第五章圆轴的扭转
- 格式:ppt
- 大小:1.67 MB
- 文档页数:35
目录化工设备机械基础课后习题解答 .............................. 错误!未定义书签。
EXERCISE EXPLANATION AND DESIGNING OF THE BASIC OF CHEMICAL EQUIPMENT AND MECHANISM .. 错误!未定义书签。
第一章刚体的受力分析及其平衡规律 .. (2)第一部分例题及其解析 (2)第二部分习题及其解答 (10)第二章金属的力学性能 (18)第一部分例题及其解析 (18)第二部分习题及其解答 (19)第三章受拉(压)构件的强度计算与受剪切构件的实用计算 (22)第一部分例题及其解析 (22)第二部分习题及其解答 (24)第四章直梁的弯曲 (27)第一部分例题及其解析 (27)第二部分习题及其解答 (35)第五章圆轴的扭转 (39)第一部分例题及其解析 (39)第二部分习题及其解答 (43)第六章压力容器与化工设备常用材料 (46)第一部分习题及其解析 (46)第七章压力容器中的薄膜应力、弯曲应力、与二次应力 (48)第一部分习题及其解析 (48)第八章内压容器 (52)第一部分例题及其解析 (52)O(c)CAB(a )第二部分 习题及其解答 (55)第九章 外压容器与压杆的稳定计算 (60)第一部分 例题及其解析 .................................................................................................................. 60 第二部分 习题及其解答 .. (67)第一章 刚体的受力分析及其平衡规律第一部分 例题及其解析1.下图(a)是一个三角支架,它由两根杆和三个销钉组成,销钉A 、C 将杆与墙 连接,销钉B 则将两杆连接在一起。
当AB 杆中央 置一重物时,试确定AB 杆两端的约束反力力线方 位(杆的自身质量不计)。
ab图14—17汽车传动轴轴的扭转变形和计算章节名称 轴的扭转变形和计算授课形式讲授课时2班级中专0101教学目的 掌握外力偶矩、转速和功率三者的关系,会计算轴的扭矩,知道圆轴扭转时 横截面上的应力分布规律。
教学重点 会计算轴的扭矩,知道圆轴扭转时 横截面上的应力分布规律。
教学难点 会计算轴的扭矩辅助手段课外作业课后体会机械中的轴类零件往往承受扭转,它 的受力特点是:在垂直于轴线的两个平面内受一对大小相等、方向相反的力偶作用,轴的各横截面都绕其轴线作相对转动,这种变形称为扭转变形。
一、圆轴扭转时横截面上内力的计算图14—18截面法求扭矩l 、外力偶矩:为了求出圆轴扭转时截面上的内力,必须先计算出轴上的外力偶矩,作用在轴上的外力偶矩往往不是直接给出的,而是根据给定的轴的传递功率和轴的转速算出来的,功率、转速和外力偶矩三者间的关系是:M =9550 P /n式中:P ——轴传递的功率(千瓦, KW) n ——轴的转速(转/分, r / min) M ——作用在轴上的外力偶矩(牛顿米,Nm)2、扭转时横截面上的内力——扭矩圆轴在外力偶矩的作用下,横截面上产生内力。
求内力的方法仍用截面法。
右图表示装有四个皮带轮的传动轴,在四个带轮上分别作用有主动力偶矩 M 1和从动力偶矩M 2、M 3、M 4,外力偶矩分别为 M 1=110Nm ,M 2=60Nm ,M 3=20Nm , M 4=30Nm 。
若计算 AB 段内任一截面上的内力,可假想沿该段内的任一截面1—1将轴截开,取左边部分为研究对象。
如图所示。
为了保证该段的平衡,必须以内力偶矩 Mn 1代替另一部分对被研究部分的作用, Mn 1称为扭矩。
扭矩的正负有如下规定:使右手拇指与截面法线的方向一致,若截面上的扭矩的转向与其它四指的转向相同,则扭矩取正号:反之取负号。
应用截面法时,一般都先假设截面上的扭矩为正。
扭矩的大小用平衡方程Σm=0求得,即AB 段内: Σm=0, M 1十Mn 1=0Mn 1=一M 1=一l10 Nm (设反)图14—19圆轴扭转变形图14—20圆轴的横截 面上剪应力的分布规律BC 段内: Σm =0 M 1—M 2+Mn 2=0 得 Mn 2=—50 Nm (设反) CD 段内: Σm =0 M 1—M 2—M 3十Mn 3=0 得 Mn 3=—30 Nm (设反) 为了清楚地看出各截面上的扭矩变化情况,以便确定危险截面,通常把扭矩随截面位置的变化绘成图形,称为扭矩图。
第5章扭转5.1 扭转的概念及外力偶矩的计算5.1.1、扭转的概念在工程实际中,有很多以扭转变形为主的杆件。
例如图示 5.1,常用的螺丝刀拧螺钉。
图5.1图示5.2,用手电钻钻孔,螺丝刀杆和钻头都是受扭的杆件。
图5.2图示5.3,载重汽车的传动轴。
图5.3图示5.4,挖掘机的传动轴。
图5.4图5.5所示,雨蓬由雨蓬梁和雨蓬板组成(图5.5a),雨蓬梁每米的长度上承受由雨蓬板传来均布力矩,根据平衡条件,雨蓬梁嵌固的两端必然产生大小相等、方向相反的反力矩(图5.5b),雨蓬梁处于受扭状态。
图5.5分析以上受扭杆件的特点,作用于垂直杆轴平面内的力偶使杆引起的变形,称扭转变形。
变形后杆件各横截面之间绕杆轴线相对转动了一个角度,称为扭转角,用 表示,如图5.6所示。
以扭转变形为主要变形的直杆称为轴。
图5.6本章着重讨论圆截面杆的扭转应力和变形计算。
5.1.2、外力偶矩的计算工程中常用的传动轴(图)是通过转动传递动力的构件,其外力偶矩一般不是直接给出的,通常已知轴所传递的功率和轴的转速。
根据理论力学中的公式,可导出外力偶矩、功率和转速之间的关系为:nN m 9550= (5.1) 式中 m----作用在轴上的外力偶矩,单位为m N ⋅;N-----轴传递的功率,单位为kW ;n------轴的转速,单位为r/min 。
图5.75.2 圆轴扭转时横截面上的内力及扭矩图5.2.1 扭矩已知受扭圆轴外力偶矩,可以利用截面法求任意横截面的内力。
图 5.8a 为受扭圆轴,设外力偶矩为e M ,求距A 端为x 的任意截面n m -上的内力。
假设在n m -截面将圆轴截开,取左部分为研究对象(图5.8b ),由平衡条件0=∑x M ,得内力偶矩T 和外力偶矩e M 的关系内力偶矩T 称为扭矩。
扭矩的正负号规定为:自截面的外法线向截面看,逆时针转向为正,顺时针转向为负。
图5.8图示5.8的b 和c ,从同一截面截出的扭矩均为正号。
圆轴扭转实验一、实验目的1.测定碳钢的切变屈服点(剪切屈服极限)τs或下屈服点τST、抗扭强度(剪切强度极限)τb。
2.测定铸铁的抗扭强度τb。
3.观察、比较和分析上述两种典型材料受扭转时的变形和破坏等现象。
二、实验设备1.扭转试验机;2.游标卡尺。
三、试样制备根据GB10128-88《金属室温扭转试验方法》中的规定,金属扭转试验所用试样为圆形截面,推荐采用直径为10mm,标距L0分别为50mm和100mm,平行长度L c分别为70mm和120mm的试样。
其头部形状和尺寸应按试验机夹头要求制备。
如采用其他直径的试样,其平行长度应为标距加上两倍直径。
扭转试样的形状和尺寸以及加工精度见图1-19。
图1-19 圆形截面扭转试样四、实验原理圆轴承受扭转时,材料处于纯剪应力状态。
因此常用扭转试验来研究不同材料在纯剪作用下的力学性质,这对于工程中的构件的合理设计和选材是十分重要的。
1.低碳钢试样的扭转试验全过程,由试验机自动绘图器绘出其扭矩T和扭转角ø的关系曲线,如图1-20所示。
由该图知,在弹性变形OA直线段,试样横截面上的扭矩与扭转角成正比关系,其上的剪应力亦呈线性分布,即截面最外缘的剪应力最大,中心的剪应力几乎为零,如图1-21(a)所示,在这个阶段材料服从切变虎克定律,并可测定切变模量G。
AB段为曲线部分。
它表明这阶段扭矩和扭转角不再成正比关系,横截面上剪应力的分布也不再是线性的,最外缘的剪应力首先达到剪切屈服极限,塑性区由外向里扩展,而形成环状塑性区和截面中部未屈服的弹性区,如图1-21(b)所示。
随着试样继续扭转变形,塑性区不断向圆心扩展,T-ø曲线稍微上升,直至B点趋于平坦,这时塑性区几乎占据了全部截面,剪应力趋于均匀分布如图1-21(c)所示。
扭矩度盘上的指针几乎不动,此时与之对应的扭矩为屈服扭矩T s如图1-20(a);另一种情况,屈服阶段为锯齿状曲线。
度盘指针首次下降前的最大扭矩为上屈服扭矩T su,屈服阶段中最小扭矩为下屈服扭矩T SL,如图1-20(b)本次试验测定屈服扭矩或下屈服扭矩。