2019高考数学小题训练集合及其答案解析
- 格式:doc
- 大小:96.50 KB
- 文档页数:9
2019-2020年高考数学专题练习——集合与逻辑(一)一、选择题1.已知集合{}2320A x x x =-+≥,(){}321B x log x +<,则A B =( ) A. {}21x x -<< B.{} 12x x x ≤≥或 C.{} 1x x < D.∅2.集合{}2log 2A x Z x =∈≤的真子集个数为( ) A .7 B .8 C .15 D .163.若复数z =(x 2-4)+(x +3)i (x ∈R ),则“z 是纯虚数”是“x =2”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4.设有下面四个命题:1P :若z 满足z C ∈,则 z z R ⋅∈;2P :若虚数(),a bi a R b R +∈∈是方程32 1 0x x x +++=的根,则a bi -也是方程的根: 3P :已知复数12,z z 则12z z =的充要条件是12z z R ∈: 4P ;若复数12z z >,则12,z z R ∈.其中真命题的个数为( )A .1B .2C .3D .45. “221a b +=”是“sin cos 1a b θθ+≤恒成立”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件6.已知集合{}{}2320,230A x x x B x x =-+<=->,则R A C B ⋂= ( )A .31,2⎛⎫-- ⎪⎝⎭B.31,2⎛⎫ ⎪⎝⎭C .31,2⎛⎤⎥⎝⎦D .3,22⎛⎫⎪⎝⎭7.设集合2{|60,}A x x x x Z =--<∈,{|,,}B z z x y x A y A ==-∈∈,则A ∩B =( ) A .{0,1} B .{0,1,2} C .{0,1,2,3} D .{-1,0,1,2}8.已知p :x R ∀∈,220x x a ++>;q :28a <.若“p q ∧”是真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,3)C .(1,3)D .(-∞,1)∪(3,+∞)9.设R θ∈,则“66ππθ-<”是“3sin 2θ<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件10.设集合{}2|670A x x x =--<,{}|B x x a =≥,现有下面四个命题: p 1:a R ∃∈,A B =∅;p 2:若0a =,则(7,)A B =-+∞; p 3:若(,2)R C B =-∞,则a A ∈;p 4:若1a ≤-,则A B ⊆. 其中所有的真命题为( ) A .p 1,p 4 B .p 1,p 3,p 4 C .p 2,p 3 D .p 1,p 2,p 411.已知命题P :存在n R ∈,使得223()n nf x nx-=是幂函数,且在(0,+∞)上单调递增; 命题q :“2,23x R x x ∃∈+>”的否定是“2,23x R x x ∀∈+<”.则下列命题为真命题的是 A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .p q ⌝∧⌝12.已知集合M ={x |22194x y +=},N ={y|132x y+=},则M ∩N =A .∅B .{(3,0),(2,0)}C .{3,2}D .[-3,3]13.设集合{}{}m B m A 2,2,42==,,若φ≠⋂B A ,则m 的取值可能是( ) A.1 B.2 C.3 D.214.下列判断错误..的是 ( ) A .“22bm am <”是“b a <”的充分不必要条件B .命题“01,23≤--∈∀x x R x ”的否定是“01,23>--∈∃x x R x ”C .若p ,q 均为假命题,则q p Λ为假命题D .命题:若12=x ,则1=x 或1-=x 的逆否命题为:若1≠x 或1-≠x ,则12≠x15.已知A ,B ,C ,D ,E 是空间五个不同的点,若点E 在直线BC 上,则“AC 与BD 是异面直线”是“AD 与BE 是异面直线”的( ) A .充分不必要条件 B .充分必要条件 C.必要不充分条件 D .既不充分也不必要条件16.下列选项错误的是( )A .命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”B .“2x >”是“2320x x -+>”的充分不必要条件;C.若命题p :x R ∀∈,210x x ++≠,则p ⌝:0x R ∃∈,20010x x ++=; D .在命题的四种形式中,若原命题为真命题,则否命题为假命题17.对于常数m 、n ,“0mn >”是“方程221mx y +=的曲线是椭圆”的( )条件 A .充分不必要 B .必要不充分 C.充分必要D .既不充分也不必要条件18.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是()A. ,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C. ,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的19.设集合S={1,2,3,4,5,6},定义集合对(A ,B)::,A 中含有3个元素,B 中至少含有2个元素,且B 中最小的元素不小于A 中最大的元素.记满足的集合对(A ,B)的总个数为m ,满足的集合对(A ,B)的总个数为n ,则的值为( )A.111 B.161C.221 D.29220.定义非空集合A 的真子集的真子集为A 的“孙集”,则集合{1,3,5,7,9}的孙集的个数为 () A .23B .24C .26D .3221.已知:集合2012,3,2,{1,A =},A B ⊆,且集合B 中任意两个元素之和不能被其差整除。
2019年高考数学真题——概率统计专题整理1.(2019年全国卷1,文数6题,满分5分)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生【答案】C .【解析】依题意可知组距间隔为100010100d ==,各组间被抽到号码的绝对值差应为间隔d 的倍数,即能被10整除.只有C 项:616465710-=能被10整除,故选C .2.(2019年全国卷1,理数6题,满分5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A .【解析】易知出现阳爻的概率服从二项分布16,2B ⎛⎫ ⎪⎝⎭,∴每卦6爻中恰好有3个阳爻的概率333611512216P C ⎛⎫⎛⎫=-=⎪⎪⎝⎭⎝⎭,故选A .3.(2019年全国卷2,文数4题,满分5分)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .15【答案】B .【解析】“恰有2只测量过该指标”指的是事件“两只通过指标且另外一只没有通过指标”,∴21323535C C P C ==,故选B .4.(2019年全国卷2,文数14、理数13题,满分5分)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.【答案】0.98.【解析】依题意共有10201040++=个车次,∴经停该站高铁列车所有车次的平均正点率的估计值为1020100.970.980.990.98404040⨯+⨯+⨯=.5.(2019年全国卷2,理数5题,满分5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差【答案】A .【解析】根据一组数据中中位数的找法可知,极端值变化不改变整组数据的中位数,故选A .6.(2019年全国卷3,文数3题,满分5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12【答案】D .【解析】把两名女同学“捆绑”在一起看成一个特殊的同学有222A =种方法,再与剩下的两名男同学全排列共有336A =种方法,而两男两女四名同学所有的排列方法有4424A =种,故两位女同学相邻的概率23234412A A P A ⋅==,故选D .7.(2019年全国卷3,文数4、理数3题,满分5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.8【答案】C .【解析】阅读过《西游记》且阅读过《红楼梦》的学生共有60位,而阅读过《红楼梦》的学生共有80位,由此可知只阅读过红楼梦的学生有20人。
2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}242{60{}M x x N x x x =−<<=−−<,,则MN =A .}{43x x −<<B .}42{x x −<<−C .}{22x x −<<D .}{23x x <<2.设复数z 满足=1i z −,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=−C .22(1)1y x +−=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512−(512−≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512−.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x 在[,]−ππ的图像大致为A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()−a b ⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =−B . 310n a n =−C .228n S n n =−D .2122n S n n =− 10.已知椭圆C 的焦点为121,01,0F F −(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]−ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。
专题01 集合及其运算【母题来源一】【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB = ▲ . 【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.【母题来源二】【2018年高考江苏】已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么AB = ▲ . 【答案】{1,8}【解析】由题设和交集的定义可知:{}1,8A B =.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.【母题来源三】【2017年高考江苏】已知集合{1,2}A =,2{,3}B a a =+,若{1}AB =,则实数a 的值为 ▲ .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意.故答案为1.【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.【命题意图】(1)了解集合的含义.(2)理解两个集合的交集的含义,会求两个简单集合的交集.(3)能够正确处理含有字母的讨论问题,掌握集合的交集运算和性质.【命题规律】 这类试题在考查题型上主要以填空题的形式出现,主要考查集合的基本运算,其中集合以描述法呈现.试题难度不大,多为低档题,从近几年江苏的高考试题来看,主要的命题角度有:(1)离散型或连续型数集间的交集运算;(2)已知集合的交集运算结果求参数.【答题模板】解答此类题目,一般考虑如下三步:第一步:看元素构成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键,即辨清是数集、点集还是图形集等;第二步:对集合化简,有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决;第三步:应用数形结合进行交、并、补等运算,常用的数形结合形式有数轴、坐标系和韦恩图(Venn).【方法总结】(一)集合的基本运算及其表示:(1)交集:由属于集合A 且属于集合B 的所有元素组成的集合,即{|}AB x x A x B =∈∈且. (2)并集:由所有属于集合A 或属于集合B 的元素组成的集合,即|}{A B x x A x B =∈∈或.(3)补集:由全集U 中不属于集合A 的所有元素组成的集合,即{|}U A x x U x A =∈∉且ð.(二)与集合元素有关问题的解题方略:(1)确定集合的代表元素;(2)看代表元素满足的条件;(3)根据条件列式求参数的值或确定集合元素的个数.但要注意检验集合中的元素是否满足互异性.(三)集合间的基本关系问题的解题方略:(1)判断集合间基本关系的方法有三种:①列举观察;②集合中元素特征法,首先确定集合中的元素是什么,弄清楚集合中元素的特征,再判断集合间的关系; ③数形结合法,利用数轴或韦恩图求解.(2)求集合的子集:若集合A 中含有n 个元素,则其子集个数为2n 个,真子集个数为21n -个,非空真子集个数为22n -个.(3)根据两集合关系求参数:已知两集合的关系求参数时,关键是将两集合的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.注意区间端点的取舍.注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(四)求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.(1)离散型数集或抽象集合间的运算,常借助Venn 图或交、并、补的定义求解;(2)点集的运算常利用数形结合的思想或联立方程组进行求解;(3)连续型数集的运算,常借助数轴求解;(4)已知集合的运算结果求集合,常借助数轴或Venn 图求解;(5)根据集合运算结果求参数,先把符号语言转化成文字语言,然后适时应用数形结合求解.1.【江苏省南通市2019届高三适应性考试数学试题】已知集合{1,3,5,7}A =,{}0,1,3B =,则集合A B =________.【答案】{}1,3【解析】因为集合{1,3,5,7}A =,{}0,1,3B =,所以{}1,3A B =. 故答案为{}1,3【名师点睛】本题主要考查集合的交集,熟记概念即可,属于基础题型.求解时,根据交集的概念,可直接得出结果.2.【江苏省南通市2019届高三模拟练习卷(四模)数学试题】已知集合{}12A x x =-<≤,{}0B x x =<,则A B =________.。
2019年高考数学真题——概率统计专题整理1.(2019年全国卷1,文数6题,满分5分)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生2.(2019年全国卷1,理数6题,满分5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11163.(2019年全国卷2,文数4题,满分5分)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .154.(2019年全国卷2,文数14、理数13题,满分5分)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.5.(2019年全国卷2,理数5题,满分5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差6.(2019年全国卷3,文数3题,满分5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .127.(2019年全国卷3,文数4、理数3题,满分5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.88.(2019年江苏卷5题,满分5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是▲.9.(2019年江苏卷6题,满分5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是▲.10.(2019年浙江卷7题,满分4分)设01α<<,则随机变量X 的分布列是则当α在()0,1内增大时,.A ()D X 增大B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大11.(2019年全国卷1,文数17题,满分12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.()2P K k ≥0.0500.0100.001k3.8416.63510.82812.(2019年全国卷1,理数21题,满分12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i = 为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.13.(2019年全国卷2,文数19题,满分12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈.14.(2019年全国卷2,理数18题,满分12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.P X=;(1)求()2(2)求事件“4X=且甲获胜”的概率.15.(2019年全国卷3,文数、理数17题,满分12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C的估计值为0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).16.(2019年北京卷,文数17题,满分12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B 的学生的支付金额分布情况如下:支付金额不大于2000元大于2000元支付方式仅使用A27人3人仅使用B24人1人(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.17.(2019年北京卷,理数17题,满分13分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:都使用的概率;(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.18.(2019年天津卷,文数15题,满分13分)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记A B C D E F.享受情况如下表,其中“○”表示享受,“×”表示不为,,,,,享受.现从这6人中随机抽取2人接受采访.员工A B C D E F项目子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.19.(2019年天津卷,理数16题,满分13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.答案解析1.【答案】C .【解析】依题意可知组距间隔为100010100d ==,各组间被抽到号码的绝对值差应为间隔d 的倍数,即能被10整除.只有C 项:616465710-=能被10整除,故选C .2.【答案】A .【解析】易知出现阳爻的概率服从二项分布16,2B ⎛⎫⎪⎝⎭,∴每卦6爻中恰好有3个阳爻的概率333611512216P C ⎛⎫⎛⎫=-=⎪⎪⎝⎭⎝⎭,故选A .3.【答案】B .【解析】“恰有2只测量过该指标”指的是事件“两只通过指标且另外一只没有通过指标”,∴21323535C C P C ==,故选B .4.【答案】0.98.【解析】依题意共有10201040++=个车次,∴经停该站高铁列车所有车次的平均正点率的估计值为1020100.970.980.990.98404040⨯+⨯+⨯=.5.【答案】A .【解析】根据一组数据中中位数的找法可知,极端值变化不改变整组数据的中位数,故选A .6.【答案】D .【解析】把两名女同学“捆绑”在一起看成一个特殊的同学有222A =种方法,再与剩下的两名男同学全排列共有336A =种方法,而两男两女四名同学所有的排列方法有4424A =种,故两位女同学相邻的概率23234412A A P A ⋅==,故选D .7.【答案】C .【解析】阅读过《西游记》且阅读过《红楼梦》的学生共有60位,而阅读过《红楼梦》的学生共有80位,由此可知只阅读过红楼梦的学生有20人。
高考数学小题强化训练50篇(提升版)8个填空题+4个解答题 (含详细参考答案)班级 __________ 姓名 __________ 分数 __________小题强化训练一一、填空题:本大题共8小题,每题5分,共40分. 1.给出以下结论:①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”; ②“x =4”是“x 2-3x -4=0”的充分条件;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”. 则其中错误的是________.(填序号)2.已知函数f (x )=⎩⎨⎧sin 5πx 2,x ≤0,16-log 3x ,x >0,则f (f (33))=________.3.连续抛掷两枚骰子分别得到的点数是a ,b ,则函数f (x )=ax 2-bx 在x =1处取得最值的概率是________.4.设S n 为正项等比数列{a n }的前n 项和.若a 4·a 8=2a 10,则S 3的最小值为________.5.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0,若直线y =k (x +1)上存在一点P ,使过点P 所作的圆的两条切线相互垂直,则实数k 的取值范围是____________.(第6题)6.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ=________.7.已知a >0,b >0,则a 2a +b +2b2b +a的最大值为________.8.已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一的零点,则a =________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)如图,在三棱柱ABCA 1B 1C 1中,已知M ,N 分别为线段BB 1,A 1C 的中点,MN 与AA 1所成角的大小为90°,且MA 1=MC .求证:(1)平面A 1MC ⊥平面A 1ACC 1; (2)MN ∥平面ABC .10.(本小题满分14分)已知向量m =(cos α,-1),n =(2,sin α),其中α∈(0,π2),且m ⊥n .(1)求cos2α的值;(2)若sin(α-β)=1010,且β∈(0,π2),求角β的值.11.(本小题满分16分)设椭圆C :x 22+y 2=1的右焦点为F ,过点F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,求证:∠OMA =∠OMB .12.(本小题满分16分)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (1)求数列{a n }的通项公式; (2)若b n =2a n +(-1)n ·a n ,求数列{b n }的前n 项和T n .班级 __________ 姓名 __________ 分数 __________小题强化训练二一、填空题:本大题共8小题,每题5分,共40分.1.已知复数z 满足(z -2)i =1+i (i 为虚数单位),则复数z 的共轭复数z 在复平面内对应的点位于第________象限.2.设集合A ={x |y =ln(x 2-3x )},B ={y |y =2x ,x ∈R },则A ∪B =____________.3.若θ∈(0,π4),且sin2θ=14,则sin(θ-π4)=________.4.已知一个正方体的外接球体积为V 1,其内切球体积为V 2,则V 1V 2的值为________.5.记等差数列{a n }的前n 项和为S n .已知a 1=3,且数列{S n }也为等差数列,则a 11=________.6.在▱ABCD 中,∠BAD =60°,E 是CD 上一点,且AE →=12AB →+BC →,|AB →|=λ|AD →|.若AC →·EB →=12AD → 2,则λ=________.7.设函数f (x )=ln x +mx,m ∈R ,若对任意x 2>x 1>0,f (x 2)-f (x 1)<x 2-x 1恒成立,则实数m 的取值范围是__________.8.已知实数x ,y 满足x 2+y 2=1,则1(x -y )2+1(x +y )2的最小值为________. 二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求cos ∠ADB 的值;(2)若DC =22,求BC 的值.10.(本小题满分14分)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(点E与点A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.11.(本小题满分16分)如图所示的某种容器的体积为90πcm3,它是由圆锥和圆柱两部分连结而成的,圆柱与圆锥的底面圆半径都为rcm.圆锥的高为h1cm,母线与底面所成的角为45°;圆柱的高为h2cm.已知圆柱底面造价为2a元/cm2,圆柱侧面造价为a元/cm2,圆锥侧面造价为2a元/cm2.(1)将圆柱的高h2表示为底面圆半径r的函数,并求出定义域;(2)当容器造价最低时,圆柱的底面圆半径r为多少?12.(本小题满分16分)已知等比数列{a n}的前n项和为S n,且2n+1,S n,a成等差数列(n∈N*).(1)求a的值及数列{a n}的通项公式;(2)若b n=(2n-1)a n,求数列{b n}的前n项和T n.班级 __________ 姓名 __________ 分数 __________小题强化训练三一、填空题:本大题共8小题,每题5分,共40分.1.设集合A =⎩⎨⎧⎭⎬⎫x |14≤2x ≤64,x ∈N ,B ={x |y =ln(x 2-3x )},则A ∩B 的子集的个数是________.2.设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的__________条件. 3.已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则双曲线C 的焦距为________.4.已知{a n },{b n }均为等比数列,其前n 项和分别为S n ,T n .若对任意的n ∈N *,总有S n T n =3n+14,则a 3b 3=________.5.已知在平行四边形ABCD 中,∠BAD =120°,AB =1,AD =2,P 是线段BC 上的一个动点,则AP →·DP →的取值范围是________.(第7题)6.已知函数f (x )=sin x (x ∈[0,π])和函数g (x )=12tan x 的图象交于A ,B ,C 三点,则△ABC 的面积为________.7.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.8.已知函数f (x )=⎩⎪⎨⎪⎧x 3+x 2+m ,0≤x ≤1,mx +2,x >1,若函数f (x )有且只有两个零点,则实数m 的取值范围是________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值; (2)记f (x )=a·b ,求f (x )的最大值和最小值以及对应的x 的值.10.(本小题满分14分)在平面直角坐标系xOy 中,圆O :x 2+y 2=4,直线l :4x +3y -20=0.A (45,35)为圆O 内一点,弦MN 过点A ,过点O作MN 的垂线交l 于点P .(1)若MN ∥l ,求△PMN 的面积;(2)判断直线PM 与圆O 的位置关系,并证明.11.(本小题满分16分)某农场有一块农田,如图,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为△CDP ,要求A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ. (1)用θ分别表示矩形ABCD 和△CDP 的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.12.(本小题满分16分)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .班级 __________ 姓名 __________ 分数 __________小题强化训练四一、填空题:本大题共8小题,每题5分,共40分.1.已知集合A ={x |2≤x <4},B ={x |x >a },若A ∩B ={x |3<x <4},则实数a =________.2.已知f (x )=ax 5+bx 3+sin x -8,且f (-2)=10,那么f (2)=________.3.已知sin θ-cos θ=43,θ∈(3π4,π),则sin(π-θ)-cos(π-θ)=________.4.记函数f (x )=3-2x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.5.在三棱锥ABCD 中,E 是AC 的中点,F 在AD 上,且2AF =FD .若三棱锥ABEF 的体积为2,则四棱锥BECDF 的体积为________.6.在平面直角坐标系xOy 中,已知圆C :x 2+(y -1)2=4.若等边三角形P AB 的一边AB 为圆C 的一条弦,则PC 的最大值为________.7.设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则k =1100(a k a k +1)的值为________.8.已知函数f (x )=⎩⎪⎨⎪⎧x 2,0<x ≤1,|ln (x -1)|,x >1.若方程f (x )=kx -2有两个不相等的实数根,则实数k 的取值范围是________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9.(本小题满分14分)在△ABC 中,a =7,b =8,cos B =-17.(1)求A 的值;(2)求边AC 上的高.10.(本小题满分14分)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1)求证:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积.11.(本小题满分16分)已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,求证:f (x 1)-f (x 2)x 1-x 2<a -2.12.(本小题满分16分)设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *). (1)求数列{a n }的通项公式;(2)若b n =na n +1-a n,数列{b n }的前n 项和为T n ,n ∈N *,求证:T n <2.班级 __________ 姓名 __________ 分数 __________小题强化训练五一、填空题:本大题共8小题,每题5分,共40分.1.欧拉公式e xi =cos x +i sin x (i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e -3i 表示的复数在复平面中位于第________象限.2.某校有三个兴趣小组,甲、乙两名学生每人选择其中一个参加,且每人参加每个兴趣小组的可能性相同,则甲、乙不在同一兴趣小组的概率为________.3.在矩形ABCD 中,AB =2BC =2,现向矩形ABCD 内随机投掷质点P ,则满足P A →·PB →≥0的概率是________. 4.已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b|的最大值与最小值的和为________.(第5题)5.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图象如图所示,则该函数的解析式是______________.6.若抛物线x 2=4y 的弦AB 过焦点F ,且AB 的长为6,则弦AB 的中点M 的纵坐标为________.7.已知数列{a n }满足a 1=0,数列{b n }为等差数列,且a n +1=a n +b n ,b 15+b 16=15,则a 31=________.8.已知函数f (x )=x (a -1ex ),曲线y =f (x )上存在两个不同的点,使得曲线在这两点处的切线都与y 轴垂直,则实数a的取值范围是__________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos(B -π6).(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.10.(本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,BC ⊥AC ,D ,E 分别是AB ,AC 的中点.求证: (1)B 1C 1∥平面A 1DE ;(2)平面A 1DE ⊥平面ACC 1A 1.11.(本小题满分16分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤,分析显示:当S 中x %(0<x <100)的成员自驾时,自驾群体的人均通勤时间为f (x )=⎩⎪⎨⎪⎧30,0<x ≤30,2x +1 800x -90,30<x <100(单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟.试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间g (x )的表达式;讨论g (x )的单调性,并说明其实际意义.12.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2. (1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.班级 __________ 姓名 __________ 分数 __________小题强化训练六一、填空题:本大题共8小题,每题5分,共40分. 1.若A ={x ||x |<3},B ={x |2x >1},则A ∩B =________.2.电视台组织的中学生知识竞赛,共设有5个版块的试题,主题分别是“立德树人”“社会主义核心价值观”“依法治国理念”“中国优秀传统文化”“创新能力”.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是________.3.将函数y =3sin(2x -π6)的图象向左平移π4个单位长度,所得图象对应的函数解析式为____________.4.已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则y +1x的取值范围是________.(第5题)5.如图,从热气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时热气球的高度是60m ,则河流的宽度BC =________.6.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a的取值范围是________.7.已知O 为矩形P 1P 2P 3P 4内的一点,满足OP 1=4,OP 3=5,P 1P 3=7,则OP 2→·OP 4→=________.8.已知函数f (x )=⎩⎨⎧1-(x -1)2,0≤x <2,f (x -2),x ≥2.若对于正数k n (n ∈N *),直线y =k n x 与函数y =f (x )的图象恰有(2n +1)个不同的交点,则数列{k 2n }的前n 项和为________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)如图,在平行六面体ABCDA 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1.求证: (1)AB ∥平面A 1B 1C ;(2)平面ABB 1A 1⊥平面A 1BC .10.(本小题满分14分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c tan C =3(a cos B +b cos A ). (1)求角C ;(2)若c =23,求△ABC 面积的最大值.11.(本小题满分16分)某厂花费2万元设计了某款式的服装.根据经验,每生产1百套该款式服装的成本为1万元,每生产x (百套)的销售额(单位:万元)P (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8,0<x ≤5,14.7-9x -3,x >5.(1)该厂至少生产多少套此款式服装才可以不亏本?(2)试确定该厂生产多少套此款式服装可使利润最大,并求最大利润. (注:利润=销售额-成本,其中成本=设计费+生产成本)12.(本小题满分16分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点A (0,1).(1)求椭圆C 的方程;(2)不经过点A 的直线l 与椭圆C 交于P ,Q 两点,且AP →·AQ →=0,求证:直线l 过定点.班级 __________ 姓名 __________ 分数 __________小题强化训练七一、填空题:本大题共8小题,每题5分,共40分.1.已知集合A ={x |x 2-x -2≤0},集合B ={x |1<x ≤3},则A ∪B =____________.2.已知复数z =(1+i )(1+2i ),其中i 是虚数单位,则z 的模是________.3.已知函数f (x )=⎩⎪⎨⎪⎧x 2-x ,x ≤1,11-x,x >1,则f (f (-2))=________.4.已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn=________.5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思如下:有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了________.6.已知sin α=3sin(α+π6),则tan(α+π12)=________.7.已知经过点P (1,32)的两个圆C 1,C 2都与直线l 1:y =12x ,l 2:y =2x 相切,则这两圆的圆心距C 1C 2等于________.8.已知函数f (x )=log 2(ax 2+2x +3),若对于任意实数k ,总存在实数x 0,使得f (x 0)=k 成立,则实数a 的取值范围是________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)在长方体ABCDA 1B 1C 1D 1中,AB =BC =EC =12AA 1.求证:(1)AC 1∥平面BDE ; (2)A 1E ⊥平面BDE .10.(本小题满分14分)已知数列{a n }是公差不为0的等差数列,a 2=3,且a 3,a 5,a 8成等比数列. (1)求数列{a n }的通项公式;(2)设b n =a n cos a n π2,求数列{b n }的前2018项和.11.(本小题满分16分) 为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD 建成生态休闲园,园区内有一景观湖EFG (图中阴影部分).以AB 所在直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系xOy (如图).景观湖的边界曲线符合函数y =x +1x (x >0)模型.园区服务中心P 在x 轴正半轴上,PO =43百米.(1)若在点O 和景观湖边界曲线上一点M 之间修建一条休闲长廊OM ,求OM 的最短长度; (2)若在线段DE 上设置一园区出口Q ,试确定Q 的位置,使通道PQ 最短.12.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,且椭圆经过点A (2,0)和点(1,3e ),其中e 为椭圆的离心率. (1)求椭圆的方程;(2)过点A 的直线l 交椭圆于另一点B ,点M 在直线l 上,且OM =MA .若MF 1⊥BF 2,求直线l 的斜率.班级 __________ 姓名 __________ 分数 __________小题强化训练八一、填空题:本大题共8小题,每题5分,共40分. 1.若向量a =(cos10°,sin10°),b =(cos70°,sin70°),则|a -2b|=________.2.在同一平面直角坐标系中,函数y =sin(x +π3)(x ∈[0,2π))的图象和直线y =12的交点的个数是________.3.由命题“存在x 0∈R ,使得e |x 0-1|-m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的值是________.4.已知圆柱M 的底面圆半径为2,高为6,圆锥N 的底面圆直径和母线长相等,若圆柱M 和圆锥N 的体积相同,则圆锥N 的高为________.5.在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是________.6.设定义在R 上的偶函数f (x )在区间(-∞,0]上单调递减.若f (1-m )<f (m ),则实数m 的取值范围是________.7.设S n 为数列{a n }的前n 项和,S n =kn 2+n ,n ∈N *,其中k 是常数.若对于任意的m ∈N *,a m ,a 2m ,a 4m 成等比数列,则k 的值为________.8.已知直线y =kx +2-2k 与曲线y =2x -3x -2交于A ,B 两点,平面上的动点P 满足|P A →+PB →|≤2,则|PO →|的最大值为________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)如图,在正四棱锥VABCD 中,E ,F 分别为棱VA ,VC 的中点.求证: (1)EF ∥平面ABCD ; (2)平面VBD ⊥平面BEF .10.(本小题满分14分) 如图,某公园有三条观光大道AB ,BC ,AC 围成直角三角形,其中直角边BC =200m ,斜边AB =400m .现有甲、乙、丙三位小朋友分别在AB ,BC ,AC 大道上嬉戏,所在位置分别记为点D ,E ,F .(1)若甲、乙都以每分钟100m 的速度从点B 出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲、乙两人之间的距离;(2)设∠CEF =θ,乙、丙之间的距离是甲、乙之间距离的2倍,且∠DEF =π3,请将甲、乙之间的距离ym 表示为θ的函数,并求甲、乙之间的最小距离.11.(本小题满分16分)如图,在平面直角坐标系xOy 中,设P 为圆O :x 2+y 2=2上的动点,过点P 作x 轴的垂线,垂足为Q ,点M 满足PQ→=2MQ →.(1)求证:当点P 运动时,点M 始终在一个确定的椭圆上; (2)过点T (-2,t )(t ∈R )作圆O 的两条切线,切点分别为A ,B . ①求证:直线AB 过定点(与t 无关);②设直线AB 与(1)中的椭圆交于C ,D 两点,求证:ABCD≤ 2.12.(本小题满分16分)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x +t ,x <0,x +ln x ,x >0,其中t 是实数.设A ,B 为该函数图象上的两点,横坐标分别为x 1,x 2,且x 1<x 2.(1)求f (x )的单调区间和极值;(2)若x 2<0,函数f (x )的图象在点A ,B 处的切线互相垂直,求x 1-x 2的最大值.班级 __________ 姓名 __________ 分数 __________小题强化训练九一、填空题:本大题共8小题,每题5分,共40分.1.已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是________.3.如图,在△ABC 中,已知AN →=12AC →,P 是BN 上一点.若AP →=mAB →+14AC →,则实数m 的值是________.(第2题)(第3题)(第4题)4.如图,正方体ABCDA 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1DEF 的体积为________.5.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧2x -y ≥0,x +y -4≥0,x ≤3,则2x 3+y 3x 2y的取值范围是________.6.若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为________.7.若数列⎩⎨⎧⎭⎬⎫2n (2n -1)(2n +1-1)的前k 项的和不小于2 0182 019,则k 的最小值为________.8.在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若P A →·PB →≤20,则点P 的横坐标的取值范围是________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b sin2C =c sin B . (1)求角C ;(2)若sin(B -π3)=35,求sin A 的值.10.(本小题满分14分)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x 厘米,矩形纸板的两边AB ,BC 的长分别为a 厘米和b 厘米,其中a ≥b . (1)当a =90时,求纸盒侧面积的最大值;(2)试确定a ,b ,x 的值,使得纸盒的体积最大,并求出最大值.11.(本小题满分16分)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)求证:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+F A →+FB →=0.求证:|F A →|,|FP →|,|FB →|成等差数列,并求该数列的公差.12.(本小题满分16分)设等差数列{a n }是无穷数列,且各项均为互不相同的正整数.(1)设数列{a n }的前n 项和为S n ,b n =S na n-1,n ∈N *.①若a 2=5,S 5=40,求b 2的值; ②若数列{b n }为等差数列,求b n .(2)求证:数列{a n }中存在三项(按原来的顺序)成等比数列.班级 __________ 姓名 __________ 分数 __________小题强化训练十一、填空题:本大题共8小题,每题5分,共40分.1.若复数(a -i )(1-i )(a ∈R )的实部与虚部相等,则实数a =________.2.在三张奖券中有一、二等奖各一张,另一张无奖,甲、乙两人各抽取一张(不放回),两人都中奖的概率为________.3.执行下面的流程图,输出的T =________.4.已知正项等比数列{a n }的前n 项和为S n ,且4a 2=a 4,则S 4a 2+a 5=________.5.已知点P (1,22)在角θ的终边上,则sin(2θ+π2)+sin(2θ+2π)=________.6.从x 2m -y2n=1(其中m ,n ∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为________.7.在平面直角坐标系xOy 中,若直线l :x +2y =0与圆C :(x -a )2+(y -b )2=5相切,且圆心C 在直线l 的上方,则ab 的最大值为________.8.设函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≤0,e x -1,x >0,若函数y =f (x )-2x +t 有两个零点,则实数t 的取值范围是______________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos2α的值; (2)求tan(α-β)的值.10.(本小题满分14分)如图,在一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到点A 的距离分别为20km 和50km .某时刻,B 收到发自静止目标P 的一个声波信号,8s 后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5km /s .(1)设A 到P 的距离为xkm ,用x 表示B ,C 到P 的距离,并求x 的值; (2)求P 到海防警戒线AC 的距离.11.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B ,过右焦点F 的直线l 与椭圆C交于P ,Q 两点(点P 在x 轴上方). (1)若QF =2FP ,求直线l 的方程;(2)设直线AP ,BQ 的斜率分别为k 1,k 2.是否存在常数λ,使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由.12.(本小题满分16分) 已知函数f (x )=e x -ax 2.(1)若a =1,求证:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)上只有一个零点,求实数a 的值.班级 __________ 姓名 __________ 分数 __________小题强化训练十一一、填空题:本大题共8小题,每题5分,共40分.1.若集合A ={x ∈Z |x 2+x -12<0},B ={x |x <sin5π},则A ∩B 中元素的个数为________.2.根据如图所示的伪代码,可知输出的结果S 是________.i ←1Whilei <6 i ←i +2 S ←2i +3 EndWhile PrintS3.已知首项为负数的等差数列{a n }中,a 5a 4<-1,若S n 取到最小正数,则此时的n =________.4.在平面直角坐标系xOy 中,双曲线x 2-y 24=1的一条渐近线与准线的交点到另一条渐近线的距离为________.5.已知约束条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y +3≥0,x ≤a表示的可行域为D ,其中a >1,点(x 0,y 0)∈D ,点(m ,n )∈D .若3x 0-y 0与n +1m的最小值相等,则实数a =________.6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线l 恰好是曲线y =x 3-3x 2+22x 在原点处的切线,左顶点到一条渐近线的距离为263,则双曲线的标准方程为__________.7.将函数y =3sin(π4x )的图象向左平移3个单位长度,得函数y =3sin(π4x +φ)(|φ|<π)的图象(如图),点M ,N 分别是函数f (x )图象上y 轴两侧相邻的最高点和最低点.设∠MON =θ,则tan(φ-θ)的值为________.8.已知函数f (x )=x 3-2x +e x -1ex ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)在△ABC 中,AB =6,AC =32,AB →·AC →=-18. (1)求BC 的长; (2)求tan2B 的值.10.(本小题满分14分)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式;(2)求S n ,并求S n 的最小值.11.(本小题满分16分)曲线f (x )=x 2-a 2ln x 在点(12,f (12))处的切线斜率为0.(1)讨论函数f (x )的单调性;(2)若g (x )=f (x )+12mx 在区间(1,+∞)上没有零点,求实数m 的取值范围.12.(本小题满分16分)如图,圆柱体木材的横截面半径为1dm ,从该木材中截取一段圆柱体,再加工制作成直四棱柱A 1B 1C 1D 1ABCD ,该四棱柱的上、下底面均为等腰梯形,分别内接于圆柱的上、下底面,下底面圆的圆心O 在梯形ABCD 内部,AB ∥CD ,∠DAB =60°,AA 1=AD ,设∠DAO =θ. (1)求梯形ABCD 的面积;(2)当sin θ取何值时,四棱柱A 1B 1C 1D 1ABCD 的体积最大?并求出最大值.(注:木材的长度足够长)班级 __________ 姓名 __________ 分数 __________小题强化训练十二一、填空题:本大题共8小题,每题5分,共40分.1.已知集合A ={x ∈R |log 12(x -2)≥-1},B =⎩⎨⎧⎭⎬⎫x ∈R |2x +63-x ≥1,则A ∩B =________. 2.设向量a =(2,m ),b =(1,-1),若b ⊥(a +2b ),则实数m =________.3.已知正五边形ABCDE 的边长为23,则AC →·AE →的值为________.4.正方形铁片的边长为8cm ,以它的一个顶点为圆心,一边长为半径画弧,剪下一个顶角为π4的扇形,用这块扇形铁片围成一个圆锥形容器,则这个圆锥形容器的容积等于________cm 3.5.等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.6.已知sin α=55,α∈(0,π2),tan β=13,则tan(α+2β)=________.7.已知a >0,函数f (x )=x (x -a )2和g (x )=-x 2+(a -1)x +a 存在相同的极值点,则a =________.8.设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x <a ,-2x ,x ≥a ,若关于x 的不等式f (x )>4a 在实数集R 上有解,则实数a 的取值范围是____________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为a 23sin A.(1)求sin B sin C 的值;(2)若6cos B cos C =1,a =3,求△ABC 的周长.10.(本小题满分14分)如图,在四棱锥P ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB =2CD,AC 交BD 于点O ,锐角三角形P AD 所在平面P AD ⊥底面ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证: (1)P A ∥平面QBD ; (2)BD ⊥AD .11.(本小题满分16分)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为53,点A 的坐标为(b ,0),且FB ·AB =6 2.(1)求椭圆的方程;(2)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若AQ PQ =524sin ∠AOQ (O 为原点),求k 的值.12.(本小题满分16分)如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路CDEF ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形.设DE=t 百米,记修建每1百米参观线路的费用为f (t )万元,经测算f (t )=⎩⎨⎧5,0<t ≤13,8-1t ,13<t <2.(1)用t 表示线段EF 的长;(2)求修建该参观线路的最低费用.班级 __________ 姓名 __________ 分数 __________小题强化训练十三一、填空题:本大题共8小题,每题5分,共40分.(第3题)1.已知复数z =2+i1-i (i 为虚数单位),那么z 的共轭复数为________.2.若tan(α-π4)=16,则tan α=________.3.执行如图所示的程序框图,若a =2018,则输出的S =________.4.设等边三角形ABC 的边长为1,t 为任意的实数,则|AB →+tAC →|的最小值为________.5.已知函数f (x )=2sin x +1(x ∈[0,2π]),设h (x )=|f (x )|-a ,则当1<a <3时,函数h (x )的零点个数为________.6.已知函数f (x )=(x 2-2x )sin(x -1)+x +1在x ∈[-1,3]上的最大值为M ,最小值为m ,则M +m =________.7.已知x >y >0,且x +y ≤2,则4x +3y +1x -y的最小值为________.8.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.若椭圆上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是______________.二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)如图,在四棱锥P ABCD 中,底面ABCD 是矩形,PD ⊥平面ABCD ,过AD 的平面分别与PB ,PC 交于点E ,F .求证: (1)平面PBC ⊥平面PCD ; (2)AD ∥EF .10.(本小题满分14分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点(-3,12)在椭圆C 上.(1)求椭圆C 的标准方程;(2)若直线l 交椭圆C 于P ,Q 两点,线段PQ 的中点为H ,O 为坐标原点,且OH =1,求△POQ 面积的最大值.11.(本小题满分16分)如图,圆O 是一块半径为1米的圆形钢板,为生产某部件需要,需从中截取一块多边形ABCDFGE .其中AD 为圆O的直径,点B ,C ,G 在圆O 上,BC ∥AD ,点E ,F 在AD 上,且OE =OF =12BC ,EG =FG .(1)设∠AOB =θ,试将多边形ABCDFGE 面积S 表示成θ的函数关系式; (2)求多边形ABCDFGE 面积S 的最大值.12.(本小题满分16分)已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立. (1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13恒成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A tB t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由.班级 __________ 姓名 __________ 分数 __________小题强化训练十四一、填空题:本大题共8小题,每题5分,共40分.1.设全集U ={x |x ≥2,x ∈N },集合A ={x |x 2≥5,x ∈N },则∁U A =________.2.如图所示的茎叶图记录了甲、乙两组各八名学生在一次数学测试中的成绩(单位:分),规定85分以上(含85分)为优秀,现分别从甲、乙两组中随机选取一名同学的数学成绩,则两人成绩都为优秀的概率是________. 错误!(第2题) (第3题) (第5题)3.如图,在一个面积为8的矩形中随机撒一粒黄豆,若黄豆落到阴影部分的概率为14,则阴影部分的面积为________.4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯________盏.5.如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形.若AB =2,∠BAD =60°,则当四棱锥P ABCD 的体积等于23时,PC =________.6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右端点分别为A ,B ,点C (0,2b ).若线段AC 的垂直平分线过点B ,则双曲线的离心率为________.7.在平行四边形ABCD 中,AB =2,AD =1,AB →·AD →=-1,点M 在边CD 上,则MA →·MB →的最大值为________.8.已知函数f (x )=x (e x -e -x )-(2x -1)(e 2x -1-e 1-2x ),则满足f (x )>0的实数x 的取值范围是________. 二、解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤. 9.(本小题满分14分)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (-35,-45).(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.。
2019高考数学小题训练 集合专题及其答案解析
第1练 集合的概念与运算
一、 填空题
1. 已知集合A ={x|x 2-1=0},集合B =[0,2],则A ∩B =________.
2. 设全集U =Z ,集合M ={1,2},P ={-2,-1,0,1,2},则P ∩(∁U M )=________.
3. 已知集合A ={-1,1,3},B ={2,2a -1},A ∩B ={1},则实数a =________.
4. 已知集合A ={3,m},B ={3m ,3},且A =B ,则实数m =________.
5.已知全集为R ,集合A =⎩⎨⎧⎭
⎬⎫x |⎝ ⎛⎭⎪⎫12x ≤1,B ={x |x 2-6x +8≤0},则A ∩(∁R B )=________.
6. 设集合A =⎩⎨⎧⎭
⎬⎫-1,0,12,3,B ={x|x 2≥1},则A ∩B =________.
7. 已知全集U =R ,集合A ={1,2,3},B ={3,4,5},右图
中阴影部分所表示的集合为________.
8. 设a>1,集合A =⎩⎨⎧⎭
⎬⎫x|x -13-x >0,B ={x|x 2-(1+a)x +a<0}.若A ⊆B ,则实数a 的取值范围是________.
9. 已知集合A ={(x ,y)|x ,y 为实数,且x 2+y 2=1},B ={(x ,y)|x ,y 为实数,且y =x},则A ∩B 的元素个数为________.
10. 已知集合A ={0,1},B ={a 2,2a},其中a ∈R ,我们把集合{x |x =x 1+x 2,x 1∈A ,x 2∈B }记作A ×B ,若集合A ×B 中的最大元素是2a +1,则实数a 的取值范围是________.
二、 解答题
11. 已知集合A ={x|(x -2)(x -3a -1)<0},函数y =lg 2a -x
x -(a 2+1)的定义域为集合B.
(1) 若a =2,求集合B ;
(2) 若A =B ,求实数a 的值.
12. 已知集合A =⎩⎨⎧x ⎪⎪⎪⎩⎨⎧⎭
⎬⎫log 12(x +2)>-3
x 2≤2x +15,
B ={x|m +
1≤x ≤2m -1}.
(1) 求集合A ;
(2) 若B ⊆A ,求实数m 的取值范围.
第2练常用逻辑用语
一、填空题
1. 命题“∃x∈R,使得x sin x-1≤0”的否定是________.
2. 已知命题p:“正数a的平方不等于0”;命题q:“若a不是正数,则它的平方等于0”,则p是q的________.(填“逆命题”“否命题”“逆否命题”或“否定”)
3. 方程
x2
k+1
+
y2
k-5
=1表示双曲线的充要条件是k∈________.
4. 记不等式x2+x-6<0的解集为集合A,函数y=lg(x-a)的定义域为集合B,若“x∈A”是“x∈B”的充分条件,则实数a的取值范围是________.
5. 已知命题:p:x2-2x-3<0;q:1
x-2
<0,若p∧(q)为真,则实数x的取值范围为________.
6.若函数f(x)=2x-(k2-3)·2-x,则“k=2”是“函数f(x)为奇函数”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)
7. 设l,m表示直线,m是平面α内的任意一条直线,则“l⊥m”是“l⊥α”成立的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)
8. 给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;
②“α>β”是“cosα<cosβ”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.其中正确命题的序号为________.
9. 已知命题p:|x-a|<4;q:(x-2)(3-x)>0.若p是q的充分不必要条件,则实数a的取值范围是________.
10. 已知命题p:“a=1”是“x>0,x+a
x≥2”的充要条件;命
题q:∃x0∈R,x20+x0-2=0,则下列命题正确的是________.(填序号)
①命题“p∧q”是真命题;②命题“(p)∧q”是真命题;
③命题“p∧(q)”是真命题;④命题“(p)∧(q)”是真命题.
二、解答题
11. 已知命题p:(x+1)(x-5)≤0;q:1-m≤x≤1+m(m>0).
(1) 若p是q的充分条件,求实数m的取值范围;
(2) 若m=5,“p∨q”为真命题,“p∧q”为假命题,求实数x 的取值范围.
12. 已知数列{a n}的前n项和S n=p n+q(p≠0且p≠1),求证:数列{a n}为等比数列的充要条件为q=-1.
答案及解析
第1练 集合的概念与运算
1. {1} 解析:由x 2=1得x =±1,故A ={-1,1}.又B =[0,2],所以A ∩B ={1}.
2. {-2,-1,0} 解析:因为∁U M ={x|x ∈Z 且x ≠1,x ≠2},P ={-2,-1,0,1,2},
所以P ∩(∁U M )={-2,-1,0}.
3. 1 解析:因为A ∩B ={1},所以2a -1=1,所以a =1.
4. 0 解析:由A ={3,m},B ={3,3m},A =B ,得m =3m ,且m ≠3,3m ≠3,解得m =0.
5. {x|0≤x<2或x>4} 解析:A ={x|x ≥0},B ={x|2≤x ≤4},所以A ∩(∁R B )={x |x ≥0}∩{x |x >4或x <2}={x |0≤x <2或x >4}.
6. {-1,3} 解析:因为x 2≥1,所以x ≤-1或x ≥1,所以B
=(-∞,-1]∪[1,+∞).又A =⎩⎨⎧⎭
⎬⎫-1,0,12,3,所以A ∩B ={-1,3}.
7. {1,2} 解析:如图,可得所求集合为{1,2}.
8. [3,+∞) 解析:由x -13-x
>0解得1<x<3.由x 2-(1+a)x +a<0得(x -a)(x -1)<0.因为a>1,所以1<x<a.若A ⊆B ,则a ≥3.
9. 2 解析:过原点的直线与以原点为圆心的圆一定有两个交点,所以A ∩B 的元素个数为2.
10. (0,2) 解析:因为A ×B 的最大元素是2a +1,又a 2≠2a ,故a ≠0且a ≠2.若a<0或a>2,则a 2>2a ,且a 2+1>2a +1,与集合A*B 中最大元素是2a +1矛盾,所以0<a<2.
11. 解析:(1) 当a =2时,由4-x x -5
>0,得4<x<5,故集合B ={x|4<x<5}.
(2) 由题意知B =(2a ,a 2+1).
①若2<3a +1,即a>13时,A =(2,3a +1).
因为A =B ,所以⎩⎪⎨⎪⎧2a =2,a 2+1=3a +1,
无解; ②若2=3a +1,显然不合题意;
③若2>3a +1,即a<13时,A =(3a +1,2).
因为A =B ,所以⎩⎪⎨⎪⎧2a =3a +1,a 2+1=2,
解得a =-1. 综上,a =-1.
12. 解析:(1) 因为log 12
(x +2)>-3,
所以x +2<8,则x<6.
因为x +2>0,则x>-2.
又x 2-2x -15≤0,
所以(x -5)(x +3)≤0,
所以-3≤x ≤5,
所以A =(-2,5].
(2) 因为B ⊆A ,
①若B =∅,则m +1>2m -1,所以m<2;
②若B ≠∅,则-2<m +1≤2m -1≤5,
所以2≤m ≤3.
综上,m ≤3.
第2练 常用逻辑用语
1. ∀x ∈R ,x sin x -1>0 解析:存在性命题的否定是全称性命题.
2. 否命题 解析:命题p 可写成:“若a 是正数,则它的平方不等于0”.
3. (-1,5) 解析:根据题意得(k +1)(k -5)<0,解得-1<k<5.
4. (-∞,-3] 解析:因为x 2+x -6<0,
所以(x +3)(x -2)<0,
解得-3<x<2,所以A =(-3,2).
又x -a>0,所以B =(a ,+∞).
因为x ∈A ⇒x ∈B ,所以a ≤-3.
5. [2,3) 解析:因为p :x ∈(-1,3),q :x ∈(-∞,2),所以綈q :x ∈[2,+∞),所以p ∧(綈q)=[2,3).。