信息论基础第一章 绪论
- 格式:ppt
- 大小:485.50 KB
- 文档页数:10
信息论基础1~81 绪论与概览2 熵相对熵与互信息2.1 熵H(X)=−∑x∈X p(x)logp(x)H(X)=−∑x∈Xp(x)logp(x)2.2 联合熵H(X,Y)=−∑x∈X∑y∈Y p(x,y)logp(x,y)H(X,Y)=−∑x∈X∑y∈Yp(x,y)logp(x,y)H(Y|X)=∑x∈X p(x)H(Y|X=x)H(Y|X)=∑x∈Xp(x)H(Y|X=x)定理2.2.1(链式法则): H(X,Y)=H(X)+H(Y|X)H(X,Y)=H(X)+H(Y|X) 2.3 相对熵与互信息相对熵(relative entropy): D(p||q)=∑x∈X p(x)logp(x)q(x)=Eplogp(x)q(x)D(p||q)=∑x∈Xp(x)lo gp(x)q(x)=Eplogp(x)q(x)互信息(mutual information): I(X;Y)=∑x∈X∑y∈Y p(x,y)logp(x,y)p(x)p(y)=D(p(x,y)||p(x)p(y))I(X;Y) =∑x∈X∑y∈Yp(x,y)logp(x,y)p(x)p(y)=D(p(x,y)||p(x)p(y))2.4 熵与互信息的关系I(X;Y)=H(X)−H(X|Y)=H(Y)−H(Y|X)I(X;Y)=H(X)−H(X|Y)=H(Y)−H(Y|X)互信息I(X;Y)是在给定Y知识的条件下X的不确定度的缩减量I(X;Y)=H(X)+H(Y)−H(X,Y)I(X;Y)=H(X)+H(Y)−H(X,Y)2.5 熵,相对熵与互信息的链式法则定理 2.5.1(熵的链式法则): H(X1,X2,...,X n)=∑ni=1H(Xi|X i−1,...,X1)H(X1,X2,...,Xn)=∑i=1nH(Xi| Xi−1, (X1)定理 2.5.2(互信息的链式法则): I(X1,X2,...,X n;Y)=∑ni=1I(Xi;Y|X i−1,...,X1)I(X1,X2,...,Xn;Y)=∑i=1nI(Xi ;Y|Xi−1, (X1)条件相对熵: D(p(y|x)||q(y|x))=∑x p(x)∑yp(y|x)logp(y|x)q(y|x)=Ep(x,y)logp(Y|X)q( Y|X)D(p(y|x)||q(y|x))=∑xp(x)∑yp(y|x)logp(y|x)q(y|x)=Ep(x,y)logp (Y|X)q(Y|X)定理 2.5.3(相对熵的链式法则): D(p(x,y)||q(x,y))=D(p(x)||q(x))+D(p(y|x)||q(y|x))D(p(x,y)||q(x,y))=D( p(x)||q(x))+D(p(y|x)||q(y|x))2.6 Jensen不等式及其结果定理2.6.2(Jensen不等式): 若给定凸函数f和一个随机变量X,则Ef(X)≥f(EX)Ef(X)≥f(EX)定理2.6.3(信息不等式): D(p||q)≥0D(p||q)≥0推论(互信息的非负性): I(X;Y)≥0I(X;Y)≥0定理2.6.4: H(X)≤log|X|H(X)≤log|X|定理2.6.5(条件作用使熵减小): H(X|Y)≤H(X)H(X|Y)≤H(X)从直观上讲,此定理说明知道另一随机变量Y的信息只会降低X的不确定度. 注意这仅对平均意义成立. 具体来说, H(X|Y=y)H(X|Y=y) 可能比H(X)H(X)大或者小,或者两者相等.定理 2.6.6(熵的独立界): H(X1,X2,…,X n)≤∑ni=1H(Xi)H(X1,X2,…,Xn)≤∑i=1nH(Xi)2.7 对数和不等式及其应用定理 2.7.1(对数和不等式): ∑ni=1ailogaibi≥(∑ni=1ai)log∑ni=1ai∑ni=1bi∑i=1nailogaibi≥(∑i =1nai)log∑i=1nai∑i=1nbi定理2.7.2(相对熵的凸性): D(p||q)D(p||q) 关于对(p,q)是凸的定理2.7.3(熵的凹性): H(p)是关于p的凹函数2.8 数据处理不等式2.9 充分统计量这节很有意思,利用统计量代替原有抽样,并且不损失信息.2.10 费诺不等式定理2.10.1(费诺不等式): 对任何满足X→Y→X^,X→Y→X^, 设Pe=Pr{X≠X^},Pe=Pr{X≠X^}, 有H(Pe)+Pe log|X|≥H(X|X^)≥H(X|Y)H(Pe)+Pelog|X|≥H(X|X^)≥H(X|Y)上述不等式可以减弱为1+Pe log|X|≥H(X|Y)1+Pelog|X|≥H(X|Y)或Pe≥H(X|Y)−1log|X|Pe≥H(X|Y)−1log|X|引理 2.10.1: 如果X和X’独立同分布,具有熵H(X),则Pr(X=X′)≥2−H(X)Pr(X=X′)≥2−H(X)3 渐进均分性4 随机过程的熵率4.1 马尔科夫链4.2 熵率4.3 例子:加权图上随机游动的熵率4.4 热力学第二定律4.5 马尔科夫链的函数H(Yn|Y n−1,…,Y1,X1)≤H(Y)≤H(Y n|Y n−1,…,Y1)H(Yn|Yn−1,…,Y1,X1)≤H(Y)≤H(Yn|Yn−1,…,Y1)5 数据压缩5.1 有关编码的几个例子5.2 Kraft不等式定理5.2.1(Kraft不等式): 对于D元字母表上的即时码,码字长度l1,l2,…,l m l1,l2,…,lm必定满足不等式∑iD−li≤1∑iD−li≤15.3 最优码l∗i=−log Dpili∗=−logDpi5.4 最优码长的界5.5 唯一可译码的Kraft不等式5.6 赫夫曼码5.7 有关赫夫曼码的评论5.8 赫夫曼码的最优性5.9 Shannon-Fano-Elias编码5.10 香农码的竞争最优性5.11由均匀硬币投掷生成离散分布6 博弈与数据压缩6.1 赛马6.2 博弈与边信息6.3 相依的赛马及其熵率6.4 英文的熵6.5 数据压缩与博弈6.6 英语的熵的博弈估计7 信道容量离散信道: C=maxp(x)I(X;Y)C=maxp(x)I(X;Y)7.1 信道容量的几个例子7.2 对称信道如果信道转移矩阵p(y|x)p(y|x) 的任何两行相互置换,任何两列也相互置换,那么称该信道是对称的.7.3 信道容量的性质7.4 信道编码定理预览7.5 定义7.6 联合典型序列7.7 信道编码定理7.8 零误差码7.9 费诺不等式与编码定理的逆定理7.10 信道编码定理的逆定理中的等式7.11 汉明码7.12 反馈容量7.13 信源信道分离定理8 微分熵8.1 定义h(X)=−∫Sf(x)logf(x)dxh(X)=−∫Sf(x)logf(x)dx均匀分布 h(X)=logah(X)=loga正态分布h(X)=1/2log2πeδ2h(X)=1/2log2πeδ2 8.2 连续随机变量的AEP8.3 微分熵与离散熵的关系8.4 联合微分熵与条件微分熵8.5 相对熵与互信息8.6 微分熵, 相对熵以及互信息的性质。