基于FPGA视频图像采集及显示系统的设计与实现
- 格式:pdf
- 大小:293.38 KB
- 文档页数:4
基于FPGA的MIPI CSI-2图像采集系统设计赵清壮【摘要】This paper elaborates a design of MIPI CSI-2 high-definition camera interface image acquisition system based on FPGA. Now, MIPI high-definition CCD is used widely, this design uses FPGA to achieve MIPI high-definition CCD collect and provides two outputs of LCD screen and USB, the data transmission is stable and reliable, it make MIPI interface camera applied widely by the other circuit systems, accelerates system development and saves cost.%阐述一种基于FPGA的MIPI CSI-2接口高清摄像头图像采集系统设计,该设计用FPGA实现当前应用广泛的MIPI高清CCD采集,并提供LCD屏、USB两路输出,数据传输稳定可靠,把MIPI接口摄像头应用到更广泛的其他电路系统中,加快系统开发,节省成本。
【期刊名称】《价值工程》【年(卷),期】2015(000)029【总页数】2页(P84-85)【关键词】MIPI;CSI-2;图像采集;FPGA【作者】赵清壮【作者单位】广州飒特红外特股份有限公司,广州510000【正文语种】中文【中图分类】TP302.10 引言CSI(Camera Serial Interface)是由MIPI(Mobile Industry Processor Interface)联盟下Camera工作组制定的接口标准,是MIPI联盟发起的为移动应用处理器制定的开放标准,MIPI联盟由ARM、诺基亚、意法半导体和德州仪器发起成立,作为移动行业领导者的合作组织,MIPI联盟旨在确定并推动移动应用处理器接口的开放性标准。
基于ZYNQ FPGA实现图像采集存储显示1 FPGA硬件系统设计基于ZYNQ FPGA实现图像数据采集、存储、处理和显示系统框图如图1所示。
说明:2路摄像头采集系统,4种显示方案,原始数据显示2路,经过算法处理2路。
图1 系统设计OV5640模块:图像传感器,视频流来源。
写VDMA模块:硬件采集到的数据通过写VDMA存储到PS端的DDR中。
ZYNQ模块:ZYNQ-7000系列FPGA,ARM + FPGA架构,核心处理芯片。
读VDMA模块:通过读VDMA从PS端的DDR中读取图像数据。
RGB转换DVI模块:32bit转为RGB888,再转为DVI时序输出到HDMI显示。
HDMI显示器:显示图像视频数据。
2 关键技术1)OV5640摄像头设计中采用两片美国OmniVision公司的CMOS图像传感器OV5640,OV5640芯片支持DVP和MIPI接口。
为保证OV5640正常工作,需要依次实现以下时序要求。
a、ResetB拉低、PWND拉高;b、DOVDD和AVDD同时上电;c、电源稳定5ms后,拉低PWND,再过1ms,拉高ResetB;d、20ms后初始化OV5640DESCCB寄存器。
e、通过IIC接口配置,配置目标为RGB565、30FPS、720输出格式;f、FPGA接收来自OV5640的视频流数据输入,需要对摄像头完成相应的时序操作。
每次传输8bit,16bit为一个像素点,所以要进行数据转换8bit-16bit-32bit;2)图像处理算法边缘检测算法要求首先找到图片中物体的边缘,由于边缘处颜色变化一般比较明显,在工程上一般借助卷积滤波器实现,卷积滤波器相当于求导的离散版本。
针对图像进行边缘检测,有多种不同的滤波器算子,我们采用的Sobel滤波器算子图1,分别针对图像水平方向的边缘以及竖直方向的边缘,求和得出图像的边缘。
图1 滤波器算子3)ZYNQ FPGAZYNQ 7000系列基于Xilinx 全可编程的扩展处理平台结构,芯片内部集成ARM 公司双核Cortex-A9处理器的处理系统(PS端)和基于Xilinx逻辑资源的可编程逻辑系统(PL端)。
基于FPGA的LVDS视频图像采集与预处理系统的设计实现作者:黄国鹏刘卫东乔明胜陈兴锋来源:《现代显示》2009年第02期文章编号:1006-6268(2009)02-0032-04摘要:以LED背光源液晶电视为应用背景,在FPGA硬件平台上实现了LVDS视频图像采集和直方图预处理系统的设计。
关键词:现可编程门阵列;低压差分信号;直方图;约束中图分类号:TN911.73文献标识码:ADesign and Implement of FPGA-based LVDS Video Acquisition and Preprocessing SystemHUANG Guo-peng1,LIU Wei-dong1,2,QIAO Ming-sheng2,CHEN Xing-feng1(1.Dept. of Electrical Engineering ,Ocean University of China,Qingdao 266100;2. Hisense Electric Co.,Ltd, Qingdao 266071)Abstract:This paper ,taking LED backlight for LCD TV as application background, has researched to achieve LVDS video acquisition and preprocessing system based on FPGA .Keywords: FPGA;LVDS;histogram;constraints引言FPGA在信号实时处理领域得到越来越广泛的应用。
相比ASIC和DSP,FPGA有更高的吞吐量、位级的可编程能力、开发周期短和风险大大降低等优点。
随着65nm甚至45nm工艺技术的面世,FPGA在逻辑门集成数量和工作的频率上取得了很大的提高。
在大数量数据处理领域,其并行处理数据的优势可以得到充分体现,特别是在在图像帧速率和分辨率要求比较高的场合使用高速大容量FPGA可以得到令人满意的结果。
基于FPGA的实时视频图像采集与显示系统的设计与实现作者:贡镇来源:《现代电子技术》2013年第13期摘要:主要针对目前视频图像处理发展的现状,结合FPGA技术,设计了一个基于FPGA的实时视频图像采集与显示系统。
系统采用FPGA作为主控芯片,搭载专用的编码解码芯片进行图像的采集与显示,主要包括解码芯片的初始化、编码芯片的初始化、FPGA图像采集、PLL设置等几个功能模块。
采用FPGA的标准设计流程及一些常用技巧来对整个系统进行编程。
重点在于利用FPFA开发平台对普通相机输出的图像进行采集与显示,最终能在连接的RCA端口显示屏显示。
关键词: FPGA;视频图像采集;编码芯片;解码芯片中图分类号: TN911⁃34 文献标识码: A 文章编号: 1004⁃373X(2013)13⁃0046⁃03Design and Implementation of real⁃time video image captureand display system based on FPGAGONG Zhen(Anhui University of Science and Technology, Huainan 232000, China)Abstract: Based on the current development status of the video image processing and FPGA technology, a FPGA⁃based real⁃time video image capture and display system is designed in this paper. Equipped with dedicated coding and decoding ship for image capture and display, the system adopts FPGA as the main control chip, which are composed of decoding chip initialization module, the encoding chip initialization module, FPGA image acquisition module and PLL setting module. FPGA⁃standard design flow and some commonly used techniques are taken to program the entire system. The focus is to realize the ordinary camera output image acquisition and display via the FPFA development platform, and ultimately connect the RCA port display screen.Keywords: FPGA; video image capture; coding chip; decoding chip0 引言随着时代的发展,人们在图像处理领域取得了相当多的成果,研究出了很多算法,例如中值滤波、高通滤波等。
基于FPGA的图像处理系统设计与实现图像处理是计算机视觉领域中的重要技术之一,可以对图像进行增强、滤波、分割、识别等操作,广泛应用于医学图像处理、工业检测、安防监控等领域。
而FPGA(Field Programmable Gate Array)可编程门阵列,则是一种自由可编程的数字电路,具有并行处理能力和灵活性。
本文将介绍基于FPGA的图像处理系统的设计与实现。
一、系统设计流程1. 系统需求分析:首先需要明确图像处理系统的具体需求,例如实时性、处理的图像类型、处理的算法等。
根据需求,选择合适的FPGA芯片和外设。
2. 图像采集与预处理:使用图像传感器或摄像头采集图像数据,然后对图像进行预处理,如去噪、增强、颜色空间转换等,从而提高后续处理的准确性和效果。
3. 图像处理算法设计与优化:根据具体的图像处理需求,选择适合的图像处理算法,并对算法进行优化,以提高处理速度和效率。
常用的图像处理算法包括滤波、边缘检测、图像分割等。
4. FPGA硬件设计:基于选定的FPGA芯片,设计硬件电路,包括图像存储、图像处理模块、通信接口等。
通过使用硬件描述语言(如Verilog、VHDL)进行功能模块设计,并进行仿真和验证。
5. 系统集成与编程:将设计好的硬件电路与软件进行集成,包括FPGA程序编写、软件驱动开发、系统调试等。
确保系统的稳定运行和功能实现。
6. 系统测试与优化:对整个系统进行完整的测试和验证,包括功能性测试、性能测试、稳定性测试等。
根据测试结果,对系统进行优化,提高系统的性能和可靠性。
二、关键技术及挑战1. FPGA芯片选择:不同的FPGA芯片具有不同的资源和性能特点,需要根据系统需求选择合适的芯片。
一方面需要考虑芯片的处理能力和资源利用率,以满足图像处理算法的实时性和效果。
另一方面,还需要考虑芯片的功耗和成本,以便在实际应用中具有可行性。
2. 图像处理算法优化:在FPGA上实现图像处理算法需要考虑到算法的计算复杂度和存储开销。
基于T35F324的FPGA开发板图像采集显示系统方案1.前言个人觉得易灵思的TriOn系列比钛金系列FPGA,就目前而言,更适合做图像显示相关应用,以T35和巨60为例,主要原因如下表所示:易灵思如果专注图像细分领域,毕竟大部分客户还是用DDR和MIPI,因此我觉得钛金系列的架构真的脑袋被驴踢了,DDR和MIP1用硬核才是正确的选择!另外,钛金系列FPGA相对推出时间不够,目前IP也不成熟。
以T35为例,DDR硬核IP在EfinityInterface中直接可以调用DDRIP并设定相关参数,但是钛金系列Ti60还没有包含到工具链中,这让拿不到一手资源的FPGAer就很尴尬,虽然可以理解不集成到IDE中,可以更快的迭代前提不成熟的版本。
M1P1TX/RX 接口,山谷0.8mm40P 接口如上图所示,T35F324的FPGA 开发板,我都做了快半年了,一直没有做一个基于视频图像的像样点的DCm0,甚是惭愧。
为了给当下煎熬的大家送点福利,我打算分2步走,如下:DVP 相机+DDR3+1VDS-1CD 实时显示系统 MIPI 相机+DDR3+1VDS-1CD 实时显示系统前者更关注DDR3硬核、1VDSTX,以及进行并口相机的配置与图像采集,完成实时图像采集、缓存、显示系统;后者则借用1)的基础,更关注MIP1相机的开发,进一步把易灵思FPGA 进行图像采集的优势,发挥一下。
当然这过程肯定还是有不少的坑,有些坑只有自己趟过,才有发言权。
底板串口DC3-40用户接口,兼容兼容@01⑥MT拨动开关BMW 0V5生0等模MIP1摄像头Jr兼容树莓派rOV5640 Efint FPQABOa1Q CraZyfpg>iomEfin1tyT3SF324-Cor∙V1.1一«... M2X>S12202305152.FPGA设计详解言归正传,我们开始干正事:基于T35的摄像头采集、存储、显示系统的介绍。
基于FPGA的图像采集系统设计与实现作者:陈法领、罗海波发布时间:2009-03-101、引言视频图像采集是视频信号处理系统的前端部分,正在向高速、高分辨率、高集成化、高可靠性方向发展。
图像采集系统在当今工业、军事、医学各个领域都有着极其广泛的应用,如使用在远程监控、安防、远程抄表、可视电话、工业控制、图像模式识别、医疗器械等各个领域都有着广泛的应用[1]。
本文介绍了一种基于FPGA的图像采集系统,用户可以根据需要对FPGA 内部的逻辑模块和I/O模块重新配置,以实现系统的重构[1][2];而且采用这种设计方案,便于及时地发现设计中的错误,能够有效地缩短研发时间,提高工作效率。
2、系统的总体框架和工作原理整个系统主要分为四个模块:视频解码模块、视频编码模块、存储器模块和FPGA核心控制模块,系统总体框架如图1所示。
图1 系统的总体框图其中FPGA实现的主要功能有:视频编解码器件的初始化,视频图像的采集存储以及将采集的图像数据通过视频编码芯片送到监视器上显示。
系统的工作原理为:系统上电后,FPGA通过FLASH中的程序对完成视频解码和编码芯片的初始化配置;在接到视频AD转换的中断信号后,FPGA将转换的数字图像数据传送到SRAM保存;一帧图像转换结束后FPGA再将SRAM中的数字图像传递给视频编码芯片以便在监视器上显示,同时开始控制下一帧图像的采集。
3、硬件电路设计3.1 AD和DA转换模块本系统采用的视频编解码芯片是ADV7181和ADV7177,下面分别介绍AD和DA转换器件的硬件电路设计。
3.1.1 AD转换模块ADV7181系统是AD公司推出的一款视频解码芯片[3],它具有如下特点:I2C总线接口,6通道模拟视频输入,支持NTSC、PAL、SECAM视频制式,支持多种模拟输入格式和多种数字输出格式。
本系统中选用其中的通道1作为PAL制CVBS视频输入,数据输出可根据需要采用8位或16位的格式输出。
基于FPGA图像的采集与显示学生姓名:学生学号:院(系):电气信息工程学院年级专业:指导教师:助理指导教师:二〇一五年五月摘要随着科技社会的飞速发展,数字图像采集与处理系统在科学研究、工业生产,日常生活等众多领域得到越来越广泛的应用,具有广阔的应用前景和研究价值。
在今天,具有图像显示功能的电子产品越来越多,由可视电话、数码相机,ipad 等消费电子产品到门禁系统、数字视频监视等工业控制以及安防产品,处处显示着数字图像采集与处理系统的重要性。
而针对于图像的采集与处理ARM、DSP、FPGA各有所长,其中FPGA的并行高速精确的处理在通信领域、图像处理、大屏显示等方面有着得天独厚的优势。
基于FPGA可编程器件的可编程特性,采用FPGA进行设计的图形采集系统有良好的可扩展性和相对稳定的硬件结构,利用软件编程和硬件逻辑电路来实现图像采集的软件算法,在很大程度上能够提高图像识别速度和系统的体积,大大节约了生产成本。
本次设计利用OV(OmniVision)公司生产的CMOS 7670摄像头进行图像的的采集以及简单的处理,Hynix公司的SDRAM芯片H57V2562GTR—75C做图像的临时存储,FPGA芯片采用的是Altera公司旗下的Cyclone系列芯片第四代产品EP4CE6F17C8N,利用其并行高速精确的优势实现640*480*60fps,每秒共30M带宽的VGA显示。
此次设计的目的是为了将数字图像采集与显示等功能集成在一块单板上。
利用本系统的电路板对图像进行采集、缓存以及通过VGA实现实时显示,在使用过程中摄像头能够正常实现图像采集,SDRAM能够顺利完成图像的存储与读取,FPGA芯片以及程序能够保证整个系统正常运行,并且在VGA显示时图像没有错位和乱码的产生。
关键词图像的实时采集与显示,FPGA,VGA显示ABSTRACTWith the rapid development of science and technology society, the digital image acquisition and processing system in scientific research, industrial production, daily life and so on many fields more and more widely used, has a broad application prospect and research value.Today, which has the function of image shows more and more electronic products, by video phone, digital camera, the consumer electronics products such as the entrance guard system, industrial control, such as digital video surveillance and security products, shows the importance of digital image acquisition and processing system.And for image acquisition and processing of ARM, DSP, FPGA strengths, including the FPGA parallel high-speed precise processing in the field of communication, image processing, display, etc, has a unique advantage.Based on the FPGA programmable features of programmable devices, using FPGA to design the graphic collection system has good scalability and relatively stable hardware structure, software programming and hardware logic circuit is used to realize image acquisition software algorithms, in the very great degree can improve the recognition speed and the volume of the system, greatly saves the cost of production.This design using the OV (OmniVision) company produces 7670 CMOS camera image acquisition and processing, simple Hynix SDRAM chip H57V2562GTR - 75 c for temporary storage of the image and the FPGA chip USES Altera company's fourth generation product EP4CE6F17C8 Cyclone series chip, using the advantage of its parallel high-speed precise realization of 640 * 480 * 60 FPS,VGA display, a total of 30 m bandwidth per second.The purpose of this design is to integrate the function such as digital ima ge acquisition and display on a single board.The circuit of this system is used to analyse the image acquisition, caching, and through the VGA display in re al time, in the process of using normal camera is able to achieve image acqui sition, SDRAM would be able to complete the image storage and read, the FP GA chip, and procedures to ensure the normal operation of the whole system, and when the VGA display image without dislocation and garbled.Key words image real-time acquisition and display, the FPGA, VGA display目录摘要 (I)ABSTRACT................................................................................................................................. I I1 绪论 (1)1.1 课题背景 (1)1.2 国内外研究现状、水平 (1)1.3 图像采集技术的发展趋势 (2)2 方案论证与选择 (4)2.1 系统方案设计 (4)2.2 系统方案选择 (5)2.3 本课题的技术指标及主要任务 (5)3 系统的硬件设计 (7)3.1 系统原理及设计框图 (7)3.2 FPGA 芯片的选择与其性能分析 (7)3.1.1 FPGA概述 (7)3.1.2 Cyclone系列芯片介绍 (7)3.3 FPGA 最小系统设计 (10)3.3.1 复位电路设计 (10)3.3.2 内部时钟与外部时钟设计 (11)3.3.3 JTAG下载接口及其保护电路设计 (12)3.4 摄像头的选择及其性能分析 (13)3.4.1 OV7670摄像头 (13)3.4.2 摄像头功能框图 (14)3.4.3 摄像头模块 (16)3.5 SDRAM的选择及其性能分析 (17)3.6 VGA接口设计 (19)4 系统的软件设计 (22)4.1 Verilog编程语言介绍 (22)4.2 整体设计思想 (22)4.3 系统主要结构框图以及功能介绍 (23)4.4 SDRAM工作状态机设计 (24)5 仿真设计与波形 (25)5.1 Quartus开发工具的简介 (25)5.2 逻辑分析仪介绍 (26)5.3 逻辑分析仪捕获波形展示 (27)5.4 效果图展示 (28)结论 (29)参考文献 (30)附录A:原理图模块展示 (31)附录B:程序代码 (35)致谢........................................................................................................... 错误!未定义书签。
基于FPGA的图像处理技术设计与实现随着科技的不断发展,图像处理技术的应用也越来越广泛。
FPGA(Field-Programmable Gate Array)作为一种基于可编程逻辑门电路的数字逻辑器件,其在图像处理领域中的应用也越来越受到人们的关注。
本文主要介绍了基于FPGA的图像处理技术的设计与实现。
一、FPGA的基本原理及优势FPGA的基本原理是将逻辑门电路实现的芯片替换为可编程的逻辑门电路阵列,即可灵活编程实现特定功能。
与专用集成电路相比,FPGA具有灵活性强、时间开发短、生产周期短等优势。
在图像处理应用中,FPGA具有以下优势:1. 高速度:FPGA具有并行处理能力,因此在图像处理中可以实现高速运算,提高计算效率。
2. 可编程:FPGA可以根据不同的需求和算法进行灵活编程,可以实现多种图像处理算法。
3. 低功耗:由于FPGA采用可编程的电路设计,因此不需要像传统电路一样进行不必要的计算操作,从而降低功耗。
二、基于FPGA的图像处理技术设计与实现在基于FPGA的图像处理技术中,主要包括图像采集、图像预处理、图像处理、图像输出等步骤。
下面我们将一一介绍。
1. 图像采集图像采集是图像处理的第一步,主要是通过摄像头或其他设备获取输入图像。
在采集图像时,需要进行数字化处理,将模拟信号转换为数字信号,以便后续的图像处理操作。
2. 图像预处理图像预处理主要是对输入图像进行去噪、滤波、增强等操作,以减少噪声和干扰,提高图像质量。
常见的图像预处理算法包括均值滤波、中值滤波、高斯滤波、边缘增强等。
3. 图像处理图像处理是基于FPGA的图像处理技术的核心步骤。
在此步骤中,需要选择适合的算法实现不同的图像处理操作,例如图像分割、目标检测、目标跟踪等。
常见的图像处理算法包括Canny算法、Harris角点检测算法、SIFT算法等。
4. 图像输出图像输出是将处理后的图像输出到显示屏或其他设备上。
常见的输出方式包括液晶显示、投影显示、打印输出等。