小升初数学知识点归纳-数与代数.doc
- 格式:doc
- 大小:602.50 KB
- 文档页数:16
练习2用含有字母的式子表示阴影部分的面积,并求当a=4cm, b = 2cm时,阴影部分的面积是多少?题型二用等量代换和设数法解题例 3 已知 a—3b + 4=18,求 4a—12b —5 的值。
练习3 若a=3b=0, c= a,求a + b十0的值。
a b c 3 a + b— 2 c占人例4已知一=—=—=0,求 ------------ 的值。
2 3 4 c一b + a练习4 已知a、b、c分别表示3个自然数,a+b+c = 10, a —b = 174, a + b —c = 27,那么aXbXc的结果是多少?题型三利用方程的计算方法解题例5在括号里填上适当的数,使方程的解是30。
3x+( )X5 = 180练习5 x是自然数。
(1)当x等于什么数时,3x+12的值等于24?(2)当x等于什么数时, 3x+12的值大于24?(3)当x等于什么数时,3x+12的值小于24?例 6 已知 a*b=5a-3b,若 x*(4*6)=9,求 x 的值。
练习6已知x4y = 2x + y,要使口△(*△2)=6中的x值是5, 口里应该填什么数?题型四利用假设推理的方法解题例7已知a= =,b= 2,当x为何值是,a的值比b的值大1。
3 5练习7小明设计的数值转换程序如下:输入xf+ 100fX 50%f减2f输出结果---- ------- ------ | 3| ----------(1)用式子表示输出的数。
(2)如果输出的数是166,输入的数是多少?3例8已知aXb —1 = x,其中a、b为质数且均小于100, x是奇数,那么x的最大值是多少?练习8如果方程8+( 16 + x )=1和方程(x + y )X2 = 36的x值相等,方程(x + y )X2 = 36 中y的值是多少?题型五利用方程解应用题例9服装店运来一批休闲装和羊毛衫,其中羊毛衫的数量是休闲装的1。
休闲装的买进价是每2件240元,羊毛衫的买进价是每件160元。
2023人教版小升初数学知识要点汇总第一部份数与代数(一)数的认识整数【正数、0、负数】一、一个物体也没有,用0表示。
0和1、2、3……都是自然数。
自然数是整数。
二、最小的一位数是1,最小的自然数是0。
三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。
“+4”读作正四。
“-4”读作负四。
+4也可以写成4。
四、像 +4、19、+8844这样的数都是正数。
像-4、-11、-7、-155这样的数都是负数。
五、0既不是正数,也不是负数。
正数都大于0,负数都小于0。
六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
七、通常情况下,盈利用正数表示,亏损用负数表示。
八、通常情况下,上车人数用正数表示,下车人数用负数表示。
九、通常情况下,收入用正数表示,支出用负数表示。
十、通常情况下,上升用正数表示,下降用负数表示。
小数【有限小数、无限小数】一、分母是10、100、1000……的分数都可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。
每相邻两个计数单位间的进率都是10。
三、每个计数单位所占的位置,叫做数位。
数位是按照一定的顺序排列的。
四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。
九、整数和小数的数位顺序表:分数【真分数、假分数】一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
千里之行,始于足下。
小升初数学必考知识点参考小升初数学的考试内容相对固定,主要包括数与代数、几何、统计与概率三个部分。
下面是对每个部分主要考察的知识点的参考,希望对您有所帮助。
一、数与代数1. 数的认识:整数、正数、负数、零的概念及大小比较2. 数的运算:四则运算(加、减、乘、除)、加法、减法的逆运算、乘法口诀表3. 分数与小数的认识及相互转化:分数的加、减、乘、除运算、约分与化简、小数的读法与写法4. 符号的应用:加减法运算中带有括号和加减号的计算、解方程中的代入与求解5. 数的整体性:自然数的认识、完全平方数、接近整十整百的估算二、几何1. 图形的认识:平行四边形、长方形、正方形、三角形的认识及特征2. 各种图形的面积计算:长方形、正方形、三角形、梯形的面积计算3. 图形的周长计算:矩形、正方形、三角形、梯形、圆的周长计算4. 正方体、长方体、圆柱体、圆锥体的认识及体积计算5. 空间几何:平面图形的展开与折叠、立体图形的展开与拼拓三、统计与概率1. 数据的认识:数据的收集与整理,频数表、条形统计图2. 数据的分析:数据的最大值、最小值、中位数、平均数的计算与比较3. 算术均值与调和均值的理解与应用4. 基本概率:概率的认识、可能性的大小比较、事件的概率计算第1页/共2页锲而不舍,金石可镂。
以上列举的知识点是小升初数学考试中非常重要的部分,但并不代表所有的考察内容。
学生应该综合考虑教材知识点的重要性,在备考中进行有针对性的复习和练习。
此外,小升初数学考试中也涉及到一些基本的解题技巧,例如三角形的细分、抽象思维、逻辑推理等,学生需要在平时的学习中培养这些能力。
最后,值得一提的是,在备考过程中还需要注重因材施教,根据孩子的实际情况进行有针对性的指导和辅导。
尽早制定学习计划,合理安排时间,多做真题和模拟题,逐步提高对题目的理解和解题能力。
同时,提醒孩子保持良好的心态,保持信心,不要过分紧张,考试时保持好的状态,发挥出自己的最佳水平。
数与代数主要知识点数与代数是数学的基础,是数学研究的重要分支。
它们在数学中扮演着重要的角色,涉及到许多重要的概念和方法。
本文将介绍数与代数的主要知识点,包括数的性质、代数方程、函数与图像等内容。
一、数的性质数是数学中最基本的概念,包括自然数、整数、有理数和实数等。
数的性质是研究数学问题的基础,它们具有以下重要性质:1. 数的比较性质:数可以比较大小,可以使用大于、小于和等于等符号进行比较。
2. 数的运算性质:数可以进行加法、减法、乘法和除法等运算,遵循相应的运算规则。
3. 数的性质:数具有交换律、结合律和分配律等性质,这些性质在数学中起到重要的作用。
二、代数方程代数方程是数与代数中的重要概念,它是一种含有未知数的等式。
代数方程的解是使得方程成立的未知数的值。
在代数方程中,我们可以使用代数的方法来求解未知数的值。
代数方程的求解过程中,可以运用因式分解、配方法、根号法等多种方法,求得方程的解。
三、函数与图像函数是数与代数中的重要概念,它描述了两个变量之间的关系。
函数可以用数学表达式表示,其中包含自变量和因变量。
函数的图像是函数在坐标系中的表示,它可以直观地展示函数的特点和性质。
函数的图像可以帮助我们理解函数的变化规律,找到函数的最大值、最小值和零点等重要信息。
四、等差数列与等比数列等差数列与等比数列是数与代数中常见的数列。
等差数列是指数列中相邻两项之间的差值相等的数列,它具有明显的规律性。
等差数列在数学中有广泛的应用,可以用于求和、推导等。
等比数列是指数列中相邻两项之间的比值相等的数列,它也具有明显的规律性。
等比数列在数学中也有重要的应用,可以用于求和、推导等。
五、复数复数是数与代数中的重要概念,它是由实数和虚数构成的数。
复数可以用复数形式表示,其中实部和虚部分别用实数表示。
复数在数学中有广泛的应用,可以用于求解代数方程、计算电路等。
复数具有加法、减法、乘法和除法等运算规则,也有自己的共轭和模等概念。
小升初数学重点考点内容精讲-数与代数模块一数的认识考点一:因数和倍数典型试题判断题:12=2×6,所以2是因数,6是因数,12是倍数()【答案】×【详解】2和6是12的因数,12是2和6的倍数,描述因数和倍数关系时,不能单独说6是因数,12是倍数。
故答案为×。
易混易错点拨在说因数和倍数时,只能说谁是谁的因数,谁是谁的倍数,不能单独说某一个数是因数,某一个数是倍数。
如果只是描述乘法中的“因数”关系,可以这样说:在乘法算式12=2×6中,2是因数,6是因数,12是积。
拔高题训练1.一个数的最大因数和最小倍数都是30,这个数是()。
【答案】30【详解】一个数的最大因数和最小倍数就是这个数本身,所以这个数就是30。
考点二:质数、合数和分解质因数典型试题105的质因数有(),把它分解质因数是()。
【答案】3,5,7;105=3×5×7【详解】每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数。
105的质因数有3,5,7,105=3×5×7。
易混易错点拨1既不是1质数也不是合数,因此合数分解质因数后的算式中一定不能有1,这常常考点。
1也是所有数的公因数。
最小的质数是2,是个偶数,最小的合数是4。
拔高题训练2.下面各组数中,一定不能成为互质数的一组是()。
A.质数与合数B.奇数与偶数C.偶数与偶数D.质数与质数【答案】C【详解】根据互质数的定义,两个整数只有公因数1的时候是互质数,而两个偶数之间除了公因数1,至少还可以被2整除。
故答案为C。
考点三:2、3、5的倍数的特征,奇数偶数典型试题同时是2、3、5的倍数的最小三位数是(),是个()数。
【答案】120;偶【详解】因为同时是2和5的倍数的话,个位只能是0,又要求这个三位数最小,那么从百位最小是1的时候开始考虑,这个数是3的倍数,所以十位为2时,1+2+0=3,此时满足条件,这个数最小是120。
人教版小升初数学知识点汇总这篇文档旨在全面总结人教版小学六年级数学知识点,帮助同学们系统复习,为顺利升入初中打下坚实的基础。
内容涵盖数与代数、图形与几何、统计与概率三大模块,并配以例题讲解和练习题,力求做到深入浅出,通俗易懂。
一、数与代数1. 数的认识:• 整数: 包括自然数(0, 1, 2, 3…)和负整数(-1, -2, -3…)。
理解整数的意义、大小比较、数位和计数单位,掌握整数的读写方法。
熟练运用数轴表示整数。
• 小数: 理解小数的意义、计数单位,掌握小数的读写方法,能进行小数的比较大小、加减乘除运算。
理解小数的意义与分数的关系,能进行小数与分数的互化。
• 分数: 理解分数的意义,掌握分数的基本性质,能进行约分、通分、比较大小、加减乘除运算。
理解分数与小数的关系,能进行分数与小数的互化。
• 百分数: 理解百分数的意义,能进行百分数与分数、小数的互化,并能解决相关的实际问题。
例如,求一个数的百分之几是多少,求百分率等。
• 比和比例: 理解比的意义和性质,会求比值,能解决比例问题。
理解比例的意义,会判断成比例线段,会解比例。
掌握比例尺的计算和应用。
• 数的整除: 理解整除的意义,掌握约数、倍数、质数、合数、质因数的概念,能进行质因数分解。
掌握最大公约数和最小公倍数的求法,并能解决相关的实际问题。
例题1: 一个数由3个亿、5个千万、7个万和2个百组成,这个数写作________,读作________。
例题2: 把分数 35 化成小数是________,把小数 0.75 化成分数是________。
例题3: 求 12 和 18 的最大公约数和最小公倍数。
练习题1:1. 写出下列各数:三千零五万零八百; 二亿零五百万。
2. 将下列分数化成小数:14,38,523. 将下列小数化成分数:0.25,0.6,1.254. 求 24 和 36 的最大公约数和最小公倍数。
5. 一个长方形的长是 15cm ,宽是 10cm ,它的周长是多少?面积是多少?2. 代数初步:•用字母表示数:理解用字母表示数的意义,能用字母表示数量关系和计算公式。
小学数学数与代数知识点整理第一章数和数的运算一、概念(一)整数1 整数的意义:自然数和0都是整数。
2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位练习题:(1)分数的单位是1/8的最大真分数是(),它至少再添上()个这样的分数单位就成了假分数(2)在1/4 、15/24 、7/4 、9/12 四个数中,分数单位相同的是(),相等的分数是()和()。
(3)3/7 的分子加上6,要使分数的大小不变,分母应加上()。
5数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a ;如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数(或a的因数)。
倍数和因数是相互依存的。
如:因为35能被7整除,所以35是7的倍数,7是35的因数。
(1)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
(2)一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
(3)常用规律:①个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
②个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
③一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
④一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
整理和复习1、数与代数(一)数的认识定义:像8,16,+1,0.6,+这样的数叫做正数41正数 写法和读法:正数前面加“+”号。
如+8读作:“正八” “+”号一般可以省略不写数 定义:像-1,-10.2,-7.9,-这样的数叫做负数41负数 写法和读法:负数前面加“-”号。
如-15读作:“负十五” 数字越大负数反而越小比0小的数是负数,比0大的数是正数“0”既不是正数,也不是负数。
正整数自然数 整数 0 数 (小数是特殊的分数)百分数:(1)分母是100的分数叫做百分数。
(2)表示一个数是另一个数的百分之几的数叫做百分数。
百分数又叫百分比或百分率。
百分数通常不写成分数形式,而采用符号“%”来表示,叫做百分号。
知识点一:整数1、读数:从最高位起,一级一级的读。
读万级或亿级的数时要按照个级的读法来读,并在后面加上级名。
每一级末尾的0都不读,其他数位上不论连续有几个0,只读一个0。
写数:先确定最高位是哪一级的哪个数位,然后从高位起,一级一级往下写,哪一整数部分亿级万级个级小数点小数部分数位千 百 十 亿亿 亿 亿位 位 位 位千 百 十 万万 万 万位 位 位 位千 百 十 个位 位 位 位十 百 千......分 分 分计数单位千 百 十 亿亿 亿 亿千 百 十 万万 万 万千 百 十 一 (个).十 百 千......分 分 分......之 之 之......一 一 一......位一个单位也没有,就在哪个数位上写0。
2、数的改写与求近似数:为了读写方便,常把较大的数简写成用“万”或“亿”作单位的数。
如:2365500=236.55万(改写用“万”作单位的数)。
如:2365500≈237万(省略万位后面的尾数,写成近似数),如:7.62983≈7.6(保留一位小数)。
知识点二:小数1、小数的意义: 把整数“1”平均分成10份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几…可以用小数来表示。
小升初数学专题复习训练——数与代数应用题(2)知识点复习一.百分数的实际应用【知识点归纳】①出勤率=出勤人数÷总人数×100%发芽率=发芽种子数÷试验种子数×100%小麦的出粉率=面粉的重量÷小麦的重量×100%产品的合格率=合格的产品数÷产品总数×100%职工的出勤率=实际出勤人数÷应出勤人数×100%②纳税问题:缴纳的税款叫应纳税款应纳税额与各种收入的比率叫做税率税款=应纳税金×税率③利息问题:存入银行的钱叫本金;取款时,银行多支付的钱叫做利息利息与本金的比值叫做利率利息=本金×利率×时间【命题方向】常考题型:例1:某公司开会,有25人缺席,有100人出席,这个会议的出席率是()A、80% B、75% C、100%答:出席率是80%;故选:A.点评:此题属于百分率问题,计算的结果最大值为100%,都是用一部分数量(或全部数量)除以全部数量乘以百分之百.例2:某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%,这个商店卖出这两件商品是赚钱还是亏本?分析:可以这样想,赚了20%,亏本20%是和谁比较呢?是与原价比较,因此原价是单位“1”,赚了20%就是说原价的(1+20%)是60元,求原价,用除法,60÷(1+20%)=50(元),同理亏本20%就是说原价的(1-20%)是60元,求原价,用除法,60÷(1-20%)=75(元).解:[60÷(1+20%)+60÷(1-20%)]-60×2=[50+75]-120;=125-120;=5(元);答:这两件商品亏了5元.点评:解决这个问题的关键是正确确定单位“1”,找出对应关系.二.分数、百分数复合应用题【知识点归纳】含有三个已知条件的两步计算的应用题,有两个或两个以上的基本数量关系组成的,通常叫做复合应用题;分数、百分数复合应用题,运算按照分数和百分数的运算法则进行运算即可,通常是将分数化成百分数.【命题方向】=200(米).答:这捆电线长200米.三.简单的工程问题【知识点归纳】探讨工作总量、工作效率、工作时间三个数量之间相互关系的一种应用题.解题关键:把工作总量看做单位“1”,工作效率就是工作时间的倒数,然后,根据题目的具体情况,灵活运用公式.数量关系式:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率合作时间=工作总量÷工作效率和【命题方向】常考题型:间=工作总量÷工作效率即可求得两人合打需要的时间,由此即可进行选择.故选:A.点评:此题考查了工作时间=工作总量÷工作效率在实际问题中的灵活应用,把工作总量看做单位“1”得出甲和乙的工作效率是解决本题的关键.例2:要装配210台电脑,已经装了6天,每天装配15台,剩下的每天装配20台,还要几天才能装完?分析:我们运用要装配电脑的台数减去已经装的台数,除以剩下的每天装配的台数,就是要用的天数.解:(210-15×6)÷20=120÷20=6(天);答:还要6天才能装完.点评:本题运用“工作总量÷工作效率=工作时间”进行解答即可.四.简单的归一应用题【知识点归纳】已知相互关联的两个量,其中一个量在改变,另一个量也随之改变,其变化的规律是相同的,这种问题称之为归一问题.归一问题可以分为一次归一问题、两次归一问题.一次归一问题:用一步运算就能求出单一量的归一问题,又称单归一两次归一问题:用两步运算才能求出单一量的归一问题,又称双归一归一问题还可以分为正归一问题、反归一问题.正归一问题:用等分除法求出单一量之后,再用乘法计算结果的归一问题反归一问题:用等分除法求出单一量之后,再用除法计算结果的归一问题解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后,以它为标准,根据题目的要求算出结果.数量关系式:单一量×份数=总数量(正归一)总数量÷单一量=分数(反归一)【命题方向】常考题型:分析:先算出平均每小时做多少个零件,再算出3小时做多少个零件,把40件零件看做单位“1”,进一步求出3小时做的占40件得几分之几.解:平均每小时做的零件数:40÷5=8(个),故选:A.点评:解答此题的关键是先求得单一量,再由不变的单一量求得总量,进一步得出答案.例2:3台织布机4小时织布336米,照这样计算,1台织布机8小时织布多少米?分析:照这样计算,说明每台织布机,每小时织布量不变,先用336除以3台,求出每台4小时的织布量,再除以4小时,求出每台每小时的织布量,然后乘上8小时即可求解.解:336÷3÷4×8,=112÷4×8,=28×8,=224(米);答:1台织布机8小时织布224米.点评:解答此题的关键是先求得单一量,再由不变的单一量求得总量.五.简单的归总应用题【知识点归纳】是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量,求得单位数量的个数(或单位数量).特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过,变化的规律相反,和反比例算法彼此相通.数量关系式:单位数量×单位个数÷另一个单位数量=另一个单位数量.“归一”与“归总”的区别:“归一”先求出单一量,再求总量;“归总”是先出总量,再求单一量.【命题方向】常考题型:例1:小明打算16天看完一本故事书,平均每天看15页.现在要10天看完,平均每天应看多少页?分析:先求出这本书共有多少页,再把这些页数平均分到10天.解:16×15÷10,=240÷10,=24(页);答:平均每天应看24页.点评:本题先求出不变的总量,再根据总量求解.六.归一、归总加条件的三步应用题【知识点归纳】1.理解题意,分析出是归一还是归总题型.2.理解乘除与加减混合的三步运算式题的运算顺序,并能正确地计算.【命题方向】常考题型:例1:3名工人5小时加工零件90件,要在10小时完成540个零件的加工,需要工人9人.分析:由“3名工人5小时加工零件90件”,可知每人每小时加工零件90÷5÷3=6(个);要在10小时完成540个零件,那么每小时完成540÷10=54(个),因此需要工人54÷6=9(人).解:540÷10÷(90÷5÷3),=54÷6,=9(人);答:需要工人9人.故答案为:9.点评:此题解答的关键是先求出每人每小时加工的零件个数,然后再求10小时完成540个零件需要的人数.例2:在图书室借阅图书的期限为10天,10天后超过的天数要按每册0.5元收取延时服务费.小明借了一本故事书,如果每天看5页,16天才能全部看完.请你帮他算一算,他至少每天多看几页才能准时归还而不交延时服务费?分析:要想能准时归还而不交延时服务费,就必须10天看完这本书,所以要先求出这本书一共有多少页,就是求16个5页是多少,用乘法,即16×5;然后用总页数除以10天,就是他每天要看的页数,即16×5÷10;用这个页数减去5,就是每天要多看的页数,即16×5÷10-5.解:16×5÷10-5=80÷10-5=8-5=3(页)答:他至少每天多看3页才能准时归还而不交延时服务费.点评:本题还可以用逆推法,要求他至少每天多看几页才能准时归还而不交延时服务费,就要先求出他应看的页数,他应看的页数就要用总页数÷10天,总页数又是原来每天看的页数×16天.七.简单的行程问题【知识点归纳】计算路程,时间,速度的问题,叫做行程问题.解题关键及规律:同时同地相背而行:路程=速度和×时间同时相向而行:两地的路程=速度和×时间同时同向而行(速度慢的在前,快的在后):追及问题=路程÷速度差同时同地同向而行(速度慢在后,快的在前):路程=速度差×时间.故选:C.点评:本题主要考查学生时间、路程、速度差的掌握情况.。
小升初数学第一章数与代数数的认识A 知识点1.掌握数的读法、写法2.熟练的进行数的计算及数的互化3.灵活的运用数的计算、数的性质解决实际问题知识要点一、整数的读法和写法:1、读数时,从高位起,一级一级地往下读,属于亿级和万级的要读出级名.2、读数时,每级末尾的“0”都不读,其他数位有一个0或连续几个0都只读一个0.如:8000406000读作: 八十亿零四十万六千.3、写数时,从高位起,一级一级地往下写,哪一位上一个单位也没有,就在哪个数位上写0二、小数的读法和写法1、读小数时,小数的整数部分按整数的读法来读,小数点读作“点”,小数部分按照顺序读出每一个数位上的数字. 如 45.469 读作: 四十五点四六九2、写小数时,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字.三、数的改写和数的大小比较1、把多位数改写成用“万”或“亿”作单位的数。
如:把76450000改写成用“万”作单位的数是( )把235800000000改写成用“亿”作单位的数是( ) 方法是:在万(亿)位右边点上小数点,去掉小数末尾的“0”,加上单位万(亿)。
2、省略“万”(亿)位数后面的尾数,求近似数。
把34562800000改写成用“亿”作单位的数后,保留两位小数是3、小数近似数精确到哪一位就看那一位后面的数字,按四舍五入法取近似值。
如:4.62975保留两位小数是:( )4.62975保留三位小数是:( )那么.数的改写和求近似数的有哪些异同呢:相同点:都是改变原数的计数单位,根据要求用“亿”或“万”作单位。
不同点:“改写”只改变数的单位,不改变数的大小,用“=”表示。
求近似数是用四舍五入法,既改变了数的单位,又改变了数的大小,用“≈”表示。
四、小数、分数、百分数是可以相互转化的。
1、小数改写成分数:先改写成分母是10、100、1000……的分数,原来小数去掉小数点后做分子,在约分。
如251 0.251004==2、小数改写成百分数:先把小数点右移两位,添上“%”。
【数与代数】一、数的相关概念(一)整数1.整数:自然数和负整数都是整数。
2.自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4.数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5.能被2整除的数叫做偶数;不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2整除的特征可分为奇数和偶数。
6.倍数和因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
个位上是0、2、4、6、8的数,都能被2整除。
个位上是0或5的数,都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除。
一个数的各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
7.只有1和它本身两个因数的数叫做质数(或素数);除了1和它本身还有别的因数的数叫做合数。
1不是质数也不是合数。
100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
8.公因数只有1的两个数,叫做互质数。
成互质关系的两个数,有下列几种情况: 1和任何自然数互质;相邻的两个自然数互质;两个不同的质数互质。
9.公倍数和公因数的特征:如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。
如果两个数是互质数,它们的最大公因数就是1。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
知识点总结知识点一:常用的单位换算1、长度单位换算:1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1米=100厘米2、面积单位换算:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米3、体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米1立方分米=1升 1立方厘米=1毫升 1升=1000毫升4、重量单位换算:1吨=1000千克 1千克=1000克 1千克=1公斤5、人民币单位换算:1元=10角 1角=10分 1元=100分6、时间单位换算:1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月判断闰年平年的方法:一般的,能被4整除的年份是闰年,不能被4整除的年份是平年。
如:1988年2008年是闰年;2005年2006年2007年是平年。
但是如果是世纪年(也就是整百年),就只有能被400整除才是闰年,否则就是平年。
平年2月28天,闫年2月29天平年全年365天,闫年全年366天1日=24时 1时=60分 1分=60秒 1时=3600秒解题方法技巧:大单位换小单位,用乘法;小单位换大单位,用除法;知识点二:倍数与因数1、自然数:像0,1,2,3,4,5,6……这样的数是自然数。
最小的自然数是0,没有最大的自然数。
注意:我们现在研究的都是0除外的自然数,所以最小的一位数是1。
2、像-3,-2,-1,0,1,2,3,……这样的数是整数。
没有最大和最小的整数。
自然数一定是整数,整数不一定是自然数。
(即整数包括自然数)3、如果c⨯(a,b,c都是不为0的自然数),那么a和b就是c的因数,cba=就是a和b的倍数。
4、倍数与因数是相互依存,不能单独存在。
易错点如下:例1:4×5=20,4是因数,20是倍数,这是错误的。
小升初数学知识点归纳一、数与代数。
1. 数的认识。
- 整数。
- 整数的意义:像 -3、-2、-1、0、1、2、3……这样的数统称为整数。
整数包括正整数、0和负整数。
- 整数的读法和写法:读数时,从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零;写数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
- 数的大小比较:比较正整数的大小,位数多的数大,如果位数相同,从最高位比起;比较负整数的大小,负号后面的数越大,这个负数越小。
- 小数。
- 小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……可以用小数表示。
- 小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
- 小数点位置移动引起小数大小的变化:小数点向右移动一位、两位、三位……小数就扩大到原来的10倍、100倍、1000倍……;小数点向左移动一位、两位、三位……小数就缩小到原来的(1)/(10)、(1)/(100)、(1)/(1000)……- 分数。
- 分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
- 分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
- 分数的分类:分数分为真分数(分子小于分母)和假分数(分子大于或等于分母),假分数可以化成带分数或整数。
- 百分数。
- 百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用“%”来表示。
2. 数的运算。
- 四则运算的意义和法则。
- 加法:把两个数合并成一个数的运算。
计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
- 减法:已知两个加数的和与其中一个加数,求另一个加数的运算。
计算法则:相同数位对齐,从低位减起,哪一位上的数不够减,就从它的前一位退一当十,和本位上的数合并在一起,再减。
小升初数学知识点汇总一、数与代数1、整数整数包括正整数、零和负整数。
像0、1、2、3 这样的数是自然数,自然数是整数的一部分。
整数的计数单位有个、十、百、千、万、十万、百万、千万、亿等。
整数的读法:从高位到低位,一级一级地读,每一级末尾的 0 都不读出来,其他数位连续有几个 0 都只读一个零。
整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写 0。
2、小数把整数 1 平均分成 10 份、100 份、1000 份……得到的十分之几、百分之几、千分之几……可以用小数表示。
小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
3、分数把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
分数的写法:先写分数线,再写分母,最后写分子。
4、百分数表示一个数是另一个数的百分之几的数叫做百分数,也叫百分率或百分比。
百分数通常用“%”来表示。
5、数的大小比较(1)整数的大小比较:位数不同的,位数多的数就大;位数相同的,从最高位比起,相同数位上的数大的那个数就大。
(2)小数的大小比较:先比较整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……(3)分数的大小比较:分母相同的分数,分子大的分数大;分子相同的分数,分母小的分数大。
分子和分母都不同的分数,先通分,再比较大小。
6、数的运算(1)加法:把两个数合并成一个数的运算。
(2)减法:已知两个加数的和与其中一个加数,求另一个加数的运算。
(3)乘法:求几个相同加数的和的简便运算。
(4)除法:已知两个因数的积与其中一个因数,求另一个因数的运算。
《数与代数》知识梳理——林友增一、内容分配数的认识数的运算数学思考式与方程常见的量比和比例一上20以内数的认识20以内加减法、进位加法求和应用题求差应用题图示加减两步应用题钟表的认识(时针、分针)一下100以内数的认识20以内的退位减法100以内的加法与减法图文应用题表格应用题(练习中)加减、比多少应用题认识人民币认识时间二上100以内的加法和减法表内乘法几个几的乘法应用题求一个数的几倍的长度单位二下万以内数的认识表内除法整百、整千数加减法万以内数的加法和减法(一)解决问题克和千克三上分数的初步认识万以内数的加法和减法(二)有余数的除法多位数乘一位数分数的简单计算有余数除法的应用题巩固两步应用题毫米、分米、千米的认识吨的认识时、分、秒三下小数的初步认识除数是一位数的除法两位数乘两位数简单的小数加减法巩固除法应用题连乘应用题解决问题年、月、日24时计时法四上大数的认识三位数乘两位数除数是两位数的除法速度四下小数的意义和性质四则运算运算定律小数的加法和减法相应的两三步应用题五上循环小数小数乘法小数除法解决问题每一种方程对应一种应用题用字母表示数方程等式五下因数和倍数分数分数的加法和减法六上倒数的认识百分数分数乘法分数除法解决问题按比例分配用百分数解决问题比六下负数用比例解决问题比例,正、反比例、比例尺图形的放大与缩小注:红字表示第一次出现的概念二、相关说明:(一)数的认识按教材分配,每一册(除二上外)都有新数的认识。
由整数——小数——分数——负数的顺序来安排。
1.整数整数分四个阶段(20以内、100以内、万以内、大数)来认识。
在20以内,主要认识基数和序数,并借助数轴和计算器了解十进制;在100以内,主要学习学的组成、数位、读数和写数;在万以内,结合计数器认识数位的读法和写法,主要是数的认识从1000扩大到10000,培养学生的数感;大数的认识,进一步认识数位,四位分级等,同时了解数的产生和十进制,并第一次讲到了四舍五入法。
小学数学数与代数知识整理数学数与代数知识梳理一概念(一)整数1 、整数的意义自然数和0都是整数。
像-1,-2,-3……这样的数也叫整数。
2 、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】数与代数一概念(一)整数1 整数的意义自然数和0都是整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53 、59、61、67、71、73、79、83、89、97。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。
其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数1 小数的意义把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2小数的分类纯小数:整数部分是零的小数,叫做纯小数。
例如:0.25 、0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。
例如:3.25 、5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如:41.7 、25.3 、0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如:4.33 …… 3.1415926 ……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:π循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如:3.555 …… 0.0333 …… 12.109109 ……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:3.99 ……的循环节是“ 9 ” ,0.5454 ……的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
例如:3.111 …… 0.5 656 ……混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
3.1222 …… 0.033 33 ……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
例如:3.777 …… 简写作0.5302302 …… 简写作。
(三)分数1 分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数1 表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
二方法(一)数的读法和写法1. 整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把1254300000 改写成以万做单位的数是12543 0 万;改写成以亿做单位的数12.543 亿。
2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如:1302490015 省略亿后面的尾数是13 亿。
3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。
例如:省略34590 0 万后面的尾数约是35 万。
省略4725097420 亿后面的尾数约是47 亿。
4. 大小比较1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。
分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6.分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7.7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。