2010年高考数学真题分类汇编(老人教)考点22 简单多面体与球
- 格式:pdf
- 大小:1.28 MB
- 文档页数:14
2010年普通高等学校招生全国统一考试文科数学(必修+选修) 解析版本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-12 (C)12(D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,x +20y -=37897988()a a a a a a a ===g 10,所以132850a a =,所以133364564655()(50)a a a a a a a =====g(5)43(1)(1x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a=1a +由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).AB C DA 1B 1C 1D 1O【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =g(A)2 (B)4 (C) 6 (D) 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =g 4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆=====12||||PF PF =g 4(9)正方体ABCD -1111A B CD 中,1BB 与平面1ACD 所成角的余弦值为(A )3 (B )3 (C )23(D )39.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD ∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD a ∆==⨯⨯=o g ,21122ACD S AD CD a ∆==g . 所以1313ACD ACD S DD DO a S ∆∆===g ,记DD 1与平面AC 1D 所成角为θ,则1sin DO DD θ==,所以cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos O O O OD OD ∠===(10)设123log 2,ln 2,5a b c -===则(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析1】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-222log 4log 3>=>,所以c<a,综上c<a<b. 【解析2】a =3log 2=321log ,b =ln2=21log e , 3221log log 2e <<< ,32211112log log e<<<; c=12152-=<=,∴c<a<b(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •u u u v u u u v的最小值为(A) 4-+3-(C) 4-+3-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,,sin α=||||cos 2PA PB PA PB α•=⋅u u u v u u u v u u u v u u u v=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y •=u u u v u u u v ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得3y ≤--或3y ≥-+.故min ()3PA PB •=-+u u u v u u u v此时x =【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭u u u v u u u v 2222221sin 12sin cos 22212sin 2sin sin22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x x x--•==+-≥u u u v u u u v 【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x •=-+-=-+--=+-≥u u u v u u u v(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(C)()()22210110111001,,2PA PB x x y x x y x x x x y •=-⋅--=-+-u u u v u u u v12.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max 3V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2010年全国高考数学试题(课标卷)解析(理科数学)1、D解析:由已知得,所以.2、A解析:,所以.另解:,下略.3、A解析:,所以,故切线方程为.另解:将点代入可排除B、D,而,由反比例函数的图像,再根据图像平移得在点处的切线斜率为正,排除C,从而得4、C解析:显然,当时,由已知得,故排除A、D,又因为质点是按逆时针方向转动,随时间的变化质点P到轴的距离先减小,再排除B,即得C.另解:根据已知条件得,再结合已知得质点P到轴的距离关于时间的函数为,画图得C.5、C解析:易知是真命题,而对:,当时,,又,所以,函数单调递增;同理得当时,函数单调递减,故是假命题.由此可知,真,假,假,真.另解:对的真假可以取特殊值来判断,如取,得;取,得即可得到是假命题,下略.6、B解析:根据题意显然有,所以,故.7、D解析:根据题意满足条件的.8、B解析:当时,,又由于函数是偶函数,所以时,的解集为或,故的解集为或.另解:根据已知条件和幂函数的图像易知的解集为或,故的解集为或.9、A 解析:由已知得,所以,又属于第二或第四象限,故由解得:,从而.另解:由已知得,所以10、、B解析:如图,P为三棱柱底面中心,O为球心,易知,所以球的半径满足:,故11、C解析:不妨设,取特例,如取,则易得,从而,选C.另解:不妨设,则由,再根据图像易得,故选12、B解析:由已知条件易得直线的斜率为,设双曲线方程为,,则有,两式相减并结合得,,从而,即,又,解得,故选B.13、解析:的几何意义是函数的图像与轴、直线和直线所围成图形的面积,根据几何概型易知.14、三棱锥、三棱柱、圆锥等15、解析:设圆的方程为,则根据已知条件得16、解析:设,则,由已知条件有,再由余弦定理分别得到,再由余弦定理得,所以.17、解:(Ⅰ)由已知,当n≥1时,。
而所以数列{}的通项公式为。
(Ⅱ)由知①从而②①-②得。
即(18)解:以为原点,分别为轴,线段的长为单位长,建立空间直角坐标系如图,则(Ⅰ)设则可得因为所以(Ⅱ)由已知条件可得设为平面的法向量则即因此可以取,由,可得所以直线与平面所成角的正弦值为(19)解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为(2)。
2010年普通高考数学试题(新课标)A 卷文科数学参考公式:样本数据12, n x x x 的标准差 锥体体积公式s = =13V s h 其中x 为样本平均数 其中S 为底面面积,h 为高柱体体积公式 球的表面积,体积公式V Sh = 2334,4S R V R ππ== 其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合2,,4,|A x x x R B x x Z =≤∈=≤∈,则A B =(A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2|(2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于(A )865 (B )865- (C )1665 (D )1665-(3)已知复数z =,则i = (A)14 (B )12(C )1 (D )2 (4)曲线2y 21x x =-+在点(1,0)处的切线方程为(A )1y x =- (B )1y x =-+(C )22y x =- (D )22y x =-+(5)中心在远点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为(A (B(C(D (6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ,角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为(7) 设长方体的长、宽、高分别为2a 、a 、a,其顶点都在一个球面上,则该球的表面积为(A )3πa 2 (B )6πa 2 (C )12πa 2 (D ) 24πa 2(8)如果执行右面的框图,输入N=5,则输出的数等于(A )54(B )45(C )65(D )56 (9)设偶函数f(x)满足f(x)=2x -4 (x ≥0),则(){}20x f x ->=(A ){}24x x x <->或(B ){}04 x x x <>或(C ){}06 x x x <>或(D ){}22 x x x <->或(10)若sin a = -45,a 是第一象限的角,则sin()4a π+= (A )(B(C) (D(11)已知 ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 ABCD 的内部,则z=2x-5y 的取值范围是(A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20)(12)已知函数f(x)=lg 1,01016,02x x x x <≤-+>⎧⎨⎩ 若a ,b ,c 均不相等,且f(a)= f(b)= f(c),则abc 的取值范围是(A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24)第Ⅱ卷本卷包括必考题和选考题两部分。
2010年高考数学试题分类汇编——新课标选考内容(2010辽宁理数)(22)(本小题满分10分)选修4-1:几何证明选讲 如图,ABC ∆的角平分线AD 的延长线交它的外接圆于点E(I )证明:ABE∆ADC ∆ (II )若ABC ∆的面积AE AD S ⋅=21,求BAC ∠的大小。
证明:(Ⅰ)由已知条件,可得BAE CAD ∠=∠因为A E B A C ∠∠与是同弧上的圆周角,所以AEB ACD ∠∠=故△ABE ∽△ADC. ……5分(Ⅱ)因为△ABE ∽△ADC ,所以AB ADAE AC=,即AB ·AC=AD ·AE. 又S=12AB ·ACsin BAC ∠,且S=12AD ·AE ,故AB ·ACsin BAC ∠= AD ·AE.则sin BAC ∠=1,又BAC ∠为三角形内角,所以BAC ∠=90°. ……10分(2010辽宁理数)(23)(本小题满分10分)选修4-4:坐标系与参数方程(θ为参数,πθ≤≤0)上的点,点A 的坐标为(1,0), 已知P 为半圆C :O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧的长度均为3π。
(I )以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (II )求直线AM 的参数方程。
解:(Ⅰ)由已知,M 点的极角为3π,且M 点的极径等于3π, 故点M 的极坐标为(3π,3π). ……5分 (Ⅱ)M点的直角坐标为(6π),A (0,1),故直线AM 的参数方程为1(1)6x t y π⎧=+-⎪⎪⎨⎪=⎪⎩(t 为参数) ……10分 (2010辽宁理数)(24)(本小题满分10分)选修4-5:不等式选讲 已知c b a ,,均为正数,证明:36)111(2222≥+++++cb ac b a ,并确定c b a ,,为何值时,等号成立。
绝对经典2010年全国各省高考数学试题经典完整分类汇编2010年全国各省高考数学试题经典完整分类汇编——集合与逻辑(2010上海文数)16.“”是“”成立的[答]()(A)充分不必要条件.(B)必要不充分条件.(C)充分条件.(D)既不充分也不必要条件.解析:,所以充分;但反之不成立,如(2010湖南文数)2.下列命题中的假命题是A.B.C.D.【答案】C【解析】对于C选项x=1时,,故选C(2010浙江理数)(1)设P={x︱x<4},Q={x︱<4},则(A)(B)(C)(D),可知B正确,本题主要考察了集合的基本运算,属容易题(2010陕西文数)6.“a>0”是“>0”的 [A](A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件解析:本题考查充要条件的判断,a>0”是“>0”的充分不必要条件(2010陕西文数)1.集合A={x-1≤x≤2},B={xx<1},则A∩B= [D](A){xx<1} (B){x-1≤x≤2}(C){x-1≤x≤1} (D){x-1≤x<1}{x-1≤x≤2}{xx<1}{x-1≤x<1},,则(A)(B)(C)(D)解析:选D.在集合中,去掉,剩下的元素构成(2010辽宁理数)(11)已知a>0,则x0满足关于x的方程ax=6的充要条件是(A)(B)(C)(D)【答案】C【命题立意】本题考查了二次函数的性质、全称量词与充要条件知识,考查了学生构造二次函数解决问题的能力。
【解析】由于a>0,令函数,此时函数对应的开口向上,当x=时,取得最小值,而x0满足关于x的方程ax=b,那么x0==,ymin=,那么对于任意的x∈R,都有≥=(2010辽宁理数)1.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},B∩A={9},则A=(A){1,3}(B){3,7,9}(C){3,5,9}(D){3,9}【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn图解决集合问题的能力。
专题一集合与常用逻辑用语1、(10年山东卷理T1)已知全集U=R ,集合M={x||x-1|≤2},则U C M=(A ){x|-1<x<3} (B){x|-1≤x ≤3} (C){x|x<-1或x>3} (D){x|x ≤-1或x ≥3} 2、(10年山东卷文T1)已知全集U R =,集合{}240M x x =-≤,则U C M = A. {}22x x -<< B. {}22x x -≤≤ C .{}22x x x <->或 D. {}22x x x ≤-≥或 3、(10年山东卷理T3)在空间,下列命题正确的是 (A )平行直线的平行投影重合 (B )平行于同一直线的两个平面平行 (C )垂直于同一平面的两个平面平行 (D )垂直于同一平面的两条直线平行4、(10年山东卷文T1)已知全集R =U ,集合{}240M x x =-≤ ,则UM =(A ){}22x x -<< (B ){}22x x -≤≤(C ){}22x x x <->或(D ) {}22x x x ≤-≥或5、(10年山东卷文T4)在空间,下列命题正确的是 (A )平行直线的平行投影重合 (B )平行于同一直线的两个平面 (C )垂直于同一平面的两个平面平行 (D )垂直于同一平面的两个平面平行 6]、(10年山东卷文T7)设{}n a 是首项大于零的等比数列,则“12a a ”是“数列{}n a 是递增数列”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分而不必要条件(D )既不充分也不必要条件专题二数系的扩充与复数的引入1、(10年山东卷理T2) 已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=(A)-1 (B)1 (C)2 (D)32、(10年山东卷文T2)已知2a ib i i +=+(,)a b R ∈,其中i 为虚数单位,则a b +=(A )-1(B )1(C )2(D )3专题三函数1、(10年山东卷理T4)设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x +2x+b(b 为常数),则f(-1)=(A) 3 (B) 1 (C)-1 (D)-3 【答案】D2、(10年山东卷理T10)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≤+-≥+-,08,10105,02y x y x y x 则目标函数y x z 43-=的最大值和最小值分别为(A )3,-11(B )-3,-11(C )11,-3 (D )11,3理(11)函数22x y x-=的图象大致是(A )(B )(C )(D )3、(10年山东卷文T3))13(log )(2+=xx f 的值域为(A )(0,)+∞ (B )[)0,+∞(C )(1,)+∞(D )[)1,+∞4、(10年山东卷文T5)设()f x 为定义在R 上的函数。
考点 22 简单多面体与球1.(2010 ·四川高考理科· T 11)半径为 R的球O的直径AB垂直于平面,垂足为 B , BCD 是平面 内边长为 R 的正三角形, 线段AC, AD 分别与球面交于点 M , N,那么 M , N两点间的球面距离是( )R arccos17R arccos18( A )25( B )25 1R4R(C ) 3(D ) 15【命题立意】 此题考察了两点间的球面距离(即求弧长) 问题,解三角形, 平行线平分线段成比率的知识,考察了学生利用平面几何知识解决空间几何体问题的能力.【思路点拨】欲求M , N 两点间的球面距离,依据弧长公式可知,需求MON的弧度数,从而转变为求线段 MN 的长度 .∵题目中所给条件大多集中在 BCD 内, 故探究 MN 与 CD 的数目关系 .【规范解答】选 A . 连接 BM ,∵ AB 为球 O的直径,∴BM AC ,在 Rt ABC 中,AB 2R, BC R, ACAB 2 BC 25RBC 2 CMCA CMBC 2 5 RAMAC CM4 5 R由射影定理可得CA5.则5.同理,连接BN,则△ ABM ≌△ ABN, 则ANAM ,又 ACAD ,MNAM 4 MN4CD 4 R∴MN ∥CD .∴CDAC 5,即55 .在三角形MON中 , OM=OM=R,MN4 R5 利用余弦定理可得:cos MON =OM2ON 2 MN 217MON arccos172OM ON 25,∴25, ∴M,N 两点间的球面距离为R arccos1725 .2.( 2010·全国卷Ⅰ理科·T 12)已知在半径为 2 的球面上有 A , B , C , D 四点,若 AB=CD=2, 则四周体 ABCD 的体积的最大值为()2 34 38 3(A)3 (B)3(C)23(D)3【命题立意】本小题主要考察几何体的体积的计算、球的性质、异面直线的距离的空间想象能力及推理运算能力.,经过球这个载体考察考生【思路点拨】当AB CD 时体积最大,选择适合的底和高,利用三棱锥体积公式求解.【规范解答】选 B.方法一:当 AB CD 时,体积最大,如图:过 CD 作平面 PCD ,使AB平面PCD,交 AB 与点 P ,设点 P 到 CD 的距离为 h ,V四周体ABCD 1 SPCD AB1 1h 22h3 323 ,当直径经过AB则有 2与 CD 的中点时,hmax2 2212 23 ,故Vmax4 33 .方法二:如图:当异面直线AB 与 CD 间的距离最大,且AB CD 时,四周体 ABCD 的体积最大,分别取AB与 CD的中点 E,F ,连结 EF ,此时球心O 为线段EF 的中点,则2 2 2 V A BCD 1S ECD AB 1 1 2 2 3 2 4 3EF 2OA AE 22 1 23. 3 3 2 3 . 3.( 2010·湖北高考理科·T 13)圆柱形容器内盛有高度为8 cm 的水,若放入三个同样的球(球的半径与圆柱的底面半径同样)后,水恰巧吞没最上边的球(如下图),则球的半径是 ____cm.【命题立意】此题主要考察圆柱和球的体积公式以及考生的运算求解能力.【思路点拨】圆柱形容器的容积减去圆柱内高度为8cm 的水的体积即为 3 个球的体积和。