拉普拉斯变换法
- 格式:pdf
- 大小:619.65 KB
- 文档页数:45
拉普拉斯变换法
拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t) 与复变函数F(s) 联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。
由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。
拉普拉斯变换的定义
一个定义在[0,+∞) 区间的函数f(t) ,它的拉普拉斯变换式F(s) 定义为
式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。
由F(s) 到f(t) 的变换称为拉普拉斯反变换,它定义为
式中c 为正的有限常数。
留意:
1)定义中拉氏变换的积分从t=0-开头,即:
它计及t=0-至0+ ,f(t) 包含的冲激和电路动态变量的初始值,从而为电路的计算带来便利。
2)象函数F(s) 一般用大写字母表示, 如I(s),U(s) ,原函数f(t)
用小写字母表示,如i(t),u(t)。
3)象函数F(s) 存在的条件:。
拉普拉斯变换 Prepared on 22 November 2020§13拉普拉斯变换重点:1.拉普拉斯反变换部分分式展开2.基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路3.应用拉普拉斯变换分析线性电路的方法和步骤难点:1.拉普拉斯反变换的部分分式展开法2.电路分析方法及定理在拉普拉斯变换中的应用本章与其它章节的联系:是后续各章的基础,是前几章基于变换思想的延续。
预习知识:积分变换§13-1拉普拉斯变换的定义1.拉普拉斯变换法拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t)与复变函数F(s)联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。
由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。
2.拉普拉斯变换的定义一个定义在[0,+∞)区间的函数f(t),它的拉普拉斯变换式F(s)定义为式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。
由F(s)到f(t)的变换称为拉普拉斯反变换,它定义为式中c为正的有限常数。
注意:1)定义中拉氏变换的积分从t=0-开始,即:它计及t=0-至0+,f(t)包含的冲激和电路动态变量的初始值,从而为电路的计算带来方便。
2)象函数F(s)一般用大写字母表示,如I(s),U(s),原函数f(t)用小写字母表示,如i(t),u(t)。
3)象函数F(s)存在的条件:3.典型函数的拉氏变换1)单位阶跃函数的象函数2)单位冲激函数的象函数3)指数函数的象函数§13-2拉普拉斯变换的性质拉普拉斯变换的性质列于表中。
表13-1拉氏变换的若干性质和定理特性和定理表达式条件和说明线性a、b为常数位移特性时域延迟为一非负实数频域延迟微分若所有初值为零,则有积分初值定理或存在终值定理或所有奇点均在s平面左半部卷积定理为与的卷积应用拉氏变换的性质,同时借助于表中所示的一些常用函数的拉普拉斯变式可以使一些函数的象函数求解简化。
§13拉普拉斯变换重点:1.拉普拉斯反变换部分分式展开2.基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路3.应用拉普拉斯变换分析线性电路的方法和步骤难点:1.拉普拉斯反变换的部分分式展开法2.电路分析方法及定理在拉普拉斯变换中的应用本章与其它章节的联系:是后续各章的基础,是前几章基于变换思想的延续。
预习知识:积分变换§13-1拉普拉斯变换的定义1.拉普拉斯变换法拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t)与复变函数F(s)联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。
由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。
2.拉普拉斯变换的定义一个定义在[0,+∞)区间的函数f(t),它的拉普拉斯变换式F(s)定义为式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。
由F(s)到f(t)的变换称为拉普拉斯反变换,它定义为式中c为正的有限常数。
注意:1)定义中拉氏变换的积分从t=0-开始,即:它计及t=0-至0+,f(t)包含的冲激和电路动态变量的初始值,从而为电路的计算带来方便。
2)象函数F(s)一般用大写字母表示,如I(s),U(s),原函数f(t)用小写字母表示,如i(t),u(t)。
3)象函数F(s)存在的条件:3.典型函数的拉氏变换1)单位阶跃函数的象函数2)单位冲激函数的象函数3)指数函数的象函数§13-2 拉普拉斯变换的性质拉普拉斯变换的性质列于表13.1中。
表13-1拉氏变换的若干性质和定理时域延迟为一非负实数频域延迟或存在或所有奇点均在为与的卷积应用拉氏变换的性质,同时借助于表13.2中所示的一些常用函数的拉普拉斯变式可以使一些函数的象函数求解简化。
第23讲拉普拉斯反变换的方法拉普拉斯反变换是将一个函数从复平面映射到时域的一种变换方法。
它在许多工程和科学领域中有着广泛的应用,例如控制系统理论、信号处理、电路分析等。
本文将介绍拉普拉斯反变换的基本原理和常用方法,以及一些应用实例。
1.拉普拉斯变换的基本原理拉普拉斯变换是将一个函数从时域映射到复频域的一种线性变换方法。
它可以将时域函数的微分、积分等运算转化为复频域的代数运算,从而方便地解决了许多复杂的问题。
拉普拉斯变换的表达式如下所示:\[ F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st}f(t)dt \]其中,\(F(s)\)是拉普拉斯变换后的函数,\(f(t)\)是时域函数,\(s\)是复频域中的一个变量。
2.拉普拉斯反变换的基本原理拉普拉斯反变换是将一个函数从复频域映射回时域的一种方法。
它可以将复平面上的函数进行反变换,得到原函数的表达式。
拉普拉斯反变换的表达式如下所示:\[ f(t) = \mathcal{L}^{-1}\{F(s)\} = \frac{1}{2\pi j}\lim_{T\rightarrow\infty}\int_{\sigma-jT}^{\sigma+jT}e^{st}F(s)ds \]其中,\(f(t)\)是拉普拉斯反变换后的函数,\(F(s)\)是复频域内的函数,\(j\)是虚数单位。
3.拉普拉斯反变换的常用方法拉普拉斯反变换的计算方法有很多种,主要包括部分分式法、换元法、卷积法等。
-部分分式法:将拉普拉斯变换后的函数拆解成若干个简单的分式,然后利用拉普拉斯表进行反变换。
这种方法适用于函数含有多个不同的极点的情况。
-换元法:通过选择合适的变量变换,将复频域上的函数转化为一个已知的拉普拉斯变换表达式,然后利用表格进行反变换。
这种方法适用于函数存在一些特殊的形式的情况。
-卷积法:利用拉普拉斯变换的卷积定理,将原函数的拉普拉斯变换与已知函数的变换进行卷积运算,然后进行反变换。
§13拉普拉斯变换重点:1.拉普拉斯反变换部分分式展开2.基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路3.应用拉普拉斯变换分析线性电路的方法和步骤难点:1.拉普拉斯反变换的部分分式展开法2.电路分析方法及定理在拉普拉斯变换中的应用本章与其它章节的联系:是后续各章的基础,是前几章基于变换思想的延续。
预习知识:积分变换§13-1 拉普拉斯变换的定义1.拉普拉斯变换法拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t)与复变函数F(s)联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。
由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。
2.拉普拉斯变换的定义一个定义在[0,+∞)区间的函数f(t),它的拉普拉斯变换式F(s)定义为式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。
由F(s)到f(t)的变换称为拉普拉斯反变换,它定义为式中c为正的有限常数。
注意:1)定义中拉氏变换的积分从t=0-开始,即:它计及t=0-至0+,f(t)包含的冲激和电路动态变量的初始值,从而为电路的计算带来方便。
2)象函数F(s)一般用大写字母表示,如I(s),U(s),原函数f(t)用小写字母表示,如i(t),u(t)。
3)象函数F(s)存在的条件:3.典型函数的拉氏变换1)单位阶跃函数的象函数2)单位冲激函数的象函数3)指数函数的象函数§13-2 拉普拉斯变换的性质拉普拉斯变换的性质列于表13.1中。
表13-1拉氏变换的若干性质和定理时域延迟为一非负实数频域延迟或存在或所有奇点均在为与的卷积应用拉氏变换的性质,同时借助于表13.2中所示的一些常用函数的拉普拉斯变式可以使一些函数的象函数求解简化。
拉普拉斯变换法则引言:拉普拉斯变换是一种重要的数学工具,广泛应用于信号与系统、电路分析、控制系统等领域。
它将时域中的函数转换为复频域中的函数,使得分析和处理连续时间系统更加简洁和方便。
本文将介绍拉普拉斯变换法则及其应用。
一、拉普拉斯变换的定义:拉普拉斯变换是指对函数f(t)进行变换,得到一个新的函数F(s),其中s是一个复变量。
拉普拉斯变换的定义如下:F(s) = L{f(t)} = ∫[0,∞] f(t)e^(-st)dt二、拉普拉斯变换的法则:1. 线性性质:若f(t)和g(t)的拉普拉斯变换分别为F(s)和G(s),则对于任意常数a和b,有:L{af(t) + bg(t)} = aF(s) + bG(s)2. 延时性质:若f(t)的拉普拉斯变换为F(s),则f(t - τ)的拉普拉斯变换为e^(-sτ)F(s)3. 导数性质:若f(t)的拉普拉斯变换为F(s),则f'(t)的拉普拉斯变换为sF(s) - f(0)4. 积分性质:若f(t)的拉普拉斯变换为F(s),则∫[0,t]f(τ)dτ的拉普拉斯变换为1/(sF(s))5. 初值定理:若f(t)的拉普拉斯变换为F(s),则f(0+) = lim(s→∞) sF(s)6. 终值定理:若f(t)的拉普拉斯变换为F(s),则lim(t→∞) f(t) = lim(s→0) sF(s)7. 卷积定理:若f(t)和g(t)的拉普拉斯变换分别为F(s)和G(s),则它们的卷积f(t)*g(t)的拉普拉斯变换为F(s)G(s)三、拉普拉斯变换的应用:1. 线性时不变系统分析:通过将系统的输入信号和系统的冲击响应函数进行拉普拉斯变换,可以得到系统的频域响应函数,从而分析系统的稳定性、频率特性等。
2. 电路分析:拉普拉斯变换可以简化电路分析的过程,尤其是对于复杂的电路网络。
通过将电路中的电压和电流信号进行拉普拉斯变换,可以得到复频域中的电压和电流关系,从而分析电路的动态特性。
拉普拉斯变换Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT§13拉普拉斯变换重点:1.拉普拉斯反变换部分分式展开2.基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路3.应用拉普拉斯变换分析线性电路的方法和步骤难点:1.拉普拉斯反变换的部分分式展开法2.电路分析方法及定理在拉普拉斯变换中的应用本章与其它章节的联系:是后续各章的基础,是前几章基于变换思想的延续。
预习知识:积分变换§13-1拉普拉斯变换的定义1.拉普拉斯变换法拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t)与复变函数F(s)联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。
由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。
2.拉普拉斯变换的定义一个定义在[0,+∞)区间的函数f(t),它的拉普拉斯变换式F(s)定义为式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。
由F(s)到f(t)的变换称为拉普拉斯反变换,它定义为式中c为正的有限常数。
注意:1)定义中拉氏变换的积分从t=0-开始,即:它计及t=0-至0+,f(t)包含的冲激和电路动态变量的初始值,从而为电路的计算带来方便。
2)象函数F(s)一般用大写字母表示,如I(s),U(s),原函数f(t)用小写字母表示,如i(t),u(t)。
3)象函数F(s)存在的条件:3.典型函数的拉氏变换1)单位阶跃函数的象函数2)单位冲激函数的象函数3)指数函数的象函数§13-2拉普拉斯变换的性质拉普拉斯变换的性质列于表中。
表13-1拉氏变换的若干性质和定理特性和定理表达式条件和说明线性a、b为常数位移特性时域延迟为一非负实数频域延迟微分若所有初值为零,则有积分初值定理或存在终值定理或所有奇点均在s平面左半部卷积定理为与的卷积应用拉氏变换的性质,同时借助于表中所示的一些常用函数的拉普拉斯变式可以使一些函数的象函数求解简化。