场强和电位移关系
- 格式:doc
- 大小:31.50 KB
- 文档页数:1
一、 高斯定理文字叙述:在任何静电场中,通过任一闭合曲面的电通量等于这闭合曲面所包围的自由电荷的代数和.数学表达式为Φe ⎰∑===ni iq dS D 1cos θ (9-18)不严格的证明:第一种情况:点电荷的电场,闭合曲面(称高斯面)是以点电荷为球心、以r 为半径的球面:球面上各点电位移的大小相等,方向均向外(设),与面积元d S 的方向相同,所以Φe⎰⎰==⋅==q r r q dS r q dS D 222440cos 4cos πππθ若点电荷为负电荷,即q=-∣q ∣,则⎰⎰=-=-=⋅==Φqq r r q dS r q dS D e 22244cos 4cos ππππθ与r 无关,即与球面的半径无关.第二种情况:点电荷的电场,任意闭合曲面:S ’为任意闭合曲面,S 为球面,S 和S ’包围同一点电荷Q ,S ’与S 之间并无其他自由电荷.由于电位移线的连续性,可以看出通过闭合曲面S ’的电位移线的数目和通过球面S 的电位移线的数目是一样的.因此通过闭合曲面S ’的电通量Φe 的量值也等于q .第三种情况:点电荷在任意闭合曲面外:点电荷q 在闭合曲面S ”的外面时,可以看到进入该曲面的电位移线的数目与穿出该曲面的电位移线的数目也是相等的.因为我们规定穿出为正、进入为负,因此通过该闭合曲面的总电通量为零.第四种情况:点电荷系的电场:设空间有(n+m )个点电荷时,其中n 个在闭合曲面内,m 个在闭合曲面外.根据电场叠加原理:m n n n D D D D D +++++++=11,可得:∑⎰⎰⎰⎰⎰=++=++++=∙++∙+∙++∙=∙=Φni in m n n n e q q q S d D S d D S d D S d D S d D 11110式中m 为空间自由点电荷的总数,而n 为闭合曲面内包围的自由点电荷的数目,(m-n )为闭合曲面外的自由点电荷的数目,因此可得通过任一闭合曲面的电通量等于这闭合曲面所包围的自由电荷的代数和.可以证明 高斯定理是普遍成立的. 注:1.物理意义:说明静电场是有源场(静电场的特性之一),静电场的源就是正电荷和负电荷(负源).2.要注意区分通过闭合曲面的电通量(D 的通量)与闭合曲面上每一点的D :(1) 通过任一闭合曲面的电通量只与闭合曲面内的自由电荷有关,但闭合曲面上每一点的D 却与空间(闭合曲面内、外)的所有电荷有关.(2)0=∙⎰S d D,不一定曲面上每一点的D 都是零;也不一定曲面内没有自由电荷,只不过曲面内自由电荷的代数和为零(即净电荷为零)罢了.3.高斯定理是普遍成立的,但用来求电场时只能用于具有某些对称性的电场.四、高斯定理的应用 1.均匀带电球体的电场设有一电介质球体,半径为R ,均匀带电,电荷体密度为ρ,总电荷为q ,如图9-16.现在计算球内和球外任意点p 1和p 2处的电位移.设球体的介电系数为ε1,球外电介质的介电系数为ε2.先研究球内p 1处的情况.通过p 1点作半径为的同心球面S 1(r 1<R),面积等于4πr 12.由于对称关系,球面S 1上各点的电位移应与球面相垂直且有相同的量值,假定为D 1,相应地通过球面S 1的电通量为4πr 12 D 1.已知球面S 1所包围的电荷为(4/3)πr 31ρ.所以由高斯定理,得3311211134344cos R q r D r dS D dS D e πππθ====Φ⎰⎰相应地,因D 1=ε1E 1,得1311114r R qD E πεε==(9-19a) 由此可见,对均匀带电球体来说.球内任何点的场强与该点到球心的距离成正比,在球心处场强为零.再来研究球外p 2点处的情况.通过p 2点作半径为r 2的同心球面S 2(r 2> R),面积为4πr 22.同理,设球面S 2上电位移的量值为D 2.相应地,通过球面S 2的电通量为4πr 22 D 2.已知球面S 2所包的电荷为q ,所以按高斯定理得4πr 22 D 2 =q所以2224r qD π=相应地,因D 2=ε2E 2,得2222224r qD E πεε==(9-19b) 上式与点电荷的场强公式完全相同,可见均匀带电球体在球外一点产生的场强,相当于全部电荷集中在球心上时点电荷产生的场强 .场强与距离r 的关系,以及电位移与距离r 的关系,分别如图9-17所示(有何区别?为什么?)2.均匀带电球面的电场设有一个球面,半径为R ,表面均匀带电,电荷面密度为σ,总电量为q ,即q=4πR 2σ.显然,可用与带电球体相同的方法,求得球内任一点的电位移和场强均为零;即D=0,E=0 (均匀带电球面内) (9-20a)而球外任一点的电位移和场强则与带电球体的球外电场相同,即在球外任一点(与球心相距为r)处,224rq D π=2224r qE πε=式中ε2.是球外电介质的介电系数.均匀带电球面内外的场强与r 的关系如图9-18所示. 3.无限大均匀带电平面的电场设有无限大均匀带电平面,平面的电荷面密度为σ.在靠近平面中部而距离平面不远的区域内,由于对称关系,可以确定电场是均匀的,而且场强垂直于平面(田9-19).局限在上述区域内的电场,称为无限大均匀带电平面的电场.为了计算这个电场的场强,可通过平面上一小面积ΔS ,作一封闭柱面S ,柱面的轴线和平面正交,两底面的面积都等于ΔS ,按高斯定理,通过整个S 面的电通量应等于S 面所包围的自由电荷的代数和,即Φe =∮Dcos θdS=∫底面1Dcos θdS+∫底面2Dcos θdS+∫侧面Dcos θdS = D (ΔS ) + D (ΔS )+0=∑q 这里,通过柱体侧面的电通量等于零(因为侧面上各处θ=π /2).通过两底面的电位移线都与底面正交,而且都是向外的(设σ为正值),所以θ=0,cos θ=1.设D 为两底面上的电位移,可知通过两底面的电通量等于D(ΔS) + D (ΔS).已知s 面所包围的总电荷为σ(ΔS),所以 D (ΔS) + D (ΔS) =σ(ΔS)从而求得 D=σ/2或02εσ=E (真空中)εσ2=E (无限大均匀电介质中) 可见在无限大均匀带电平面的电场中,各点的场强与离开平面的距离无关.(上述结果与例题9—2中用积分计算所得的结果一致,但这里的计算简单得多.)4.无限长均匀带电圆柱面的电场设有无限长均匀带电圆柱面,半径为R ,电荷面密度为σ(设σ为正).由于电荷分布的轴对称性,可以确定,在靠近圆柱面中部离开圆柱面轴线的距离比圆柱面的长度小得多的地方(在这些地方才可以将圆柱面看成是无限长的),带电圆柱面产生的电场也具有轴对称性,即离开圆柱面轴线等距离各点的场强大小相等,方向都垂直于圆柱面而向外,如图9—20所示.局限于上述区域的电场称为无限长均匀带电圆柱面的电场.为了求无限长圆柱面外任一点p 处的场强,可过p 点作一封闭圆柱面,柱面高为l ,底面半径为r ,轴线与无限长圆柱面的轴线相重合.由于封闭圆柱面的侧面上各点电位移D 的大小相等,方向处处与侧面正交,所以通过该侧面的电通量是2πrlD ;通过两底面的电通量为零.而圆柱面所包围的电荷为σ2πRl,所以按高斯定理得2πrlD=σ2πR l 由此算出 D=R σ/r 相应地,由D=εE ,得 E=R σ/r ε式中ε是圆柱面外电介质的介电系数.如果令λ=2πR σ表示圆柱面每单位长度的电量,则上两式可化为D=λ/2πr E=λ/2πεr由此可见,无限长均匀带电圆柱面在柱外各点产生的场强,相当于其电荷全部集中在其轴线上的无限长均匀带电直线产生的场强 (参看例题9—1).根据同样的讨论,可知带电圆柱面内部的场强等于零.各点的场强随各该点到带电圆柱面轴线的距离r 的变化关系.如图9—20所示.小结:从上面几个例子中可以看出,在有些情况下,利用高斯定理计算带电系统的场强是很方便的.问题的关键在于找到合适的闭合面使∮Dcos θdS 易于计算,显然,当带电系统均匀带电并具有如上各例的对称性时,就能做到这一点.用高斯定理求场强的步骤: 1.选高斯面(闭合曲面):找到合适的闭合面使∮Dcos θdS 易于计算,例如使电场强度都垂直于这个闭合面的全部或一部分,而且大小处处相等(这时D 可以提出积分号外);或者使一部分场强与该面平行,因而通过这部分面积的电通量为零.1. 求Φe ⎰=dS D θcos2. 求Σq i 内3. 求D 的大小和方向4. 求E =D /ε(记忆:D =εE )。
《电磁场与电磁波》学习提要第一章场论简介1、方向导数和梯度的概念;方向导数和梯度的关系。
2、通量的定义;散度的定义及作用。
3、环量的定义;旋度的定义及作用;旋度的两个重要性质。
4、场论的两个重要定理:高斯散度定理和斯托克斯定理。
第二章静电场1、电场强度的定义和电力线的概念。
2、点电荷的场强公式及场强叠加原理;场强的计算实例。
3、静电场的高斯定理;用高斯定理求场强方法与实例。
4、电压、电位和电位差的概念;点电荷电位公式;电位叠加原理。
5、等位面的定义;等位面的性质;电位梯度,电位梯度与场强的关系。
6、静电场环路定理的积分形式和微分形式,静电场的基本性质。
7、电位梯度的概念;电位梯度和电场强度的关系。
8、导体静电平衡条件;处于静电平衡的导体的性质。
9、电偶极子的概念。
10、电位移向量;电位移向量与场强的关系;介质中高斯定理的微分形式和积分形式;求介质中的场强。
11、介质中静电场的基本方程;介质中静电场的性质。
12、独立导体的电容;两导体间的电容;求电容及电容器电场的方法与实例。
13、静电场的能量分布,和能量密度的概念。
第三章电流场和恒定电场1、传导电流和运流电流的概念。
2、电流强度和电流密度的概念;电流强度和电流密度的关系。
3、欧姆定律的微分形式和积分形式。
4、电流连续性方程的微分形式和积分形式;恒定电流的微分形式和积分形式及其意义。
5、电动势的定义。
6、恒定电场的基本方程及其性质。
第四章恒定磁场1、电流产生磁场,恒定电流产生恒定磁场。
2、电流元与电流元之间磁相互作用的规律-安培定律。
3、安培公式;磁感应强度矢量的定义;磁感应强度矢量的方向、大小和单位。
4、洛仑兹力及其计算公式。
5、电流元所产生的磁场元:比奥-萨伐尔定律;磁场叠加原理;磁感应线。
计算磁场的方法和实例。
6、磁通的定义和单位。
7、磁通连续性原理的微分形式、积分形式和它们的意义。
8、通量源和旋涡源的定义。
9、安培环路定律的积分形式和微分形式。
大学物理复习第四章知识点总结大学物理复习第四章知识点总结一.静电场:1.真空中的静电场库仑定律→电场强度→电场线→电通量→真空中的高斯定理qq⑴库仑定律公式:Fk122err适用范围:真空中静止的两个点电荷F⑵电场强度定义式:Eqo⑶电场线:是引入描述电场强度分布的曲线。
曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。
静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。
⑷电通量:通过任一闭合曲面S的电通量为eSdS方向为外法线方向1EdS⑸真空中的高斯定理:eSoEdSqi1int只能适用于高度对称性的问题:球对称、轴对称、面对称应用举例:球对称:0均匀带电的球面EQ4r20(rR)(rR)均匀带电的球体Qr40R3EQ240r(rR)(rR)轴对称:无限长均匀带电线E2or0(rR)无限长均匀带电圆柱面E(rR)20r面对称:无限大均匀带电平面EE⑹安培环路定理:dl0l2o★重点:电场强度、电势的计算电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理电势的定义式:UAAPEdl(UP0)B电势差的定义式:UABUAUBA电势能:WpqoPP0EdlEdl(WP00)2.有导体存在时的静电场导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布⑴导体静电平衡条件:Ⅰ.导体内部处处场强为零,即为等势体。
Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等势面⑵导体静电平衡时电荷分布:在导体的表面⑶空腔导体静电平衡时电荷分布:Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。
Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q的点电荷):静电平衡时,空腔内表面带-q电荷,空腔外表面带+q。
3.有电介质存在时的静电场⑴电场中放入相对介电常量为r电介质,电介质中的场强为:E⑵有电介质存在时的高斯定理:SDdSq0,intE0r各项同性的均匀介质D0rE⑶电容器内充满相对介电常量为r的电介质后,电容为CrC0★重点:静电场的能量计算①电容:②孤立导体的电容C4R电容器的电容公式C0QQUUU举例:平行板电容器C圆柱形电容器C4oR1R2os球形电容器CR2R1d2oLR2ln()R1Q211QUC(U)2③电容器储能公式We2C22④静电场的能量公式WewedVE2dVVV12二.静磁场:1.真空中的静磁场磁感应强度→磁感应线→磁通量→磁场的高斯定理⑴磁感应强度:大小BF方向:小磁针的N极指向的方向qvsin⑵磁感应线:是引入描述磁感应强度分布的曲线。
U CU 0 A BC Qd /3 2d /3图9电磁学复习题1. M 、N 为静电场中邻近两点,场强由M 指向N ,则M 点的电位 于N 点的电位,负检验电荷在M 点的电位能 于在N 点的电位能。
2.电容为C 的电容器浸没在相对介电常数为ε的油中,在两极板间加上电压U ,则它充有电量 ,若电压增至5U ,这时充满油电容器的电容为 。
3.如图,无限大带电平板厚度为d ,电荷体密度为ρ(设均匀带电),则在板内距中心O 为x 处的P 点的场强E = 。
4.当电源 时,端电压大于电动势;当电源 时,端电压小于电动势;当电源既不充电,也不放电时,端电压等于电动势。
5.半径为R 的圆柱体上载有电流I ,电流在其横截面上均匀分布,一回路L 通过圆柱体内部将圆柱体横截面分为两部分,其面积大小分别为1S 、2S ,如图所示,则⎰∙Ll d H = 。
6.如图所示,一半径为r 的很小的金属圆环,在初始时刻与一半径为a (r a >>)的大金属圆环共面且同心,在大圆环中通以恒定的电流I ,方向如图,如果小圆环以匀角速度ω绕其任一方向的直径转动,并设小圆环的电阻为R ,则任一时刻t 通过小圆环的磁通量φ= ;小圆环中的感应电流i = 。
7.A 、B 、C 为三根共面的长直导线,各通有A 10的同方向电流,导线间距cm d 10=,那么每根导线每厘米所受的力的大小为:dl dFA = ;dl dF B= ;dldF C = 。
(270/104A N -⨯=πμ) 8.包含下列意义的方程是:1. 如图8所示,在场强为E 的均匀电场中,A 、B 两点间距离为d ,AB 连线方向与E 的夹角为30°, 从A 点经任意路径到B 点的场强线积分l E d ⎰⋅AB=9. 一平行板电容器,极板面积为S ,相距为d . 若B 板接地,且保持A 板的电势U A = U 0不变,如图9所示. 把一块面积相同的带电量为Q 的导体薄板C 平行地插入两板之间,则导体薄板C 的电势U C =10.一平行板电容器两极板间电压为U ,其间充满相对电容率为ε r 的各向同性均匀电介质,电介质厚度为d . 则电介质中的电场能量密度w =11.如图10所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,∠aob =180︒.则圆心O 点处的磁感强度的大小B =12.圆柱体上载有电流I ,电流在其横截面上均匀分布 回路L (顺时针绕向)通过圆柱内部,将圆柱体横截面分为两部分,其面积大小分别为S 1和S 2,如图11所示则=⋅⎰Ll B d13.在磁感强度为B =a i +b j +c k (T)的均匀磁场中,有一个半径为R 的半球面形碗,碗口开口沿x 轴正方向.则通过此半球形碗的磁通量为14. 边长为a 和2a 的两正方形线圈A 、B,如图12所示地同轴放置,通有相同的电流I , 线圈B 中的电流产生的磁场通过线圈A 的磁通量用ΦA 表示, 线圈A 中的电流产生的磁场通过线圈B 的磁通量用ΦB 表示,则二者大小关系式为15.矩形线圈长为a 宽为b ,置于均匀磁场B 中.线圈以角速度ω旋转,如图13所示,当t =0时线圈平面处于纸面,且AC 边向外,DE 边向里.设回路正向ACDEA . 则任一时刻线圈内感应电动势为16.一截面为长方形的环式螺旋管共有N 匝线圈,其尺寸如图14所示.则其自感系数为17.在一通有电流I 的无限长直导线所在平面内, 有一半径为r 、电阻为R 的导线环,环中心距直导线为a ,如图15所示,且a >>r .当直导线的电流被切断后,沿导线环流过的电量约为18.一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流大小为__________⑴ 静电场是有势场 。
电场知识点符号总结大全电场知识点符号中的符号是用来表示电场中的特定概念或者物理量的,它们可以帮助我们更准确地描述电场的性质和规律。
在学习电场知识的过程中,了解这些符号的含义是非常重要的。
本文将为大家总结电场知识点符号的使用,并对其含义进行解释和说明,希望能够帮助大家更好地理解电场知识。
1. 电场强度E符号:E含义:电场强度E表示单位正电荷在电场中所受的力,方向与力的方向相同。
它是一个矢量量,具有大小和方向。
2. 电势差ΔV符号:ΔV含义:电势差ΔV表示电场中两点之间的电势差,它等于单位正电荷从一个点移动到另一个点所做的功。
电势差具有大小和方向。
3. 电场强度的单位符号:N/C含义:电场强度的单位是牛顿/库仑,表示单位正电荷在电场中所受的力。
4. 电势的单位符号:V含义:电势的单位是伏特,表示电场中单位正电荷所受的电势差。
5. 电场线符号:/含义:电场线是用来表示电场的方向和强度的线条,它指示了电场中的电场强度的大小和方向。
6. 静电场符号:E含义:静电场是指在静止的电荷分布所形成的电场,它是电场的一种特殊形式。
7. 连续电荷分布符号:ρ(x,y,z)含义:连续电荷分布表示在空间中各点的电荷密度,通常用ρ(x,y,z)来表示。
8. 电场场强符号:E含义:电场场强是指单位正电荷在电场中所受的力,它是一个矢量量。
9. 电势符号:V含义:电势是指单位正电荷在电场中所受的电势差,它是一个标量量。
10. 电位能符号:U含义:电位能是指电场中的一种能量形式,它表示在电场中由于位置而具有的能量。
11. 高斯定理符号:∮E⋅dA=1ε0∮E⋅dA=1ε0Q含义:高斯定理是电场中的一种重要定理,它表示电场的通量与电场中的电荷之比等于真空介电常数ε0。
12. 电感应强度B符号:B含义:电感应强度B表示磁场的强度,它是一个矢量量。
13. 真空介电常数ε0符号:ε0含义:真空介电常数ε0是用来表示电场中电荷之间相互作用强度的常数。
电位移矢量和电荷面密度的关系一、引言电场是物理学中的一个重要概念,它是描述电荷相互作用的一种方式。
在电场中,电荷会受到力的作用,从而产生运动。
在研究电场时,我们需要了解电位移矢量和电荷面密度的关系。
二、什么是电位移矢量1. 电位移矢量的定义电位移矢量(D)是描述介质中极化程度的物理量。
它表示单位体积内的极化电荷密度。
2. 电位移矢量的单位国际单位制中,电位移矢量的单位为库仑/平方米(C/m²)。
3. 电位移矢量和极化强度的关系极化强度(P)和电位移矢量(D)之间存在着线性关系:D=ε0E+P,其中ε0为真空介质常数,E为外加场强。
三、什么是电荷面密度1. 电荷面密度的定义在介质表面上分布着一定数量的自由或束缚带点电荷,称为表面密度。
若表面上带正(或负)点总数Q,则单位面积上带正(或负)点数就称为表面电荷密度σ。
2. 电荷面密度的单位国际单位制中,电荷面密度的单位为库仑/平方米(C/m²)。
四、电位移矢量和电荷面密度的关系1. 介质中的电场当介质中存在电场时,原子或分子会产生极化。
这种极化现象会导致介质内部产生一个等效的自由电荷分布。
这些自由电荷会产生一个新的电场,称为极化电场。
2. 电位移矢量和极化强度之间的关系根据定义,D=ε0E+P。
其中,E为外加场强,P为极化强度。
我们可以将其改写为D=ε0E+ε0χeE,其中χe是介质的介电常数。
因此,D和E之间存在线性关系。
3. 电位移矢量和表面密度之间的关系在介质表面上存在一定数量的自由或束缚带点电荷。
这些带点电荷会对周围的介质产生极化作用。
因此,在表面处也会存在一个等效的自由电荷分布。
这个等效自由电荷分布就可以用表面密度来描述。
4. 总结因此,我们可以得出结论:电位移矢量和电荷面密度之间存在着线性关系。
具体而言,D=ε0E+σ,其中E为外加场强,σ为表面电荷密度。
五、应用举例1. 电容器中的应用在电容器中,两个导体板之间的空气或介质就是一种极化介质。
介电常数和场强的关系介电常数是衡量物质在电场中相对于真空的电场强度的能力的物理量。
当一个物质处于电场中时,电场会对其内部的电荷产生力的作用。
介电常数可以描述物质对电场的响应情况,即介电常数越大,物质对电场的响应能力越强。
介电常数与场强的关系可以通过电位移矢量来理解。
电位移矢量是描述电场中电荷分布情况的物理量,它等于电场强度乘以介电常数。
即电位移矢量D等于介电常数ε乘以电场强度E。
在没有介质存在的真空中,电场强度与电位移矢量相等,即E=D。
但在介质中,由于介质对电场的响应能力,电场强度与电位移矢量存在一定的差异。
当电场强度作用于介质时,介质内部的电荷会重新排列,形成极化。
极化会产生一个与电场方向相反的极化电荷,使得介质内部形成一个与外部电场相抵消的电场。
这个抵消电场强度称为极化电场强度Ep。
因此,在介质中,电场的总强度可以分为两部分:外部电场强度E 和极化电场强度Ep。
它们的关系可以表示为E=Ep+P/ε,其中P是介质的极化电荷密度。
从上述关系可以看出,当介质的介电常数增大时,极化电场强度Ep相对减小,即介质对电场的响应能力减弱。
因此,介电常数的增大会使得电场强度减小。
介电常数还可以影响介质的电容性质。
电容是描述电场储存能量的能力的物理量,它与介电常数有直接的关系。
当一个电容器的两个极板之间填充了介质时,介质的介电常数会影响电容器的电容量。
根据电容器的公式C=εA/d,其中C是电容量,A是极板的面积,d 是极板间的距离,ε是介质的介电常数。
可以看出,介质的介电常数越大,电容器的电容量也越大。
总结来说,介电常数是描述物质在电场中响应能力的物理量,它与电场强度有着密切的关系。
介电常数越大,物质对电场的响应能力越强,电场强度越小。
同时,介电常数还会影响介质的电容性质,介质的介电常数越大,电容器的电容量也越大。
通过对介电常数和场强的关系的探讨,我们可以更加深入地理解物质在电场中的行为,并在应用中合理选择介质以达到所需的电场效果。
第三章 练习题一、选择题1、[ C ]关于D r的高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D r为零.(B) 高斯面上D r 处处为零,则面内必不存在自由电荷. (C) 高斯面的D r通量仅与面内自由电荷有关.(D) 以上说法都不正确.2、[ D ]静电场中,关系式 0D E P ε=+r r r(A) 只适用于各向同性线性电介质. (B) 只适用于均匀电介质. (C) 适用于线性电介质. (D) 适用于任何电介质.3、[ B ]一导体球外充满相对介电常量为r ε的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度0σ为:(A)0E ε. (B) E ε. (C) r E ε . (D) 0()E εε- .4、[ A ]一平行板电容器中充满相对介电常量为r ε的各向同性的线性电介质.已知介质表面极化电荷面密度为σ'±,则极化电荷在电容器中产生的电场强度的大小为:(A)0σε'. (B) 0r σεε'. (C) 02σε'. (D) rσε'. 5、[ B ]一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E r ,电位移为0D r,而当两极板间充满相对介电常量为r ε的各向同性的线性电介质时,电场强度为E r ,电位移为D r,则(A) 00,r E E D D ε==r rr r . (B) 00,r E E D D ε==r r r r.(C) 00,r r E E D D εε==r r r r . (D) 00,E E D D ==r r r r.6、 [ C ]一空气平行板电容器,两极板间距为d ,充电后板间电压为U 。
然后将电源断开,在两板间平行地插入一厚度为d/3的与极板等面积的金属板,则板间电压变为(A )3U . (B)13U . (C) 23U . (D U .7、[ B ]一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E ↑,C ↑,U ↑,W ↑. (B) E ↓,C ↑,U ↓,W ↓. (C) E ↓,C ↑,U ↑,W ↓. (D) E ↑,C ↓,U ↓,W ↑.8、[ B ]真空中有“孤立的”均匀带电球体和一“孤立的”的均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是 (A) 球体的静电能等于球面的静电能. (B) 球体的静电能大于球面的静电能. (C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. 9、[ B ]如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将(A) 增大. (B) 减小. (C) 不变. (D) 如何变化无法确定.10、[ D ]图示为一均匀极化的各向同性电介质圆柱体,已知电极化强度为P ϖ,圆柱体表面上束缚电荷面密度0σ'=的地点是图中的(A) a 点. (B) b 点. (C) c 点. (D) d 点.二、填空题1、分子的正负电荷中心重合的电介质叫做无极分子电介质,在外电场作用下,分子的正负电荷中心发生相对位移,电介质的这种极化形式叫:____ __极化。