极化电荷面密度电位移矢量
- 格式:ppt
- 大小:2.02 MB
- 文档页数:49
l 2 + 4l 25 a 2 ⎭ ⎭ 2l α 0 ⎝ 0 0 2x0 r 0r 0l 0 第二章 静电场(注意:以下各题中凡是未标明电介质和导体的空间,按真空考虑) 2-1 在边长为a 的正方形四角顶点上放置电荷量为q 的点电荷,在正方形几何中心处放置电荷量为Q 的点电荷。
问Q 为何值时四个顶点上的电荷受力均为零。
解 如图建立坐标系,可得q ⎛ 12 1 ⎫ Q 2 1 E x e x = 4πε + 2 ⨯ 2a 2 ⎪e x + 4πε ⨯ 2 ⨯ a 2 / 2 e x q ⎛ 1 2 1 ⎫ Q 2 1 E y e y =+ 4πε 0 ⎝ 2 ⨯ 2a 2 ⎪e y + 4πε ⨯ 2 ⨯ a 2 / 2 e y ⎛ 2 ⎫ ⎛ 2 ⎫据题设条件,令 q 1 + ⎪ + Q 4 ⎪ = 0 ,2 ⎝ 解得 Q = - q(1 + 2 2)4⎭ ⎝ ⎭2- 有一长为2l ,电荷线密度为τ 的直线电荷。
1) 求直线延长线上到线电荷中心距离为2l 处的电场强度和电位; 2) 求线电荷中垂线上到线电荷中心距离为2l 处的电场强度和电位。
解 1)如图(a )建立坐标系,题设线电荷位于 x 轴上l ~ 3l 之间,则 x 处的电荷微元在坐标原点产生的电场强度和电位分别为d E = τd x (-e ), d ϕ = τd x4πε 0 x 4πε 0 x由此可得线电荷在坐标原点产生的电场强度和电位分别为 E (0) = 3l d E3lτd x(- e ) =τ(- e )⎰l⎰l4πε 0xx6πε lxϕ (0) = ⎰3ld ϕ = ⎰3lτd x =τln 3ll4πε 0 x 4πε 02)如图(b )建立坐标系,题设线电荷位于 y 轴上- l ~ l 之间,则 y 处的电荷微元在点(0,2l ) 处产生的电场强度和电位分别为d E = τd y (-e ), d ϕ = τd y4πε 2r 4πε 0 r 式中, d y = 2l d θ cos 2 θ , r = , sin α = l cos θ = 1 ,分别代入上两式,并考虑 对称性,可知电场强度仅为 x 方向,因此可得所求的电场强度和电位分别为 E (2l ,0) = α = 2eα τd ycos θ = τe x cos θd θ = τe x sin α = τe x 2⎰0 d E x ⎰0 4πε 2 4πε ⎰0 4πε 0l 4 5πε 0l ϕ (2l ,0) = α ϕ = τ α d θ = τ ⎡ ⎛ 1 tan -1 1 + π ⎫⎤ = 0.24τ 2⎰0 d 4πε ⎰0co s θ 2πε ln ⎢tan 2 2 4 ⎪⎥ πε 0 0 ⎣ ⎝ 2-3 半径为a 的圆盘,均匀带电,电荷面密度为σ 。
第二章习题答案2-2 真空中有一长度为l 的细直线,均匀带电,电荷线密度为τ。
试计算P 点的电场强度: (1)P 点位于细直线的中垂线上,距离细直线中点l 远处; (2)P 点位于细直线的延长线上,距离细直线中点l 远处。
解:(1)可以看出,线电荷的场以直线的几何轴线为对称轴,产生的场为轴对称场,因此采用圆柱坐标系,令z 轴与线电荷重合,线电荷外一点的电场与方位角φ无关,这样z '处取的元电荷z q 'd d τ=,它产生的电场与点电荷产生的场相同,为:R20e R4z E πετ'=d d 其两个分量:θπετρρcos 20R4z e E d dE '=•=d (1) ()θπετsin 20z z R4e E d dE z d '-=-•=(2) 又θρθρtan ',cos ==z R所以:θθρd dz 2sec '= (3)式(3)别离代入式(1)(2)得:θρπεθτρd 04dE cos =; θρπεθτd sin 0z 4dE -= 'sin 'sin cos θρπετθθρπετθρπεθτθρ000004E 22d 2=⎰∴==‘ (4)又 2l 42l 2l +='θsin (5)式(5)代入式(4)得:l55E 00πετρπετρ22=∴=图2-2长直线电荷周围的电由于对称性,在z 方向 z E 分量彼此抵消,故有0=z Eρρρπετe l5e E e E 0z z 2E =+=∴(2)成立如图所示的坐标系在x 处取元电荷dx dq τ=则它在P 点产生的电场强度为R20e R4x d E d πετ'=其在x 方向的分量为:20x R 4x d dE πετ'=又 x l R -=2020x x l 4x d R4x d dE )-(''='=∴πετπετ()l 3x l 4x l 4x d E 02l 2l 2l 2l 020x πετπετπετ='-⨯=''=--⎰∴∴∴////1)-( x 0x x x e l3e E Eπετ==∴2-3 真空中有一密度为m C n /2π的无穷长线电荷沿y 轴放置,还有密度别离为2/1.0m C n 和2/1.0m C n -的无穷大带电平面别离位于z=3m 和z=-4m 处。
电磁学中几个基本矢量的性质杨东杰2900103013摘要本文在学习完电磁学的基本矢量知识的基础上,统一地推导研究电磁学中各个矢量的性质,即散度、旋度及其边界条件。
关键字散度旋度边界条件引言在学习了第二章关于电磁场的一些基本规律之后,我们知道了很多电磁场的基本理论知识,但是书本上都是分别逐一地对各个矢量的性质,如散度、旋度及边界条件进行推论,所以本文意在对各个矢量的性质作一个统一的推导总结,从而加深对知识的理解。
正文一,电场强度的散度、旋度及边界条件。
1,散度。
用电荷按体密度分布库伦定律:利用可将写为对上式两边取散度,得利用关系式,上式变为在利用函数的挑选性,有则由式(2)得因已假设电荷分布在区域V内,故可由上式得的E散度2,旋度。
在静电场中,由式1,微分算符是对场点坐标求导,与源点坐标无关,故可将算符从积分中移出,即对上式两边取旋度,即上式右边括号内是一个连续标量函数,而任何一个标量函数的梯度再求旋度时恒等于0,则得在时变电磁场中,变化的磁场会产生电场。
在一回路中,由法拉第电磁感应定律,得利用斯托克斯定理,上式可表示为上式对任意回路所谓面积S都成立,故必有3,边界条件。
在参数分别为的两种媒质的分界面上,设分界面法向单位矢量为,是沿分界面的切向单位矢量。
则在垂直于分界面的矩形闭合路径abcda上,由麦克斯韦第二方程,当时有故得或也可写为表明电场强度的切向分量是连续的。
二,电位移矢量的散度、旋度及边界条件。
1,散度。
在电介质中,在外场作用下电介质发生极化,产生极化电荷。
电介质中的电场可视为自由电荷和极化电荷在真空中产生电场的叠加,即。
将真空中成立的式3推广至电介质中,得即极化电荷也是产生电场的通量源。
由式(后面会推导)代入上式得而由于,我们得到2,旋度。
由于本构关系,我们可以由的旋度直接得到:在静电场中,而在时变电磁场中,3,边界条件。
如同以上边界条件的界定下,在分界面上取一个扁圆柱形闭合面,当其高度时,圆柱侧面对积分的贡献可忽略,且此时分界面上存在的自由电荷面密度为,则得即故或当两种媒质都不是理想导体的边界条件时,有,则三,磁感应强度的散度、旋度及边界条件。
《电磁场理论与电磁波》课后思考题第一章 P301.1 如果A B =A C ,是否意味着B =C 为什么答:否。
1.2 如果⨯⨯A B =A C ,是否意味着B =C 为什么答:否。
1.3 两个矢量的点积能是负的吗如果是,必须是什么情况答:能。
当两个矢量的夹角θ满足(,]2πθπ∈时。
1.4 什么是单位矢量什么是常矢量单位矢量是否是常矢量答:单位矢量:模为1的矢量;常矢量:大小和方向均不变的矢量(零矢量可以看做是特殊的常矢量); 单位矢量不一定是常矢量。
例如,直角坐标系中,坐标单位矢量,,x y z e e e 都是常矢量;圆柱坐标系中,坐标单位矢量,ρφe e 不是常矢量,z e 是常矢量;球坐标系中,坐标单位矢量,,r θφe e e 都不是常矢量。
1.5 在圆柱坐标系中,矢量ρφz a b c =++A e e e ,其中a 、b 、c 为常数,则A 能是常矢量吗为什么答:否。
因为坐标单位矢量,ρφe e 的方向随空间坐标变化,不是常矢量。
1.6 在球坐标系中,矢量cos sin r θa θa θ=-A e e ,其中a 为常数,则A 能是常矢量吗为什么答:是。
对cos sin r θa θa θ=-A e e 转换为直角坐标系的表示形式,化简可得22(cos sin )z z a θθe ae ==+=A 。
1.7 什么是矢量场的通量通量的值为正、负或0分别表示什么意义答:通量的概念:d d d n SSψψF S F e S ==⋅=⋅⎰⎰⎰(曲面S 不是闭合)d d n SSF S F e S =⋅=⋅⎰⎰ψ(曲面S 是闭合)通过闭合曲面有净的矢量线穿出S 内有正通量源<ψ有净的矢量线进入,S 内有负通量源进入与穿出闭合曲面的矢量线相等,S 内没有通量源1.8 什么是散度定理它的意义是什么答:散度定理:d d SVF S F V ⋅=∇⋅⎰⎰意义:面积表示的通量=体积表示的通量1.9 什么是矢量场的环流环流的值为正、负或0分别表示什么意义答:环流的概念:Γ(,,)d CF x y z l =⋅⎰环流的值为正、负或0分别表示闭合曲线C 内有正旋涡源、负旋涡源和无旋涡源。