生物统计学抽样分布
- 格式:pptx
- 大小:2.11 MB
- 文档页数:36
抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。
样本分布:样本中所有个体关于某个变量大的取值所形成的分布。
抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。
即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。
样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。
那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。
由样本平均数x 所构成的总体称为样本平均数的抽样总体。
它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。
统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μσ2x = σ2 /n 由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2σ)分布。
但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。
于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。
样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx e x f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。
相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。
2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。
1. 总体(population):研究对象的全体,由具有共同性质的个体所组成。
2. 样本(sample):从总体中抽取一部分个体所组成的集团。
3. 参数(parameter):由总体全部观察值计算得到的用来描述总体特征的数。
4. 统计数(statistic):由样本全部观察值计算得到的用来描述样本特征和估计总体特征的数5. 平均数(average):根据统计方法求得的一种常用特征数,作为一个资料集中性的代表值,反映资料中各观察值集中较多的中心位置。
6. 变异数(variant):反映资料的变异性的代表值,常用的变异数有极差、方差、标准差、标准误和变异系数。
7. 概率的古典定义:在随机试验中,如果基本事件的总数n为有限多个,且每个基本事件的发生是等可能的,时间A 由其中m个基本事件所组成,则事件A的概率为(P)=A中包含的基本事件数/基本事件数=m/n8. 概率的统计定义:在相同条件下,重复某一试验n次,事件A发生的频率随着n的不断增大而在某个常数值p附近摆动,则称频率的稳定值p为事件A发生的频率,记为P(A) =p≈m/n9. 随机变量(random variant):设E为一随机试验,Ω为样本空间。
如果对于Ω中的每个样本点ш,都有一个确定的实数X(ш)与之对应,则称X(ш)为随机变量,简称为X10. 伯努利试验(Bernoulli trials):随机变量X只有两个可能结果的实验11. 统计推断(statistical inference):利用研究获得的样本信息和假定的模型对总体特征做出概率性的推断。
12. 假设检验(test of hypothesis):根据样本信息判断总体是否具有制定的特征13. 参数估计(parametric estimation):用样本统计数估计总体参数。
14. 抽样分布(sampling distribution):统计量g(X1,X2,…,Xn)作为随机变量,也有自己的概率分布,则统计量的概率分布则称为抽样分布15. 零假设(null hypothesis)和备择假设(alternative hypothesis)零假设:指进行统计检验时预先建立的假设。
第四章理论分布和抽样分布一、基本概念1.必然事件:在同一组条件的实现下必然要发生的一类事件。
如人总是要死的,水在标准大气压下加热到100℃必然化为蒸汽。
P(A)=1。
2.不可能事件:在同一组条件的实现下必然不发生的一类事件。
如水在标准大气压下温度低于0℃不可能呈气态。
P(A)=0。
3.随机事件(偶然事件):在同一组条件的实现下可能发生,也可能不发生的一类事件。
如种子可能发芽,也可能不发芽;硬币抛上落下可能正面朝上,也可能反面朝上。
P(A)∈[0,1]。
4.频率a:假定在相似条件下重复进行同一类试验调查,事件A发生的次数a与总试验次数n的比称之。
如抛硬币,10次有7次朝上,a=7/10。
5.概率P:当试验总次数n逐渐增大时,事件A的频率愈来愈稳定地接近定值P,则事件A地概率为P。
6.小概率的实际不可能性原理:凡概率很小的事件(农业上一般指P<0.05的事件),在二、计算事件概率的法则1.和事件:C=A+B A:身高在1.65以下;B:身高在1.65~1.75之间;C:身高在1.75以下。
2.积事件:C=A×B A:身高在1.65以下;B:男同学;C:身高在1.65以下的男同学。
3. 互斥事件:A·B=V (V表示空集) A:小麦种子发芽;B:小麦种子不发芽。
4.对立事件:如果A+B是必然事件,即A+B=U(U为全集);而A·B=V,即A与B 是互斥事件,则称B为A的对立事件,B=A(补集),如上例发芽与不发芽。
5.完全事件:如A·B=V且A+B=U,则称A与B为完全事件系,如小麦发芽与不发芽就构成完全事件系。
6.对立事件的概率:A()1(A)=-P P7.互斥事件的概率加法:()(A)()P=+=+如身高小于1.60m的概率为(A)P A B P P B0.15;身高小于1.70m且大于等于1.60m的概率为()P B=0.62;则身高小于1.70m的概率()(A)()+=+=0.77P A B P P B8.独立事件的概率乘法:()(A)()P A B P P B=。
统计学中的抽样分布和抽样误差统计学是一门研究数据收集、处理和分析的学科,而在进行统计分析时,抽样是一项重要的技术。
抽样分布和抽样误差是统计学中关键的概念,本文将具体介绍它们的定义、特点和应用。
一、抽样分布在统计学中,抽样分布指的是从总体中抽取样本的过程中得到的样本统计量的概率分布。
样本统计量可以是样本均值、样本方差等。
抽样分布是由大量不同的样本所形成的,它们具有一定的数学特性。
抽样分布的特点有:1. 抽样分布的中心趋向于总体参数。
当样本容量足够大时,抽样分布的中心会接近总体参数的真值。
2. 抽样分布的形状可能与总体分布相同,也可能近似于正态分布。
中心极限定理是解释抽样分布接近正态分布的重要定理。
3. 样本容量越大,抽样分布的方差越小。
样本容量增大,抽样误差减小。
抽样分布在实际应用中具有重要价值。
通过了解抽样分布的性质,我们可以进行假设检验、构建置信区间以及进行参数估计等统计推断。
二、抽样误差抽样误差是指由于从总体中抽取样本而导致的估计值与总体参数值之间的差异。
它是统计推断中常见的误差来源,也是统计分析中需要控制的重要因素。
抽样误差的大小受到多个因素的影响,包括样本容量、总体变异性以及抽样方法等。
通常情况下,样本容量越大,抽样误差越小,因为更大的样本容量能够更好地代表总体。
为了降低抽样误差,我们可以采取以下策略:1. 增加样本容量。
增大样本容量可以减小抽样误差,提高估计值的准确性。
2. 采用随机抽样方法。
随机抽样可以降低抽样误差,确保样本的代表性。
3. 控制变异性。
尽量减少总体的变异性,可以减小抽样误差。
抽样误差的存在对于统计推断的可靠性有着重要的影响。
在进行数据分析和解释时,我们需要正确理解抽样误差的概念,并将其考虑在内。
总结:统计学中的抽样分布和抽样误差是进行统计推断不可或缺的概念。
抽样分布是样本统计量的概率分布,具有一定的数学特性,可以用于进行假设检验和置信区间估计。
抽样误差是由于从总体中抽取样本而导致的估计值与总体参数值之间的差异,它的大小受到多个因素的影响。
概论名词:生物统计:将概率论和数理统计的原理应用到生物学中以分析和解释其数量资料的科学试验设计:试验工作未进行之前应用生物统计原理,来制定合理的试验方案,包括选择动物,分组和对比以及相应的资料搜集整理和统计分析的方法。
总体与样本⏹数据具有不齐性。
⏹根据研究目的确定的研究对象的全体称为总体(population);⏹含有有限个个体的总体称为有限总体;⏹包含有无限多个个体的总体叫无限总体;⏹总体中的一个研究单位称为个体(individual);⏹从总体中随机抽出一部分具有代表性的个体称为样本(sample);⏹样本中所包含的个体数目叫样本容量或大小,常记为n。
⏹通常把n≤30的样本叫小样本,n >30的样本叫大样本。
随机抽取(random sampling) 的样本是指总体中的每一个个体都有同等的机会被抽取组成样本。
变数与变异数列、变量:⏹变数:研究中对样本个体的观察值。
⏹变量:相同性质的事物间表现差异性的某种特征。
如:身高、体重。
⏹变异数列:将变数按从小到大的顺序排列的一组数列。
参数与统计量⏹由总体计算的特征数叫参数(parameter);⏹由样本计算的特征数叫统计量(staistic)。
准确性与精确性⏹准确性(accuracy)也叫准确度,指观测值与其真值接近的程度。
若x与μ相差的绝对值|x-μ|小,则观测值x的准确性高;反之则低。
⏹精确性(precision)也叫精确度,指重复观测值彼此接近的程度。
若观测值彼此接近,即任意二个观测值xi、xj相差的绝对值|xi -xj |小,则观测值精确性高;反之则低。
⏹调查或试验的准确性、精确性合称为正确性。
由于真值μ常常不知道,所以准确性不易度量,但利用统计方法可度量精确性。
随机误差与系统误差随机误差也叫抽样误差(sampling error) ,是由于许多无法控制的内在和外在的偶然因素所造成。
带有偶然性质,在试验中,即使十分小心也难以消除。
随机误差影响试验的精确性。