函数定义域和值域
- 格式:docx
- 大小:355.26 KB
- 文档页数:9
函数定义域与值域的确定函数是数学中的一个重要概念,它描述了两个集合之间的关系。
在函数的定义中,我们常常需要确定其定义域和值域。
定义域指的是输入变量(自变量)的取值范围,而值域则是函数输出变量(因变量)的取值范围。
确定函数的定义域和值域对于理解函数的性质和应用具有重要意义。
本文将介绍确定函数定义域和值域的方法和步骤。
一、确定函数的定义域函数的定义域是指自变量的取值范围,也就是函数能接受的输入的集合。
在确定定义域时,我们需要考虑一些限制条件,如分式中的分母不能为零,根式中的被开方数必须大于等于零等。
1. 对于有理函数,我们首先要求分母不等于零,因为分母为零时函数无定义。
然后解方程找到分子的取值范围,将这两个条件取交集就可以确定函数的定义域。
例如,对于函数f(x) = (x + 1)/(x - 2),我们首先要求 x - 2 ≠ 0,解得x ≠ 2。
然后考虑分子 x + 1 的取值范围为全体实数。
因此,函数的定义域为 R - {2}。
2. 对于根式函数,我们需要保证被开方数大于等于零,否则函数无定义。
解不等式找到被开方数的取值范围,即可确定定义域。
例如,对于函数g(x) = √(4 - x),由于被开方数必须大于等于零,解不等式 4 - x ≥ 0,可得x ≤ 4。
因此,函数的定义域为 (-∞, 4]。
3. 对于指数函数和对数函数,我们需要保证指数或对数的底大于零且不等于1,因为这是它们的定义范围。
解不等式找到这些条件的取值范围,即可确定定义域。
例如,对于函数h(x) = log₂(x - 3),由于对数的底必须大于零且不等于1,解不等式 x - 3 > 0,可得 x > 3。
因此,函数的定义域为 (3,+∞)。
二、确定函数的值域函数的值域是指函数所有可能的输出值组成的集合,也就是函数的取值范围。
确定函数的值域有多种方法,下面介绍两种常用的方法。
1. 利用函数的图像或性质来确定值域。
通过观察函数的图像或性质,我们可以大致确定函数的值域。
函数的定义域及值域
函数的定义域和值域是函数的两个基本概念,也是学习函数的重要内容之一。
下面将详细介绍函数的定义域和值域。
函数的定义域指函数自变量的取值范围。
也就是说,在函数中,自变量只能取定义域中的值。
定义域可以是一个数集,也可以是多个数集的交集。
对于一些函数,其定义域可能需要满足一些额外的条件,例如函数的分母不能为零。
下面是一些常见的函数定义域:
(1)多项式函数的定义域是实数集R。
(2)有理函数的定义域是除去使分母为零的实数集的补集。
(3)指数函数、对数函数、三角函数等的定义域都要满足一定条件,例如指数函数的定义域是实数集,对数函数的定义域是(0,+\infty)。
函数的值域是函数在定义域内所有可能的输出值所形成的集合。
也就是说,值域是函数的因变量的取值范围。
对于函数的值域,通常需要考虑函数的单调性、奇偶性、周期等性质。
下面是一些常见的函数值域:
(2)对于三角函数sinx和cosx,它们的值域都是[-1,1]。
(3)对于指数函数y=a^x,其中a>0且a!=1,其值域是(0,+\infty)。
需要注意的是,在求解函数的值域时,需要考虑函数的定义域。
如果函数的定义域不是实数集,那么需要剔除定义域外的值。
综上所述,函数的定义域和值域是函数的两个基本概念。
在学习函数时,我们需要认真理解它们的含义,并学会合理运用。
函数的定义域与值域函数是数学中一个重要的概念,它描述了一种特定的对应关系。
在函数的定义中,有两个关键概念,即定义域和值域。
定义域是指函数中自变量的取值范围,而值域则是函数中因变量的取值范围。
本文将详细介绍函数的定义域与值域,并探讨它们在数学问题中的应用。
一、定义域的概念及求解方法在函数中,定义域指的是自变量的取值范围,即函数可以接受哪些输入。
为了确定一个函数的定义域,需要考虑自变量的限制条件。
常见的限制条件包括分式的分母不能为零,指数函数中指数不能为负数等。
下面以几个具体的例子来说明如何求解函数的定义域。
例1:求解函数f(x) = √(4-x) 的定义域。
由于根号内不能出现负数,所以要求 4-x ≥ 0。
解这个不等式,有 x ≤ 4。
因此,函数 f(x) 的定义域为x ≤ 4。
例2:求解函数 g(x) = 1/(x-2) 的定义域。
分式的分母不能为零,所以要求 x-2 ≠ 0。
解这个不等式,可得x ≠ 2。
因此,函数 g(x) 的定义域为x ≠ 2。
通过以上例子,可以看出求解定义域的方法是根据函数的特点,找出限制自变量的条件,并求解相应的不等式。
二、值域的概念及求解方法在函数中,值域指的是函数的因变量的取值范围,即函数可以得到哪些输出。
确定一个函数的值域,需要根据函数的性质来进行推导和分析。
下面以几个具体的例子来说明如何求解函数的值域。
例3:求解函数 h(x) = x^2 的值域。
对于任意实数 x,都有x^2 ≥ 0。
因此,函数 h(x) 的值域为y ≥ 0,即非负实数集。
例4:求解函数k(x) = √x 的值域。
由于根号函数的特点,要使得 k(x) 存在,需要x ≥ 0。
另外,根号函数的值永远大于等于零。
因此,函数 k(x) 的值域为y ≥ 0,即非负实数集。
通过以上例子,可以发现求解值域的方法是根据函数的性质,直接分析函数表达式得到。
三、定义域与值域的应用1. 函数的性质分析:通过确定函数的定义域和值域,可以深入了解函数的性质。
函数的定义域与值域函数是数学中的重要概念,用于描述输入和输出之间的对应关系。
在函数中,定义域(Domain)指的是函数的所有可能输入值所构成的集合,值域(Range)则是函数的所有可能输出值所构成的集合。
函数的定义域和值域在数学中具有重要的意义和应用,并在各个学科领域中发挥着重要的作用。
1. 定义域在函数中,定义域是指函数的所有可能输入值的集合。
它决定了函数可接受的输入范围。
通常,定义域可以是实数集、整数集、有理数集等。
然而,有些函数可能会有特定的限制条件,如分母不能为零、根号内不能为负数等。
例如,考虑函数f(x) = 1/x,其中x为实数。
在这种情况下,由于分母不能为零,所以x的定义域为除去0的实数集,即x∈R,x≠0。
这样,所有不为零的实数都可以作为这个函数的输入值。
2. 值域在函数中,值域是指函数的所有可能输出值的集合。
它表示了函数所能取得的所有可能结果。
值域的确定需要考虑函数在定义域中的取值范围以及函数本身的性质。
例如,再考虑函数f(x) = 1/x,其定义域为除去0的实数集,即x∈R,x≠0。
对于任意一个不为零的输入值x,在函数中,将其代入公式后可以得到一个相应的输出值,即f(x) = 1/x。
显然,输出值可以是任意实数,因此值域为实数集R,即f(x)∈R,f(x)≠0。
3. 定义域和值域的图示为了更好地理解函数的定义域和值域,可以通过图示来展示函数的输入输出关系。
在坐标系中,将定义域的值放在x轴上,将对应的函数值放在y轴上,可以绘制函数的图像。
例如,回顾函数f(x) = 1/x,在定义域除去0的实数集,可以绘制函数曲线。
这样,x轴上除了0以外的各个点,都对应着y轴上的一个值,而值域即为函数曲线所覆盖的y轴的范围。
4. 应用举例函数的定义域和值域在数学中具有广泛的应用和重要意义。
它们不仅可以帮助我们理解函数的性质,还能在实际问题中起到指导作用。
例如,在物理学和工程学中,定义域和值域的概念可以帮助我们描述和分析各种物理量之间的关系。
函数的定义域和值域函数是数学中的重要概念,它描述了两个集合之间的关系。
在函数中,有两个重要的概念需要关注,即定义域和值域。
定义域指的是函数输入的所有可能值构成的集合,而值域则是函数输出的所有可能值构成的集合。
一、定义域的概念和计算方法定义域是函数输入值的范围,它决定了函数能够接受哪些数作为输入。
我们可以通过以下方式计算函数的定义域:1. 在给定的函数中,寻找使得函数在数学上有意义的输入值。
2. 对于分式函数,要注意分母不能为零。
找出使得分母为零的值,然后将这些值排除在定义域之外。
3. 对于根式函数,要保证根号下的值为非负数。
找出使得根号下的值小于零的情况,将这些值排除在定义域之外。
4. 在数轴上,画出函数的图像并观察其范围。
例如,对于函数f(x) = √(x-1),我们需要保证根号内的值不小于零,即 x-1 ≥ 0,解得x ≥ 1。
因此,定义域为一切大于等于1的实数。
二、值域的概念和计算方法值域表示函数的所有可能输出值构成的集合。
我们可以通过以下方式计算函数的值域:1. 分析函数的表达式和图像,确定函数的上下界。
2. 对于连续函数,值域为函数图像所覆盖的纵坐标范围。
3. 对于分段函数,值域为每个分段函数的值域的合集。
例如,对于函数 g(x) = x^2,由于 x 的平方永远大于等于零,所以值域即为非负实数集合[0, +∞)。
三、定义域和值域的关系函数的定义域和值域之间存在一种对应关系。
当输入值属于定义域中的某个数时,函数会根据定义域和函数的表达式计算出相应的输出值,并将其纳入值域。
因此,定义域和值域是密切相关的,它们互相影响和制约着函数的性质。
在实际问题中,合理确定函数的定义域和值域是解决问题的关键。
通过准确地确定函数的定义域和值域,我们可以更好地理解和分析函数的性质,并应用函数进行实际计算和建模。
总结起来,函数的定义域和值域是函数学习中的重要概念。
定义域决定了函数的输入范围,而值域则表示函数的输出范围。
函数的定义域和值域知识点总结函数是数学中的一种基本概念,广泛应用于各个领域。
在了解函数的定义域和值域之前,我们需要先了解函数的基本概念和表示方法。
函数可以理解为一个输入到输出的映射关系,如果将函数视为一个机器,输入是函数的自变量,输出是函数的因变量。
函数可以用数学符号表示为y=f(x),其中x为自变量,y为因变量,f(x)表示函数的表达式。
例如,y=2x+1就是一个简单的一次函数。
定义域是指所有自变量可能取值的集合,也可以简单理解为函数的输入范围。
根据函数的不同类型,定义域可以有不同的限制条件。
1.有理函数:有理函数是指可以表示为两个多项式相除的函数。
它的定义域包含所有不使得分母等于0的实数。
2.无理函数:无理函数是指不能表示为两个多项式相除的函数,例如平方根、立方根、指数函数等。
对于无理函数,它的定义域可以是任意实数,也可以有一些限制条件。
3.双曲函数:双曲函数是指以指数函数和对数函数为基础的函数。
对于双曲函数,它的定义域可以是任意实数。
4.指数函数和对数函数:指数函数和对数函数是互为反函数关系的两个函数。
指数函数的定义域为所有实数,对数函数的定义域为正实数。
在确定函数的定义域时,常常需要考虑到以下几点:1.分式中的分母不能为0。
2.做对数运算时,底数必须大于0且不等于13.做反三角函数时,函数的值域必须在对应的定义域内。
4.开方运算中,被开方数必须大于等于0。
在讨论函数的定义域时,我们常常需要注意以下几个特殊情况:1.绝对值函数:绝对值函数的定义域为所有实数。
2.常量函数:常量函数的定义域为所有实数。
3.单调函数:单调函数的定义域为所有实数。
4.双曲函数:双曲函数的定义域为所有实数。
接下来,我们来讨论函数的值域。
值域是指函数在定义域内所有可能的输出值的集合,也就是函数的输出范围。
函数的值域可能存在上界、下界或者不受限。
确定函数的值域时需要考虑以下几点:1.对于连续函数,可以通过求导数来判断函数的极大值和极小值,从而确定值域的上界和下界。
1 函数的定义域和值域要点梳理1.常见基本初等函数的定义域(1)函数y =a x (a >0且a ≠1)、y =sin x 、y =cos x 的定义域是R(2) y =log a x 的定义域是{x |x >0}或(0,+∞),y =tan x 的定义域是{x |x ≠kπ+π2,k ∈Z }. 求定义域方法:①分式中的分母不为0;②偶次根式的被开方数非负;③y =x 0要求x ≠0;④对数式中的真数大于0,底数大于0且不等于1.2.基本初等函数的值域(1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫yy ≥4ac -b 24a ;当a <0时,值域为⎩⎨⎧⎭⎬⎫yy ≤4ac -b 24a .(3)y =k x (k ≠0)的值域是{y |y ≠0}.(4)y =a x (a >0且a ≠1)的值域是{y |y >0}.(5)y =log a x (a >0且a ≠1)的值域是R .(6)y =sin x ,y =cos x 的值域是[-1,1].(7)y =tan x 的值域是R .求值域方法:(1)观察法:一些简单函数,通过观察法求值域.(2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且a ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数用三角函数代换求值域.(4)分离常数法:形如y =cx +d ax +b(a ≠0)的函数可用此法求值域.(5)单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.(6)数形结合法,(7)导数法,(8)利用基本不等式典型例题求函数的定义域例1、函数f (x )=1-2x +1x +3的定义域为________. 例2、函数f (x )=x 22-x-lg(x -1)的定义域是________. 例3、函数f (x )=2x +12x 2-x -1的定义域是________. 求函数的值域例4、求下列函数的值域.(1)y =x 2+2x (x ∈[0,3]); (2)y =1-x 21+x 2; (3)y =x +4x(x <0);(4)f (x )=x -1-2x (5)y =log 3x +log x 3-1(x >1).例5、若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围。
1、函数定义域、值域求法总结函数定义域、值域求法总结1、函数的定义域是指自变量“x ”的取值集合。
2、在同一对应法则作用下,括号内整体的取值范围相同。
一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。
因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。
一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。
定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。
()的定义域求的定义域已知练习)2(],9,3[log :313-x f x f():f (x),f[g(x)]题型一已知的定义域求的定义域()():f g x ,f (x)⎡⎤⎣⎦题型二已知的定义域求的定义域()[]():f g x ,f h(x)⎡⎤⎣⎦题型三已知的定义域求的定义域()[]()[])x (h f x f x g f →→一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。
2.2函数的定义域与值域一:函数的定义域:1.定义域的概念与表示:2.确定函数定义域的原则:(1)当函数f(x)用列表法给出时,函数的定义域是表格中实数x的集合。
(2)当函数f(x)用图像法给出时,函数的定义域是x轴上投影所需覆盖的实数集合。
(3)当函数f(x)用解析式给出时,函数的定义域是使解析式有意义的实数的集合。
3.确定函数定义域的依据:(1).若f(x)是整式,则x R∈。
(2)若f(x)是分式,则分母不为0.(3)当f(x)是偶次根式,则被开方式x≥0,例:y=x,x≥0,(4)当f(x)是非正数指数幂时,定义域是使幂的底不为0的x取值的集合⇒f(x)>0(5)当f(x)为对数函数时,例y=)flog x(a⇒当对数式或指数式函数的底数中含变量时,底数须大于0且不等于1(6)若f(x)是有限个基本初等函数四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集。
(7)若f[])(xa,时的值域a,,则f(x)的定义域为g(x)在x∈[]bg的定义域为[]b(8)若f(x)的定义域为[]bg的定义域由不等式a≤g(x)≤ba,,其复合函数f[])(x解出(9)对于含字母参数的函数,求其定义域。
根据问题具体情况须对字母参数进行分类讨论(10)由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义二:函数的值域:1.值域的概念与表示:2.求函数值域的常用方法:(1)配方法(2)换元法(3)不等式法(4)逆求法(即利用反函数)(5)单调性法(6)观察法(7)分离常数法(8)数形结合法(9)判别式法(10)中间变量值域法基础自测:1.设a ∈()1,0,则函数y=)1(log -x a 的定义域为( ) A . .(]2,1 B. ()+∞,1 C . [)+∞,2 D .(]2,+∞- 2.下列四个函数:①.Y=3X ②.⎩⎨⎧<≥)0(,2)0(,3x x x x ③. y=-4x+5 (x ∈z) ④ y=2x -6x+7 其中值域相同的是( )A .①② B. ①③ C.②③ D. ②④3.若函数f(x)=3442++-mx mx x 的定义域为R ,则实数m 的取值范围是() A.()+∞∞-, B .⎪⎭⎫⎝⎛43,0 C.⎪⎭⎫ ⎝⎛+∞,43D.⎪⎭⎫⎢⎣⎡43,04.定义域为R 的函数y=f(x)的值域为[]b a ,,则函数y=f(x+a)的值域是() A.[]b a a +,2 B.[]a b -,0 C.[]b a , D.[]b a a +-,5.函数y=x e -31的值域为---------------。
1.函数的定义、定义域、值域
2.两个函数相等的条件
(1)定义域相同.
(2)对应关系完全一致.
知识点二函数的表示及分段函数
1.函数的表示方法
函数的三种表示法:解析法、图象法、列表法.
2.分段函数
如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的对应关系,那么称这样的函数为分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
知识梳理
1.函数与映射的概念
函数映射
两个集合A,B 设A,B是两个
非空数集
设A,B是两个
非空集合
对应关系f:A→B
如果按照某种确定的对应关
系f,使对于集合A中的任意
一个数x,在集合B中都有唯
如果按某一个确定的对应关
系f,使对于集合A中的任意
一个元素x,在集合B中都有
求()x f 与()x g 的解析式。
1.(绍兴质检)函数f (x )=log 2(x 2+2x -3)的定义域是( ) A.[-3,1]
B.(-3,1)
C.(-∞,-3]∪[1,+∞)
D.(-∞,-3)∪(1,+∞)
2.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=( ) A.x +1 B.2x -1 C.-x +1
D.x +1或-x -1
3.(湖州一模)f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫13x (x ≤0),log 3x (x >0),则f ⎣⎢⎡⎦
⎥⎤
f ⎝ ⎛⎭⎪⎫19=(
)
A.-2
B.-3
C.9
D.-9
4.(全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )
A.y =x
B.y =lg x
C.y =2x
D.y =
1x
5.(铜陵一模)设P (x 0,y 0)是函数f (x )图象上任意一点,且y 20≥x 2
0,则f (x )的解析式可以是( )
A.f (x )=x -1x
B.f (x )=e x -1
C.f (x )=x +4
x
D.f (x )=tan x
6.下列图象中,不可能成为函数y =f (x )的图象的是( )
7.已知函数f (x )=⎩⎨⎧
-2x ,-1≤x ≤0,
x ,0<x ≤1,
则下列函数的图象错误的是( )
二、填空题。
1.函数()()1log 1
1
3++-=
x x x f 的定义域是__________________. 2.函数()x x f 3log 1-=的定义域是____________.
3.已知()x f 是二次函数,且()()x x x f x f 42112
-=-++,求()x f 的解析式。
4.设()x f 是R 上的奇函数,且当[)+∞∈,0x 时,()()
31x x x f +=,则当()0,∞-∈x 时()_______=x f ;
()x f 在R 上的解析式为_____________。
5.(温州调研)已知函数f (x )=⎩⎨⎧log 2x (x >0),x 2+x (x ≤0),则f ⎝ ⎛⎭⎪⎫
f ⎝ ⎛⎭⎪⎫12=________,方程f (x )=2的解为
________.。