复合函数求导法则
- 格式:ppt
- 大小:346.58 KB
- 文档页数:18
复合函数的求导法则推导过程1.常数规则:如果f(x)是一个常数函数,那么它的导数为0,即f'(x)=0。
2. 变量规则:如果f(x) = x^n是一个幂函数,那么它的导数可以通过幂函数的微分公式计算得到,即f'(x) = nx^(n-1)。
3.和差规则:如果f(x)和g(x)是可导函数,那么它们的和与差的导数可以通过和差的基本性质得到,即(f+g)'(x)=f'(x)+g'(x),(f-g)'(x)=f'(x)-g'(x)。
4. 乘积规则:如果f(x)和g(x)是可导函数,那么它们的乘积的导数可以通过乘积法则得到,即(fg)'(x) = f'(x)g(x) + f(x)g'(x)。
在掌握了基本的导数规则后,我们开始推导复合函数的求导法则。
设有两个函数f(x)和g(x),并且它们都是可导的。
我们定义一个新的函数h(x)=f(g(x)),即将g(x)作为输入,代入f(x)中得到输出。
我们希望求解h(x)的导数h'(x)。
为了推导复合函数的求导法则,我们采用数学归纳法的思想,从简单的情况开始考虑,逐步推导更一般的情况。
首先考虑最简单的情况,即g(x)=x。
我们将x作为输入代入f(x)中得到f(x)的导数f'(x),同时,由于g(x)=x,所以g'(x)=1、根据乘积规则,可以得到h'(x)=f'(x)g(x)+f(x)g'(x)=f'(x)。
接下来,考虑g(x) = a(a为常数)。
由于g(x)是常数,所以g'(x) = 0。
根据乘积规则,可以得到h'(x) = f'(x)g(x) + f(x)g'(x) =f'(x)a = af'(x)。
考虑一般情况,即g(x)不再是一个常数。
我们假设g(x)的导数g'(x)存在,并且f(x)的导数f'(x)也存在。
复合函数的求导法则是指对于一个复合函数而言,求导时
需要将自变量和函数进行分离,分别对自变量和函数求导,
再求和。
具体来说,复合函数的求导法则可以分为两种情况:
1. 直接求导法则
如果复合函数的内层函数是简单函数(即只包含一个自变
量的函数),那么可以直接按照求导法则对内层函数进行求导,然后利用链式法则对外层函数进行求导。
例如,对于函数
f(x)=x^2+2x,求f(x)的导数,可以按照以下步骤进行:
f'(x) = (x^2 + 2x)' = (x^2)' + 2(x^2)'x = x^2 + 4x
其中,x^2的导数为2x,2x的导数为2,x的导数为1。
2. 间接求导法则
如果复合函数的内层函数是复合函数,那么需要先将内层
函数转化为简单函数,然后再按照求导法则对简单函数进行
求导。
例如,对于函数f(x)=sin(wx+b),求f(x)的导数,可
以按照以下步骤进行:
f'(x) = (sin(wx+b))' = (sin(wx+b))'w·cos(wx+b) + (sin(wx+b))'b·sin(wx+b) = w·cos(wx+b) + b·sin(wx+b)
其中,w为常数,表示角速度,cos(wx+b)为在wx+b方向
上的余弦函数,sin(wx+b)为在wx+b方向上的正弦函数。
复合函数求导法则公式复合函数的导数求解方法是通过链式法则来完成的,链式法则是微分学中的一条重要定理,用于计算复合函数的导数。
链式法则的公式如下:设函数y=f(u)和u=g(x)是两个可导函数,且y=f(u)及u=g(x)都是定义在实数集上的函数,则复合函数y=f(g(x))是可导的,其导数为:dy/dx = dy/du * du/dx其中,dy/dx表示复合函数y = f(g(x))的导数,dy/du表示函数y = f(u)关于u的导数,即f'(u),du/dx表示函数u = g(x)关于x的导数,即g'(x)。
链式法则的理解可以形象地理解为:复合函数的导数等于外层函数对内层函数的导数的导数。
具体而言,链式法则可以分为两个步骤:1.外层函数对内层函数的导数:首先计算函数y=f(u)关于u的导数,即f'(u)。
这一步是对内层函数的导数进行计算。
2.内层函数对自变量的导数:然后计算函数u=g(x)关于x的导数,即g'(x)。
这一步是对自变量的导数进行计算。
最后,将两个步骤得到的导数相乘,即得到复合函数y = f(g(x))关于自变量x的导数dy/dx。
链式法则的应用非常广泛,可以用于求解各种类型的复合函数的导数,包括多元函数、隐函数和参数方程等等。
下面将针对一些常见的函数类型,给出链式法则的具体应用示例:1.多项式函数:对于多项式函数y=f(u)=a_n*u^n+a_{n-1}*u^{n-1}+...+a_1*u+a_0,其中u=g(x),则复合函数y=f(g(x))的导数可以通过链式法则计算得到。
例如,设y = (3x^2 + 2x + 1)^3,则u = g(x) = 3x^2 + 2x + 1,可以求出du/dx = 6x + 2、然后,求f(u)关于u的导数,有df/du =3u^2、最后,根据链式法则,复合函数y = (3x^2 + 2x + 1)^3关于x的导数dy/dx = df/du * du/dx = 3u^2 * (6x + 2) = 3(3x^2 + 2x +1)^2 * (6x + 2)。
复合函数求导法则证明
复合函数求导法则是一种重要的数学求导法则,它可以帮助我们更加精确地求出复合函数
的导数。
复合函数求导法则的定义是:如果f(x)和g(x)是可微的函数,那么
[f(g(x))]'=f'(g(x))*g'(x)。
这个定义表明,复合函数的导数等于复合函数中的每一个函数的
导数乘积。
为了证明复合函数求导法则,我们可以使用微积分中的基本定理,即如果f(x)和g(x)是可
微的函数,那么[f(g(x))]'=f'(g(x))*g'(x)。
我们可以使用这个定理来证明复合函数求导法则。
首先,我们假设f(x)和g(x)是可微的函数,那么[f(g(x))]'=f'(g(x))*g'(x)。
根据这个定理,
我们可以得出复合函数求导法则的结论:如果f(x)和g(x)是可微的函数,那么
[f(g(x))]'=f'(g(x))*g'(x)。
因此,我们可以得出结论:复合函数求导法则是一种重要的数学求导法则,它可以帮助我们更加精确地求出复合函数的导数。
它的定义是:如果f(x)和g(x)是可微的函数,那么
[f(g(x))]'=f'(g(x))*g'(x)。
通过使用微积分中的基本定理,我们可以证明复合函数求导法则
的正确性。
复合函数求导公式运算法则1. 基本公式:如果函数y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也可导,且导数为dy/dx=f'(u)·g'(x)。
2. 对数函数:对于自然对数函数y=ln(u),其中u是一个关于自变量x的函数,其导数为dy/dx=1/u·du/dx。
3. 幂函数:对于幂函数y=u^n,其中u是关于自变量x的函数,n是常数,则其导数为dy/dx=n·u^(n-1)·du/dx。
4. 指数函数:对于指数函数y=a^u,其中a是常数,u是关于自变量x的函数,其导数为dy/dx=a^u·ln(a)·du/dx。
5. 三角函数:对于三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。
常见的三角函数包括正弦函数、余弦函数和正切函数等。
6. 反三角函数:对于反三角函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。
常见的反三角函数包括反正弦函数、反余弦函数和反正切函数等。
7. 双曲函数:对于双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=f'(u)·du/dx。
常见的双曲函数包括双曲正弦函数、双曲余弦函数和双曲正切函数等。
8. 反双曲函数:对于反双曲函数y=f(u),其中u是关于自变量x的函数,其导数为dy/dx=1/f'(u)·du/dx。
常见的反双曲函数包括反双曲正弦函数、反双曲余弦函数和反双曲正切函数等。
下面通过实际例子来说明复合函数求导公式的运算法则。
例子1:求函数y=(2x+1)^3的导数。
解:将y看作是外层函数f(u)=u^3,其中u=2x+1、根据链式法则,导数dy/dx=f'(u)·u'(x)。