利用ASPEN PLUS 软件进行物性估算
- 格式:docx
- 大小:163.00 KB
- 文档页数:5
在ASPEN PLUS中选用的物性方法—Chao-Seader本设计中所选用的两种物质苯、甲苯都为烃类物质,且操作条件为Chao-Seader用来计算烃类混合物对重质烃类用此方法ASPEN PLUS中的塔设备单元操作模块1、DSTWU模块对单一进料两出料精馏塔进行简捷设计计算,根据给定的加料条件和分离要求计算最小回流比、最小理论板数、给定回流比下的理论板和加料版位置。
已知平衡级数,可以得到回流比;已知回流比,可以得出理论级数。
同时也能得到最佳进料位置和再沸器及冷凝器热负荷。
运用DSTWU能够得到回流比与理论级数关系曲线与表格。
可以利用此单元操作得到严格计算初值。
2、RadFrac模块此模块为严格多级气液分离模型,尤其适用于三相、宽沸程和窄沸程以及液相强非理想系体系,用于精确计算精馏塔、吸收塔(板式塔或填料塔)的分离能力和设备参数。
可以同时联解物料平衡、能量平衡和相平衡关系,用逐板计算法求解给定塔设备的操作结果3、DISTL模块此模块对单一进料两出料精馏塔进行简捷校核计算。
给定平衡级数、回流比和塔顶产品速率及冷凝器类型(全凝或部分冷凝),可估算出再沸器和冷凝器热负荷。
4、EXTRACT模块此模块为液液萃取模拟计算的严格模型,只用来进行校核计算。
可处理多进料、带侧线以及有加热和冷却单元的各种萃取体系。
分配系数的求取可采取活度系数法、状态方程法或内置温度关联式二元精馏是最为简单的一种精馏操作,其设计和操作计算是多元精馏计算的基础。
二元精馏的设计可采用简捷法和逐板计算法,Aspen Plus则采用Winn-Underwood-Gilliland简捷法进行设计,对应“Colums”中“DSTWU”模块。
由于简捷法的计算误差较大,所以需要用严格精馏模型对设计结果进行验证,采用“Colums”中的“RadFrac”模块。
所以本设计的单元操作也选用RadFrac模块。
Aspen分析混合物露点、热容、平均分子量的方法首先,打开软件,进入物性分析
(1)点“next”图标,进入下一步
(2)此界面继续点“next”
(3)输入各组分物质,后点下一步。
(4)选择计算方法。
选择“PENG-ROB”,点下一步;
(5)出现一个界面,再点下一步
(6)出现如下界面,点确定
(7)出现如下界面,先别急,等下再回来完成此步。
(8)点下面的prop-sets,(因为要分析哪些物性,需要我们自己来设定)
(9)选择new,点OK
(10)选择cpmx等相关物性
CPMX:混合物恒压热容
TDEW:混合物某压力下的露点
MWMX:混合物的平均分子量
(11)选好后,点next,点“new”。
出现如下界面,这是刚才第7步出现的界面。
(12)输入各组分的含量。
(虽然单位是kmol/h,我们所模拟的这些参数只需要知道各组分的比例就可以得出了。
不管怎么输,只要比例正确就可以了)
Next
从180度开始,到250度结束,每隔5度计一个点(13)把刚才选择的物性,添加到结果列表中。
(14)运行后,点results,查看结果
(15)结果
注:CPMX:混合物热容。
只要压力、温度、组分含量任意一个改变,此数据就要重算。
TDEW:某压力下的露点。
压力、组分含量任意一个改变,此数据就要重算。
MWMX:混合物平均分子量。
只和组分含量相关。
AspenPlusV84查混合物质的物性使用范例
1、Setup–UnitSet–选择SI(国际单位制)或者“New”新建一个
2、Setup–Specification–Global–Globalunitet选择某个单位–Globaletting–Validphae选择状态
6、Method–Specification–Global–Methodname–选择合适的物性
计算方法,可以在Plu的帮助F1里找到这方面的指导
7、PropertySet–New–EnterID输入参数包的名字–OK–Search
8、上面点击Search之后会打开下面的SearchPhyicalPropertie,
输入想要查找的物性名字,Search,双击完成添加;然后设置单位。
(添
加多个物性时会出现下图2,我做过1个验证,发现一个物性包里包含多
个参数,和一个物性包里只有一个参数,结算结果显示两个物性包里这个
参数是相同的)。
完成后如下图3.
9、有时候Qualifier会显示红色,提示选择合适的物质状态
10、Analyi–选择界面右上方Analyi中的Pure/Binary/Mi某ture,本。
利用ASPEN PLUS 软件进行物性估算Aspen Plus 是一款功能十分强大的工艺模拟软件, 对有机化工、无机化工、电化学、石油化工等各领域的各种单元操作均可模拟。
其自带的各种物质的物性数据库较全, 可满足绝大多数的工艺过程的模拟要求。
但在实际的工艺模拟计算过程中, 有时也会遇到在Aspen Plus 自带的物性数据库中查不到的物质, 使模拟过程无法正常进行下去。
此时, 利用Aspen Plus 软件提供的物性估算功能, 可以很好地解决此类问题。
以下以发酵液中低浓度1,3- 丙二醇分离项目中的重要的中间产物2- 甲基- 1,3- 二噁烷( 2MD) 的物性估算为例, 说明Aspen Plus 软件物性估算功能的使用。
为了成功估算2MD 的物性, 首先要向AspenPlus 软件提供必要的基本物性数据, 包括分子结构、常压沸点、分子量、各种试验测得的物性等。
以上这些物性中, 仅分子结构是物性估算中所必需的, 依据分子结构, Aspen Plus 软件可计算出常压沸点和分子量, 从而进一步计算所需的其它各种物性。
1. 2MD 物性的输入2- 甲基- 1,3- 二噁烷( 2MD) 是1,3- 丙二醇分离项目中的中间产物, 由于Aspen Plus 软件自带的物性数据库中查不到2MD, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对2MD 计算。
其分子结构如下:已知的其它物数据: 分子量102.13; 沸点(1atm):110°C; 密度(25°C):0.98kg/m3; 粘度(25°C):0.603cp; 标准生成热(25°C):- 363.02kJ/mol; 标准熵(25°C):303J/(mol·K); 表面张力(25°C):24.93dyn/cm。
因为采用基团贡献法来估算2MD 的物性, 所以在properties 中选用UNIFCA 为计算方法, 然后输入分子结构。
1 纯组分物性常数的估算1.1、乙基2-乙氧基乙醇物性的输入由于Aspen Plus 软件自带的物性数据库中很难查乙基2-乙氧基乙醇的物性参数, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对乙基2-乙氧基乙醇计算。
已知:最简式:(C6H14O3)分子式:(CH3-CH2-O-CH2-CH2-O-CH2-CH2-OH)沸点:195℃1.2、具体模拟计算过程乙基2-乙氧基乙醇为非库组分,其临界温度、临界压力、临界体积和临界压缩因子及理想状态的标准吉布斯自由能、标准吉生成热、蒸汽压、偏心因子等一些参数都很难查询到,根据的已知标准沸点TB,可以使用aspen plus软件的Estimation Input Pure Component(估计输入纯组分) 对纯组分物性的这些参数进行估计。
为估计纯组分物性参数,则需1. 在 Data (数据)菜单中选择Properties(性质)2. 在 Data Browser Menu(数据浏览菜单)左屏选择Estimation(估计)然后选Input(输入)3. 在 Setup(设置)表中选择Estimation(估计)选项,Identifying Parameters to be Estimated(识别估计参数)4. 单击 Pure Component(纯组分)页5. 在 Pure Component 页中选择要用Parameter(参数)列表框估计的参数6. 在 Component(组分)列表框中选择要估计所选物性的组分如果要为多组分估计选择物性可单独选择附加组分或选择All(所有)估计所有组分的物性7. 在每个组分的 Method(方法)列表框中选择要使用的估计方法可以规定一个以上的方法。
具体操作过程如下:1、打开一个新的运行,点击Date/Setup2、在Setup/Specifications-Global页上改变Run Type位property Estimation3、在Components-specifications Selection页上输入乙基2-乙氧基乙醇组分,将其Component ID为DIMER4、在Properties/Molecular Structure -Object Manager上,选择DIMER,然后点Edit5、在Gageneral页上输入乙基2-乙氧基乙醇的分子结构6、转到Properties/Parameters/Pure Component Object Manager上,点击“NEW”然后创建一个标量(Scalar)参数TB7、输入DIMER的标准沸点(TB)195℃8、然后转到Properties/Estimation/Set up页上,选择Estimation all missing Parameters9、运行该估算,并检查其结果。
Aspen Plus中查物性的两种方法方法之一:1、开始--->程序--->Aspen tech--->Processing Modeling V7.2--->Aspen Properties --->Aspen Properties Database Manager 2、点击确定后--->在左栏选择console root--->aspen physical properties databases V7.2--->APV72--->selected compounds--->find compound 3、输入你要查找的物质,双击,在selected compounds的下一级菜单中会出现你选择的物质。
4、点击properties and parameters--->pure 在右边的view 下面compounds中选择你选择的物质,在databanks选择all 或者指定数据库,在properties中选择all,点击compare然后下面显示的就是该物质的所有物性。
5,最后要说明的是。
大家会在value一列中发现好多加号,单击后,你会有惊奇的发现。
6、建议大家把结果拷贝到excel中去看,这样不容易遗漏什么。
在没有安装Aspen Property 这个模块的情况可以找到上述的两个数据库
方法之二:查看纯组分的物性:填写Component时,点击“Review”。
混合物的物性是比较复杂的。
可以利用Property Analysis中进行物性分析,做物性。
有时候还需要对物性方法中的Routes进行修改。
物性分析方法(Property Analysis)在进行一个流程模拟之前,最好先了解一下你所选物系,以及物系中物质的物性和相平衡关系,对所选体系偏离理想体系的程度有个初步的了解,对所选体系热力计算方法有个初步的认识。
只有这样才能够选择合适的物性计算方法,在得出模拟结果之后,才能保证模拟结果的可信度。
下面做一个CO2/Ar体系物性分析的例子,旨在抛砖引玉,有错误的地方还请读者批评指正。
1.开始设置选择模拟类型(Simulations)为:General with Metric Units,单位制可以根据自身选择的单位体系来定。
选择运行类型(Run Type)为:Property Analysis,当然在其它运行类型中也能够进行物性,不过这个运行类型没有流程图及其它一些要素,是专门为物性分析而设立的运行类型。
图12. Setup参数设置设置Setup中的一些参数,如Title,(这里可以不填写,但是最好还是设置一下,可以方便其它用户对你的模拟进行了解,增加其互通性)Unit,Run Type,其中Unit,Run Type 中的设置相当于第一步中的Simulation,Run Type设置,对于前面已经选择的类型在这里可以看到设置的结果如图2。
当然也可以重新设置。
它好处就是,可以很方便的使用户可以在不建立新模拟的情况下,改变单位制及运行类型。
在Description中可以填写对模拟的一些简单描述,可以在报告(.rep)中输出,可以增加其可读性。
其它的一些选项这里就不做介绍了。
图23. 在Component中定义组分在Component ID中输入CO2,AR即可,对于其它一些常用的物质直接输入其名字或分子式就行。
而对于一些结构复杂的物质可以运用Find来查找。
输入后结果如图3。
图3注:Elec Wizard:电解质向导,可以帮助用户输入电解质。
User Defined:输入用户自定义的组分。
Reorder:重新调整输入物质的顺序。
首先要明白什么是物性方法比如我们做一个很简单的化工过程计算,一股100C,1atm的水-乙醇(1:1的摩尔比,1kmol/h)的物料经过一个换热器后冷却到了80C,,问如分别下值是多少1.入口物料的密度,汽相分率。
2.换热器的负荷。
3.出口物料的汽相分率,汽相密度,液相密,还可以问物料的粘度,逸度,活度,熵等等。
以上的值怎么计算出来好,我们来假设进出口的物料全是理想气体,完全符合理想气体的行为,则其密度可以使用PV=nRT计算出来。
并且汽相分率全为1,即该物料是完全气体。
由于理想气体的焓与压力无关,则换热器的负荷可以根据水和乙醇的定压热熔计算出来。
在此例当中,描述理想气体行为的若干方程,比如涉及至少如下2个方程:=nRT,=CpdT. 这就是一种物性方法(aspen plus中称为ideal property method)。
简单的说,物性方法就是计算物流物理性质的一套方程,一种物性方法包含了若干的物理化学计算公式。
当然这例子选这种物性方法显然运行结果是错误的,举这个例子主要是让大家对物性方法有个概念。
对于水-乙醇体系在此两种温度压力下,如果当作理想气体来处理,其误差是比较大的,尤其对于液相。
按照理想气体处理的话,冷却后仍然为气体,不应当有液相出现。
那么应该如何计算呢想要准确的计算这一过程需要很多复杂的方程,而这些方程如果需要我们用户去一个个选择出来,则是一件相当麻烦的工作,并且很容易出错。
好在模拟软件已经帮我做了这一步,这就是物性方法。
对于本例,我们对汽相用了状态方程,srk,液相用了活度系数方程(nrtl,wilson,等等),在aspen plus中将此种方法叫做活度系数法。
如果你选择nrtl方程,就称为nrtl方法,wilson方程就成为wilson物性方法(wilson property method)。
在aspen plus中(或者化工热力学中)有两大类十分重要的物性方法,对于初学者而言,了解到此两类物性方法,基本上就可以开始着手模拟工作了。
利用ASPEN PLUS 软件进行物性估算系别:生物与化学工程学院专业:化学工程与工艺班级:091611姓名:***学号:*********指导老师:***利用ASPEN PLUS 软件进行物性估算其自带的各种物质的物性数据库较全, 可满足绝大多数的工艺过程的模拟要求。
但在实际的工艺模拟计算过程中, 有时也会遇到在Aspen Plus 自带的物性数据库中查不到的物质, 使模拟过程无法正常进行下去。
此时, 利用Aspen Plus 软件提供的物性估算功能, 可以很好地解决此类问题。
以下以发酵液中低浓度1,3- 丙二醇分离项目中的重要的中间产物2- 甲基- 1,3- 二噁烷( 2MD) 的物性估算为例, 说明Aspen Plus 软件物性估算功能的使用。
正文:Aspen Plus提供一套功能强大的模型分析工具,最大化工艺模型的效益:收敛分析:自动分析和建议优化的撕裂物流、流程收敛方法和计算顺序,即使是巨大的具有多个物流和信息循环的流程,收敛分析非常方便。
calculator models计算模式:包含在线FORTRAN 和Excel 模型界面。
灵敏度分析:非常方便地用表格和图形表示工艺参数随设备规定和操作条件的变化而变化。
案例研究:用不同的输入进行多个计算,比较和分析。
设计规定能力:自动计算操作条件或设备参数,满足规定的性能目标。
数据拟合:将工艺模型与真实的装置数据进行拟合,确保精确的和有效的真实装置模型。
优化功能:确定装置操作条件,最大化任何规定的目标,如收率、能耗、物流纯度和工艺经济条件。
要的基本物性数据, 包括分子结构、常压沸点、分子量、各种试验测得的物性等。
以上这些物性中, 仅分子结构是物性估算中所必需的, 依据分子结构, Aspen Plus 软件可计算出常压沸点和分子量, 从而10. 水溶液数据库,包括900 种离子,主要用于电解质的应用。
1. 2MD 物性的输入2- 甲基- 1,3- 二噁烷( 2MD) 是1,3- 丙二醇分离项目中的中间产物, 由于Aspen Plus 软件自带的物性数据库中查不到2MD, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对2MD 计算。
1 纯组分物性常数的估算1.1、乙基2-乙氧基乙醇物性的输入由于Aspen Plus 软件自带的物性数据库中很难查乙基2-乙氧基乙醇的物性参数, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对乙基2-乙氧基乙醇计算。
已知:最简式:(C6H14O3)分子式:(CH3-CH2-O-CH2-CH2-O-CH2-CH2-OH)沸点:195℃1.2、具体模拟计算过程乙基2-乙氧基乙醇为非库组分,其临界温度、临界压力、临界体积和临界压缩因子及理想状态的标准吉布斯自由能、标准吉生成热、蒸汽压、偏心因子等一些参数都很难查询到,根据的已知标准沸点TB,可以使用aspen plus软件的Estimation Input Pure Component(估计输入纯组分) 对纯组分物性的这些参数进行估计。
为估计纯组分物性参数,则需1. 在 Data (数据)菜单中选择Properties(性质)2. 在Data Browser Menu(数据浏览菜单)左屏选择Estimation(估计)然后选Input(输入)3. 在 Setup(设置)表中选择Estimation(估计)选项,Identifying Parameters to be Estimated(识别估计参数)4. 单击 Pure Component(纯组分)页5. 在 Pure Component 页中选择要用Parameter(参数)列表框估计的参数6. 在 Component(组分)列表框中选择要估计所选物性的组分如果要为多组分估计选择物性可单独选择附加组分或选择All(所有)估计所有组分的物性7. 在每个组分的 Method(方法)列表框中选择要使用的估计方法可以规定一个以上的方法。
具体操作过程如下:1、打开一个新的运行,点击Date/Setup2、在Setup/Specifications-Global页上改变Run Type位property Estimation3、在Components-specifications Selection页上输入乙基2-乙氧基乙醇组分,将其Component ID为DIMER4、在Properties/Molecular Structure -Object Manager上,选择DIMER,然后点Edit5、在Gageneral页上输入乙基2-乙氧基乙醇的分子结构6、转到Properties/Parameters/Pure Component Object Manager上,点击“NEW”然后创建一个标量(Scalar)参数TB7、输入DIMER的标准沸点(TB)195℃8、然后转到Properties/Estimation/Set up页上,选择Estimation all missing Parameters9、运行该估算,并检查其结果。
利用ASPEN PLUS 软件进行物性估算
Aspen Plus 是一款功能十分强大的工艺模拟软件, 对有机化工、无机化工、电化学、石油化工等各领域的各种单元操作均可模拟。
其自带的各种物质的物性数据库较全, 可满足绝大多数的工艺过程的模拟要求。
但在实际的工艺模拟计算过程中, 有时也会遇到在Aspen Plus 自带的物性数据库中查不到的物质, 使模拟过程无法正常进行下去。
此时, 利用Aspen Plus 软件提供的物性估算功能, 可以很好地解决此类问题。
以下以发酵液中低浓度1,3- 丙二醇分离项目中的重要的中间产物2- 甲基- 1,3- 二噁烷( 2MD) 的物性估算为例, 说明Aspen Plus 软件物性估算功能的使用。
为了成功估算2MD 的物性, 首先要向AspenPlus 软件提供必要的基本物性数据, 包括分子结构、常压沸点、分子量、各种试验测得的物性等。
以上这些物性中, 仅分子结构是物性估算中所必需的, 依据分子结构, Aspen Plus 软件可计算出常压沸点和分子量, 从而进一步计算所需的其它各种物性。
1. 2MD 物性的输入
2- 甲基- 1,3- 二噁烷( 2MD) 是1,3- 丙二醇分离项目中的中间产物, 由于Aspen Plus 软件自带的物性数据库中查不到2MD, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对2MD 计算。
其分子结构如下:
已知的其它物数据: 分子量102.13; 沸点(1atm):110°C; 密度(25°C):0.98kg/m3; 粘度(25°C):0.603cp; 标准生成热(25°C):- 363.02kJ/mol; 标准熵(25°
C):303J/(mol〃K); 表面张力(25°C):24.93dyn/cm。
因为采用基团贡献法来估算2MD 的物性, 所以在properties 中选用UNIFCA 为计算方法, 然后输入分子结构。
自定义新物质2MD 后, 在Molecular Structure Object Manager
区中选定2MD, 再点Edit;在General 标签中依次输入各原子间的化学键, 也可以在Functional Group 标签或Formula 标签中输入分子结构( 如图1) 。
图1
输入已知的物性常数: 在左侧的数据浏览区点Properties\Parameters\Pure Component, 点New\OK 生成新的输入表单USRDEF- 1, 输入相应的scalar parameters。
输入相应的实验数据: 在左侧的数据浏览区点Properties\Data, 点New按钮生成新的输入表单; 在新的输入表单中将数据分别填入相应的Setup 和Data 输入标签。
最后在Setup 标签中选Estimate all missing parameters。
2 工艺流程及条件的输入
整个低浓度1,3- 丙二醇分离过程由加成反应、逆流萃取、萃取剂精馏、2MD 精馏、水解、1,3- 丙二醇精馏组成, 具体流程( 如图2) 。
反应器B- 1 中1,3- 丙二醇与乙醛反应为可逆反应, 把实验得出的经验动力学方程输入Reactions,包括指前因子、活化能等, 并输入反应器体积、温度; 反应器B- 2 为水解反应, 同样输入经验动力学方程、反应器体积和温度。
图2
这样就定义好了所有需要的输入值, 再定义好各单元操作模块的输入后, 即可进行工艺模拟计算。
3 物性估算和流程计算结果
估算得到2MD 的沸点为110.4℃, 与实验得出的沸点110℃非常接近, 可以满足设计计算的需要。
同时估算得到2MD 的扩展安托尼蒸汽压因子( Extended Antoine vapor pressure) ,从而可以在没有汽- 液平衡数据的条件下, 进行2MD 的精馏计算。
由于有关的物性是估算出来的, 可能与实际值有些出入, 对计算的结果应做进一步分析, 或与已知的结果做比较, 以验证物性估算的可靠性。
模拟计算结果: 发酵液进料中含有1,3- 丙二醇5%( 质量分数) , 经过反应、萃取、精馏、水解、精馏等过程, 可以达到纯度99.9%以上。
1,3- 丙二醇的进料流量为98.7kmol/h, 出料流量为97.4kmol/h, 收率可达98.7%以上。
4 结论
通过2MD 物性估算, 可以得到未知的物性数据, 这样就能对整个工艺流程进行模拟计算。
从低
浓度的1,3- 丙二醇通过反应、萃取、精馏、水解等过程, 得到高浓度的1,3- 丙二醇, 从而得到理想的工艺条件和数据结果。
对于Aspen 软件中没有物性的物质, 物性估算不失为一种可行的方法, 在无法购买商用物性数据
库的情况下, 利用Aspen 软件本身的物性估算与已知的实验数据校验后, 其可靠性有一定的保证, 计算精度完全可以满足工程设计的需要。