、8%、52%,估计四种花色分别有______张.3.在一个8万人的小镇,随机调查了1000人,其中有250人有订报纸的习惯,则该镇有订报纸习惯的人大约为______万人.4.为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.二、选择题5.如果手头没有硬币,用来模拟实验的替代物可用().A.汽水瓶盖 B.骰子 C.锥体 D.两个红球6.在“抛硬币”的游戏中,如果抛了10000次,则出现正面的概率是50%,这是().A.确定的 B.可能的 C.不可能的 D.不太可能的三、解答题7.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;抽取球数n 50 100 500 1000 5000 优等品数m 45 92 455 890 4500 优等品频率(2)该厂生产乒乓球优等品的概率约为多少?8.某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.综合、运用、诊断一、填空题9.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有______个白球.10.某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为______;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是______.二、解答题11.在5瓶饮料中有2瓶已过了保质期,从5瓶饮料中任取2瓶,则取到的2瓶都过了保质期的可能性是多少?请你用替代物进行模拟实验,估计问题的答案.12.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?13.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机捕捞,每次捕捞后做好记录,然后将鱼放回,如此进行20次,记录数据如下:总条数 50 45 60 48 10 30 42 38 15 10 标记数 2 1 3 2 0 1 1 2 0 1 总条数 53 36 27 34 43 26 18 22 25 47 标记数 2 1 2 1 2 1 1 2 1 2 (1)估计池塘中鱼的总数.根据这种方法估算是否准确?(2)请设计另一种标记的方法,使得估计更加精准.14.小明在乒乓球馆训练完后,不慎将若干白球放入了装有30个橙色球的袋子中,已知两种球除颜色外都相同,你能帮他设计一个方案来估计放进多少白球吗?拓广、探究、思考15.北京联通公司市场部经理小张想了解市内移动公司等对手的市场占有率及用户数量,你能帮他设计一种方案估计出其他公司用户的数量吗?16.一口袋中只有若干粒白色围棋子,没有其他颜色的棋子;而且不许将棋子倒出来数,请你设计一个方案估计出其中白色棋子的数目.用频率估计概率(二)学习要求当调查估计某事件发生的概率比较困难时,会转化成某种“替代”实际调查的简易方法.课堂掌习检测。
3.2 用频率估计概率一、学生知识状况分析学生的知识技能基础:学生通过以前的学习,对用试验方法估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,实验频率稳定于理论概率,并可据此估计某一事件发生的概率”.学生的活动经验基础:经历了试验、统计过程,获得了用试验方法估计事件发生的概率的体验,并且在以前的数学学习活动中已经历了很多合作学习的过程,具有了一定的合作学习经验,具备了一定的合作与交流的能力.二、教学任务分析本节课的重点是掌握试验的方法估计复杂的随机事件发生的概率。
难点是试验估计随机事件发生的概率;关键是通过试验、统计活动,体会随机事件的概率。
为此,本节课的教学目标是:1、知识与技能经历收集数据、进行试验、统计结果、合作交流的过程,估计一些复杂的随机事件发生的概率.2、过程与方法经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.3、情感、态度、价值观通过对贴近学生生活的有趣的生日问题的试验、统计,提高学生学习数学的兴趣,且有助于破除迷信,培养学生严谨的科学态度和辩证唯物主义世界观.三、教学过程分析本节课设计了七个教学环节:一、课前准备;二、情境引入;三、探索新知;四、练习提高;五、课时小结;六、布置作业;七、活动探究.第一环节:课前准备(提前一周布置)内容:以6人合作小组为单位,开展调查活动:每人课外调查10个人的生日、生肖.目的:收集数据,为本节课的学习提供素材,在课堂中运用源于学生实际调查的真实数据展开教学,能极大地激发学生学习数学的兴趣及学习的积极性与主动性.另一方面,也锻炼了学生的社交能力.实际效果与注意事项:学生课外收集数据时有可能来自相同的人,各小组课前准备时,教师提醒尽量避免调查相同的人,最好每个小组的调查范围相对确定,如:初一、初二、初三等。
第二环节:情境引入内容:《红楼梦》第62回中有这样的情节:当下又值宝玉生日已到,原来宝琴也是这日,二人相同。