高中一年级函数单调性完整版
- 格式:doc
- 大小:367.00 KB
- 文档页数:9
高一数学知识点函数的单调性一、函数单调性知识结构【知识网络】1.函数单调性的定义,2.证明函数单调性;3.求函数的单调区间4.利用函数单调性解决一些问题;5.抽象函数与函数单调性结合运用二、重点叙述1. 函数单调性定义(一)函数单调性概念(1)增减函数定义一般地,设函数y=f(x)的定义域为I,对于定义域I内某个区间D上的任意两个自变量的值x1、x2 :如果当x1<x2时,都有f(x1 ) <f(x2 ),那么就说函数y=f(x)在区间D上是增函数;如果当x1<x2时,都有f(x1 ) >f(x2 ),那么就说函数y=f(x)在区间D上是减函数。
如果函数在区间D上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间D叫做的单调区间。
(2)函数单调性的内涵与外延⑴函数的单调性也叫函数的增减性。
函数的单调性是对某个区间而言的,是一个局部概念。
⑵由函数增减性的定义可知:任意的x1、x2∈D,① x1<x2 ,且f(x1 ) <f(x2 ),y=f(x)在区间D上是增函数;(可用于判断或证明函数的增减性)② y=f(x)在区间D上是增函数,且x1<x2 , f(x1 ) <f(x2 ) ;(可用于比较函数值的大小)③ y=f(x)在区间D上是增函数,且f(x1 ) <f(x2 ), x1<x2。
(可用于比较自变量值的大小)2. 函数单调性证明方法证明函数单调性的方法有:定义法(即比较法);导数法。
实际上,用导数方法证明一般函数单调性是很便捷的方法,定义法是基本方法,常用来证明解决抽象函数或不易求导的函数的单调性。
(1)定义法:利用增减函数的定义证明。
在证明过程中,把数式的大小比较转化为求差比较(或求商比较)。
⑴转化为求差比较证明程序:①设任意的x 1、x 2∈D,使x 1<x 2 ;②求差—变形—判断正负;此为关键步骤,变形大多要“因式分解”。
求差:; 变形:化简、因式分解; 判断:差的符号的正或负。
函数的单调性(1)定义:一般地,设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)(2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
例1、画出函数y xx =-323的图象,试分析其性质。
(定义域、值域、单调性、对称性)(3)利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:○1任取x 1,x 2∈D ,且x 1<x 2;○2作差f (x 1)-f (x 2);○3变形(通常是因式分解和配方得到因式)(21x x -);○4定号(即判断差f (x 1)-f (x 2)的正负);○5下结论(即指出函数f (x )在给定的区间D 上的单调性)。
例2、证明函数()x x f =在[0,)+∞上是增函数.A .当x ∈(1,+∞)时,函数单调递增B .当x ∈(1,+∞)时,函数单调递减C .当x ∈(﹣∞,﹣1)时,函数单调递增D .当x ∈(﹣∞,3)时,函数单调递减2.函数f (x )=|x|和g (x )=x (2﹣x )的递增区间依次是(C )A .(﹣∞,0],(﹣∞,1]B .(﹣∞,0],[1,+∞)C .[0,+∞),(﹣∞,1]D .[0,+∞),[1,+∞) 3.已知函数f (x )=|x+a|在(﹣∞,﹣1)上是单调函数,则a 的取值范围是(A )A .(﹣∞,1]B .(﹣∞,﹣1]C .[﹣1,+∞)D .[1,+∞)4.函数f (x )在区间(﹣2,3)上是增函数,则y=f (x+4)的递增区间是(C )A .(2,7)B .(﹣2,3)C .(﹣6,﹣1)D .(0,5)5.函数f (x )=的一个单增区间为(C)A .(﹣∞,0)B .{x|≠1}C .(1,+∞)D .无单增区间6.若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是(B )A .[﹣,+∞)B .(﹣∞,﹣]C .[,+∞)D .(﹣∞,]7.已知f (x )=(x ﹣2)2,x ∈[﹣1,3],函数f (x+1)得单调递减区间为[-2,1].8.已知函数,若f (x )在区间(0,1]上是减函数,则实数a 的取值范围是0<ɑ≤39.用定义证明函数f (x )=1﹣在(0,+∞)上是增函数.10.已知函数f (x )=.(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.(2)求该函数在区间[1,4]上的最大值与最小值.3295简单性质在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数;增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。
学科教师辅导教案―函数单调性教学内容1、概念: 单调增函数:一般地,设函数y=f(x)的定义域为A ,区间I ⊆ A.如果对于区间I 内的任意两个值x 1, x 2,当x 1< x 2时,都有f(x 1) < f(x 2),那么就说y=f(x)在区间I 上是单调增函数,I 称为y=f(x)的单调增区间.单调减函数:一般地,设函数y=f(x)的定义域为A ,区间I ⊆ A.如果对于区间I 内的任意两个值x 1, x 2,当x 1< x 2时,都有f(x 1) > f(x 2),那么就说y=f(x)在区间I 上是单调减函数,I 称为y=f(x)的单调减区间.2、函数单调性的几何意义:函数的单调性在图像上的反映是:若f(x)在区间I 上是单调增函数,则它的图像在I 上的部分从左到右是上升的;若f(x)在区间I 上是单调减函数,则它的图像在I 上的部分从左到右是下降的;3、单调区间:如果函数y=f(x)在区间I 上是单调增函数或者单调减函数,那么就说函数y=f(x)在区间I 上具有单调性.单调增区间 和单调减区间统称为单调区间.【注意点】1、在函数的单调性定义中,x 1,x 2有三个特征:一是任意:即区间内任意取两个值x 1,x 2;二是有大小:一般设x 1< x 2;三是同属于一个单调区间:任意x 1,x 2∈I.2、理解函数单调区间应注意的问题:①函数的单调区间是函数定义域的子集,求函数的单调区间必须先求函数的定义域;②单调区间可以是开区间,也可以是闭区间.但对于某些点无意义时,单调区间就不包括这些点,要用开区间;③一个函数出现两个或两个以上单调区间时,不能用“∪”,而应用“,”或“和”连接;如xy 1=在(-∞,0)和(0,+∞)上为减函数,而不能说在(-∞,0)∪(0,+∞)上是减函数; ④函数的单调性是一个局部性质,介绍函数单调性时,一定要指出在哪一个区间上,而不能笼统说函数是单调的;⑤单调性与单调函数的区别:单调性是指在函数定义域的子区间上具有单调性,但在整个定义域上不一定具有单调性,如xy 1=在(-∞,0)和(0,+∞)上分别具有单调性,但是它不是单调函数;函数y=3x+1在整个定义域上是单调递增的,具有单调性,是单调函数.域上是单调递增的,具有单调性,是单调函数.知识模块1函数单调性的概念y 2y 1 x y =x 2 x 2 0 x 2 x 1 x y y =x 2 0 y 1 x y y 2x 1[例1]根据下图说出函数在每个单调区间上是增函数还是减函数?[巩固1]下图是定义在(-5,5)上的函数y=f(x)的图像,根据图像说出函数y=f(x)的单调区间以及在每一个区间上y=f(x)是单调增函数还是单调减函数.[例2] 说出下列函数的单调区间及在各个单调区间上的单调性.(1)xy1=(2)11-=xy(3)32+=xy(4)322-+=xxy[巩固2]下列说法不正确的是____________①若x1,x2∈I,当x1<x2时,f(x1) < f(x2),则y=f(x)在I上是单调增函数②函数y=x2在R上是单调增函数③函数xy1-=在定义域上是单调增函数④函数xy1=的单调减区间是(-∞,0)∪(0,+∞)思考:一次函数、二次函数、反比例函数的单调性是怎样的?1、定义法:(1)取值:在区间内任取x1,x2,且x1< x2;(2)比较大小:比较f(x1) 和f(x2)的大小(作差或作商),并通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形;(3)根据定义,得出结论.当符号不确定时,可以进行分类讨论,在确定差的符号.[例1] 证明函数322-+=xxy在(-1,+∞)上的单调性.知识模块2函数单调性的判定与证明精典例题透析。
函数的单调性知识集结知识元利用定义判断函数单调性知识讲解1.定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.2.单调区间若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用符号“∪”联结,也不能用“或”联结,只能用“和”或“,”连结.3.定义变式设任意x1,x2∈[a,b]且x1≠x2,那么①⇔f(x)在[a,b]上是增函数;⇔f(x)在[a,b]上是减函数.②(x1﹣x2)[f(x1)﹣f(x2)]>0⇔f(x)在[a,b]上是增函数;(x1﹣x2)[f(x1)﹣f(x2)]<0⇔f(x)在[a,b]上是减函数.例题精讲利用定义判断函数单调性例1.如果函数f(x)=(12﹣a)x在实数集R上是减函数,那么实数a的取值范围是()A.(0,12)B.(12,+∞)C.(﹣∞,12)D.(﹣12,12)例2.函数f(x)=(k+1)x+b在实数集上是增函数,则有()A.k>1B.k>﹣1C.b>0D.b<0例3.函数①y=|x|;②y=;③y=;④y=x+在(﹣∞,0)上为增函数的有(填序号).例4.下列四个命题:(1)f(x)=1是偶函数;(2)g(x)=x3,x∈(﹣1,1]是奇函数;(3)若f(x)是奇函数,g(x)是偶函数,则H(x)=f(x)•g(x)一定是奇函数;(4)函数y=f(|x|)的图象关于y轴对称,其中正确的命题个数是()A.1B.2C.3D.4例5.已知y=f(x)(x∈R)为奇函数,则在f(x)上的点是()A.(a,f(﹣a))B.(﹣a,f(a))C.(﹣a,﹣f(a))D.(a,﹣f(a)例6.如果f(x)是定义在R上的奇函数,那么下列函数中,一定为偶函数的是()A.y=x+f(x)B.y=xf(x)C.y=x2+f(x)D.y=x2f(x)通过图象平移得到新函数图象得到单调区间知识讲解1.图象的平移:左加右减(x的变化),上加下减(函数值y的变化)2.图象的对称性:奇偶性3.图象的翻折:含有绝对值的函数图象的画法例题精讲通过图象平移得到新函数图象得到单调区间例1.函数f(x)=x2﹣|x|的单调递减区间是.例2.函数y=|x|的单调递增区间为.例3.函数y=|x|﹣1的减区间为()A.(﹣∞,0)B.(﹣∞,﹣1)C.(0,+∞)D.(﹣1,+∞)例4.函数y=|x﹣1|的递增区间是.备选题库知识讲解本题库作为知识点“函数单调性的定义”的题目补充.例题精讲备选题库例1.下列函数中,既是奇函数,又在(0,+∞)上是增函数的是()A.f(x)=sin x B.f(x)=e x+e-xC.f(x)=x3+x D.f(x)=xlnx例2.函数y=(2m-1)x+b在R上是减函数.则()A.m>B.m<C.m>-D.m<-例3.函数f(x)=-x2+x-1的单调递增区间为()A.B.C.D.例4.已知函数f(x)=-3x+2sin x,若a=f(3),b=-f(-2),c=f(log27),则a,b,c的大小关系为()A.a<b<c B.a<c<bC.c<a<b D.b<c<a例5.定义在R的函数f(x)=-x3+m与函数g(x)=f(x)+x3+x2-kx在[-1,1]上具有相同的单调性,则k的取值范围是()A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)例6.下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=lnxC.y=sin x D.y=2-x例7.下列函数中,值域为R且在区间(0,+∞)上单调递增的是()A.y=x2+2x B.y=2x+1C.y=x3+1D.y=(x-1)|x|例8.函数f(x)=x|x-2|的递减区间为()A.(-∞,1)B.(0,1)C.(1,2)D.(0,2)利用定义法证明单调性知识讲解1.利用定义证明单调性的步骤(1)取值:设,是所研究的区间内的任意两个值,且(2)作差:(3)变形:将通过因式分解、配方、通分、有理化等方法变形为有利于判断它的符号的形式.(4)判断符号(5)结论2函数单调性的常见结论(1)函数y=-f(x)与函数y=f(x)的单调性相反;(2)函数f(x)与函数f(x)+c(c为常数)具有相同的单调性;(3)当c>0时,函数y=cf(x)与函数y=f(x)的单调性相同;当c<0时,函数y=cf(x)与函数y=f(x)的单调性相反;(4)若f(x)≠0,则函数f(x)与具有相反的单调性;(5)若,函数与具有相同的单调性;(6)若,具有相同的单调性,则与,具有相同的单调性;(7)若,具有相反的单调性,则与具有相同(与具有相反)的单调性。
1.增函数、减函数的定高中数学函数的单调性(解析版)义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.单调性、单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分开写,不能用并集符号“∪”连接,也不能用“或”连接,只能用“,”或“和”隔开.2.常用结论结论1:增函数与减函数形式的等价变形y=f(x)在区间D上是增函数⇔对∀x1<x2,都有f(x1)<f(x2)⇔(x1-x2)[f(x1)-f(x2)]>0⇔f(x1)-f(x2)x1-x2>0;y=f(x)在区间D上是减函数⇔对∀x1<x2,都有f(x1)>f(x2)⇔(x1-x2)[f(x1)-f(x2)]<0⇔f(x1)-f(x2)x1-x2<0.结论2:单调性的运算性质(1)函数y=f(x)与函数y=f(x)+C(C为常数)具有相同的单调性.(2)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反.(3)在公共定义域内,函数y=f(x)(f(x)>0)与()ny f x=和y(4)在公共定义域内,函数y=f(x)(f(x)≠0)与y=1f(x)单调性相反.(5)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数.(6)若f(x),g(x)均为区间A上的增(减)函数,且f(x)>0,g(x)>0,则f(x)•g(x)也是区间A上的增(减)函数.结论3:复合函数的单调性复合函数y=f[g(x)]的单调性与y=f(u)和u=g(x)的单调性有关.若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.简记:“同增异减”.结论4:奇函数与偶函数的单调性奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.结论5:对勾函数与飘带函数的单调性对勾函数:f(x)=ax+bx(ab>0)(1)当a >0,b >0时,f (x )在(-∞,-b a ],b a ,+∞)上是增函数,在[-b a ,0),(0b a ]上是减函数;(2)当a <0,b <0时,f (x )在(-∞,-b a ],b a ,+∞)上是减函数,在[-b a ,0),(0b a]上是增函数;飘带函数:f (x )=ax +bx(ab <0)(1)当a >0,b <0时,f (x )在(-∞,0),(0,+∞)上都是增函数;(2)当a <0,b >0时,f (x )在(-∞,0),(0,+∞)上都是减函数;考点一确定函数的单调性或单调区间【方法总结】确定函数的单调性或单调区间的常用方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数确定函数的单调性或单调区间.(2)定义法:先求定义域,再利用单调性的定义确定函数的单调性或单调区间.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性确定函数的单调性或单调区间.【例题选讲】[例1](1)下列函数中,在区间(0,+∞)内单调递减的是()A .y =1x -xB .y =x 2-xC .y =ln x -xD .y =e x -x答案A解析对于选项A ,y 1=1x 在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x-x 在(0,+∞)内是减函数,故选A .(2)下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是()A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-xD .f (x )=ln(x +1)答案C解析由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.(3)函数f (x )=|x 2-3x +2|的单调递增区间是()A .32,+B .1,32和[2,+∞)C .(-∞,1]和32,2D ∞,32和[2,+∞)答案B解析y =|x 2-3x +2|2-3x +2,x ≤1或x ≥2,x 2-3x +2),1<x <2.如图所示,函数的单调递增区间是1,32和[2,+∞).(4)函数y =x 2+x -6的单调递增区间为__________,单调递减区间为____________.答案[2,+∞)(-∞,-3]解析令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数.令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数,∴y =x 2+x -6的单调递减区间为(-∞,-3],单调递增区间为[2,+∞).(5)函数y =log 12(x 2-3x +2)的单调递增区间为__________,单调递减区间为____________.答案(-∞,1)(2,+∞)解析令u =x 2-3x +2,则原函数是y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.所以函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴为x =32,且开口向上,所以u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数,而y =log 12u 在(0,+∞)上是单调减函数,所以y =log 12(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).【对点训练】1.给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是()A .①②B .②③C .③④D .①④1.答案B解析①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log 12(x +1)在(0,1)上递减;③结合图象可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x +1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.下列四个函数中,在x ∈(0,+∞)上为增函数的是()A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x |2.答案C解析当x >0时,f (x )=3-x 为减函数;当xf (x )=x 2-3x 为减函数,当x时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.3.若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是()A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=ln(x +1)3.答案C解析根据条件知,f (x )在(0,+∞)上单调递减.对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ;对于B ,f (x )=e x 在(0,+∞)上单调递增,排除B ;对于C ,f (x )=1x 在(0,+∞)上单调递减,C 正确;对于D ,f (x )=ln(x +1)在(0,+∞)上单调递增,排除D .4.函数f (x )=|x -2|x 的单调减区间是()A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)4.答案A解析由于f (x )=|x -2|x2-2x ,x ≥2,x 2+2x ,x <2,结合图象可知函数的单调减区间是[1,2].5.设函数f (x ),x >0,,x =0,1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是()A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]5.答案B解析由题知,g (x )2,x >1,,x =1,x 2,x <1,可得函数g (x )的单调递减区间为[0,1).故选B .6.函数y =22311(3x x -+的单调递增区间为()A .(1,+∞)B ∞,34CD .34,+6.答案B 解析令u =2x 2-3x+1=-18.因为u =-18在∞,34上单调递减,函数y在R 上单调递减.所以yx 2-3x +1∞,34上单调递增,即该函数的单调递增区间为∞,34.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为()A .(-∞,1]B .[3,+∞)C .(-∞,-1]D .[1,+∞)7.答案B 解析设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).8.函数f (x )=ln(x 2-2x -8)的单调递增区间是()A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)8.答案D解析由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).又函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).考点二比较函数值或自变量的大小【方法总结】比较函数值大小的思路:比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.【例题选讲】[例2](1)设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是()A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)答案A 解析因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2).又因为函数f (x )在[0,+∞)上是增函数.所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2).(2)已知奇函数f (x )在R 上是增函数.若a =-f b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为()A .a <b <cB .b <a <cC .c <b <aD .c <a <b答案C解析由f (x )是奇函数可得a =-f f (log 25).因为log 25>log 24.1>log 24=2>20.8,且函数f (x )是增函数,所以c <b <a .(3)已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则()A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0答案B解析因为函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.故选B .(4)已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则()A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )答案C解析由题意可知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),又|a |=ln π>1,|b |=(ln π)2>|a |,|c |=12ln π,且0<12ln π<|a |,故|b |>|a |>|c |>0,∴f (|c |)>f (|a |)>f (|b |),即f (c )>f (a )>f (b ).(5)若2x +5y ≤2-y +5-x ,则有()A .x +y ≥0B .x +y ≤0C .x -y ≤0D .x -y ≥0答案B解析设函数f (x )=2x -5-x ,易知f (x )为增函数,又f (-y )=2-y -5y ,由已知得f (x )≤f (-y ),∴x ≤-y ,∴x +y ≤0.【对点训练】9.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =b =f (2),c =f (3),则a ,b ,c 的大小关系为()A .c >a >bB .c >b >aC .a >c >bD .b >a >c9.答案D解析由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .10.已知函数f (x )在R 上单调递减,且a =33.1,b ,c =ln 13,则f (a ),f (b ),f (c )的大小关系为()A .f (a )>f (b )>f (c )B .f (b )>f (c )>f (a )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )10.答案D解析因为a =33.1>30=1,0<b =1,c =ln 13<ln 1=0,所以c <b <a ,又因为函数f (x )在R 上单调递减,所以f (c )>f (b )>f (a ),故选D .考点三解函数不等式【方法总结】含“f ”不等式的解法:首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.【例题选讲】[例3](1)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f x 的取值范围是()A B .13,C D .12,答案D解析因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<0≤2x -1<13,解得12≤x <23.(2)已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R )()A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)答案D解析由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).(3)定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为________.答案[0,1)解析因为函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,所以函数在[-2,2]上单调递增,所以-2≤2a -2<a 2-a ≤2,解得0≤a <1.(4)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是()A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)答案B解析2=1+1=f(3)+f(3)=f(9),由f(x)+f(x-8)≤2,可得f[x(x-8)]≤f(9),因为f(x)是定义在(0,+∞)>0,-8>0,(x-8)≤9,解得8<x≤9.(5)设函数f(x)=ln(1+|x|)-11+x2,则使得f(x)>f(2x-1)成立的x的取值范围是()AB∞(1,+∞)C-13,D∞答案A解析∵f(-x)=ln(1+|-x|)-11+(-x)2=f(x),∴函数f(x)为偶函数.∵当x≥0时,f(x)=ln(1+x)-11+x2,在(0,+∞)上y=ln(1+x)递增,y=-11+x2也递增,根据单调性的性质知,f(x)在(0,+∞)上单调递增.综上可知:f(x)>f(2x-1)⇔f(|x|)>f(|2x-1|)⇔|x|>|2x-1|⇔x2>(2x-1)2⇔3x2-4x+1<0⇔13<x<1.故选A.【对点训练】11.定义在R上的奇函数y=f(x)在(0,+∞)上单调递增,且0,则满足f log19x>0的x的集合为________.11.答案(1,3)解析由题意,y=f(x)为奇函数且0,所以0,又y=f(x)在(0,+∞)上单调递增,则y=f(x)在(-∞,0)上单调递增,于是x>0,x>或x<0,x>x>0,x>12x<0,x>-12,解得0<x<13或1<x<3.12.已知函数f(x)=ln x+x,若f(a2-a)>f(a+3),则正数a的取值范围是________.12.答案(3,+∞)解析因为f(x)=ln x+x在(0,+∞)上是增函数,2-a>a+3,2-a>0,+3>0,解得-3<a<-1或a>3.又a>0,所以a>3.13.设函数f(x)x,x<2,2,x≥2.若f(a+1)≥f(2a-1),则实数a的取值范围是(B)A.(-∞,1]B.(-∞,2]C.[2,6]D.[2,+∞)13.答案B解析易知函数f(x)在定义域(-∞,+∞)上是增函数,∵f(a+1)≥f(2a-1),∴a+1≥2a-1,解得a≤2.故实数a的取值范围是(-∞,2].14.设函数f(x)-x,x≤0,,x>0,则满足f(x+1)<f(2x)的x的取值范围是()A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)14.答案D解析因为f (x )-x ,x ≤0,,x >0,所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x ,此时x ≤-1;当2x <0且x +1>0时,f (2x )>1,f (x +1)=1,满足f (x +1)<f (2x ),此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).故选D .15.已知f (x )2-4x +3,x ≤0,x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.15.答案(-∞,-2)解析作出函数f (x )的图象的草图如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2.考点四求参数的取值范围【方法总结】求参数的值或取值范围的思路:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.求参数时需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子区间上也是单调的.【例题选讲】[例4](1)如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,那么a 的取值范围是________.答案(-∞,-2]解析二次函数的对称轴方程为x =-a -13,由题意知-a -13≥1,即a ≤-2.(2)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.答案[-1,+∞)解析设1<x 1<x 2,∴x 1x 2>1.∵函数f (x )在(1,+∞)上是增函数,∴f (x 1)-f (x 2)=x 1-a x 1+a 2-2-a x 2+(x 1-x 2.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1.∴a 的取值范围是[-1,+∞).(3)若函数f (x )=a |b -x |+2的单调递增区间是[0,+∞),则实数a ,b 的取值范围分别为__________.答案(0,+∞),0解析因为|b -x |=|x -b |,y =|x -b |的图象如下:因为f (x )的单调递增区间为[0,+∞),所以b =0,a >0.(4)已知函数f (x )ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是()A .14,12B .14,12C .0,12D .12,1答案B解析由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 0<<1,12a ≥1,a ×12-1-14≥log a 1-1,即0<a <1,0<a ≤12,a ≥14.所以a ∈14,12.(5)已知函数f (x )=log 12(x 2-ax +3a )在[1,+∞)上单调递减,则实数a 的取值范围是________.答案-12,2解析令t =g (x )=x 2-ax +3a ,易知f (t )=log 12t 在其定义域上单调递减,要使f (x )=log 12(x 2-ax +3a )在[1,+∞)上单调递减,则t =g (x )=x 2-ax +3a 在[1,+∞)上单调递增,且t =g (x )=x 2-ax +3a >0,--a 2≤1,g 1>0,a ≤2,a >-12,即-12<a ≤2.【对点训练】16.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是()A -14,+∞B .-14,+∞C .-14,0D .-14,016.答案D解析当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,得-14≤a <0.综上所述,得-14≤a ≤0.故选D .17.若f (x )=x +a -1x +2(-2,+∞)上是增函数,则实数a 的取值范围是________.17.答案(-∞,3)解析f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.18.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是(D)A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]18.答案D解析函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].19.已知f (x )-a )x +1,x <1,x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.19.答案32,解析由已知条件得f (x )为增函数,-a >0,>1,2-a×1+1≤a ,解得32≤a <2,∴a 的取值范围是32,20.已知函数f (x )x 2-ax -5,x ≤1,x >1是R 上的增函数,则实数a 的取值范围是()A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)20.答案C解析若f (x )是R -a2≥1,<0,12-a ×1-5≤a1,解得-3≤a ≤-2.21.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是()A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)21.答案D解析作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a≥4或a +1≤2,即a ≤1或a ≥4,故选D .22.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.22.解析(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x1+2)(x2+2)>0,x1-x2<0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在(-∞,-2)内单调递增.(2)任取x1,x2∈(1,+∞),且x1<x2,则f(x1)-f(x2)=x1x1-a-x2x2-a=a(x2-x1)(x1-a)(x2-a).因为a>0,x2-x1>0,又由题意知f(x1)-f(x2)>0,所以(x1-a)(x2-a)>0恒成立,所以a≤1.所以0<a≤1.所以a的取值范围为(0,1].23.已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1,②当x>0时,f(x)>-1.(1)求f(0)的值,并证明f(x)在R上是单调增函数.(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.23.解析(1)令x=y=0,得f(0)=-1.在R上任取x1>x2,则x1-x2>0,f(x1-x2)>-1.又f(x1)=f[(x1-x2)+x2]=f(x1-x2)+f(x2)+1>f(x2),所以函数f(x)在R上是单调增函数.(2)由f(1)=1,得f(2)=3,f(3)=5.由f(x2+2x)+f(1-x)>4得f(x2+x+1)>f(3),又函数f(x)在R上是增函数,故x2+x+1>3,解得x<-2或x>1,故原不等式的解集为{x|x<-2或x>1}.。
高一数学上函数的单调性知识点函数的单调性是高一数学中重要的知识点之一。
对于一个给定的函数,我们可以通过研究它的单调性来了解函数的增减变化规律。
在本篇文章中,将介绍函数的单调性的基本概念、判断方法和应用。
一、函数的单调性的概念函数的单调性是指函数在定义域内的增减变化规律。
基本上,函数的单调性可以分为三种情况:递增、递减和不变。
当函数的值随着自变量的增加而增加时,我们称该函数为递增函数。
相反地,当函数的值随着自变量的增加而减少时,我们称该函数为递减函数。
若函数在自变量取值范围内既递增又递减,或者在某些区间内递增,在其他区间内递减,我们则称该函数是不变函数。
二、函数单调性的判断方法判断函数的单调性,一般可以通过函数的导数、变化率和二阶导数等方法进行推导。
1. 函数的导数法对于给定的函数f(x),我们通过求函数的导数f'(x)来判断函数的单调性。
若函数在定义域内的导数恒大于0,则函数递增;若导数恒小于0,则函数递减。
例如,对于函数f(x) = x^2,求导得到f'(x) = 2x。
由于函数的导数f'(x)在定义域内恒大于0,所以该函数是递增的。
2. 函数的变化率法利用函数的变化率来判断函数的单调性是另一种常用的方法。
对于给定的函数f(x),通过计算任意两个点(x1, f(x1))和(x2, f(x2))之间的斜率来判断函数的单调性。
若对于任意两个不同的点(x1, f(x1))和(x2, f(x2)),斜率k = (f(x2) - f(x1)) / (x2 - x1) 恒大于0,则函数递增;若斜率k恒小于0,则函数递减。
若存在某些点斜率为0,则表示函数的区间不变。
例如,对于函数f(x) = 2x + 1,选择两个不同的点(-1, f(-1))和(1,f(1)),计算斜率为(3 - (-1)) / (1 - (-1)) = 2 > 0,故该函数是递增的。
3. 函数的二阶导数法二阶导数法是判断函数的单调性的另一种常见方法。
函数的单调性学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。
(2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.(3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。
重点与难点 (1)判断或证明函数的单调性;(2)奇偶性概念的形成与函数奇偶性的判断。
学习过程 【学习导航】知识网络学习要求1. 从特殊到一般,掌握增函数、减函数、单调区间的概念;2. 会根据图像说出函数的单调区间,并能指出其增减性;3. 会用定义证明一些简单函数的单调性.自学评价观察函数x x f =)(,2)(x x f =的图象从左至右看函数图象的变化规律: (1). x x f =)(的图象是_________的,2)(x x f =的图象在y 轴左侧是______的,2)(x x f =的图象在y 轴右侧是_______的.(2). x x f =)(在),(+∞-∞上,f (x )随着x 的增大而___________;2)(x x f =在]0,(-∞上,f (x )随着x 的增大而_______;2)(x x f =在),0(+∞上,f (x )随着x 的增大而________.一、 函数的单调性1.单调函数的定义(1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。
(2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时函数的单调性单调性的定义定义法证明函数的单调性增函数减函数单调区间x y 0 xy0 x x f =)(2)(x x f =都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。
(3)单调性:如果函数()y f x =在某个区间是增函数或减函数。
那么就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。
※ 增函数、减函数的定义 ;2、单调性的判定方法 (1)定义法:判断下列函数的单调区间:21xy =(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。
(3)复合函数的单调性的判断:设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在],[b a 上也是单调函数。
①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。
②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。
即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的 单调性相反时则复合函数为增减函数。
也就是说:同增异减(类似于“负负得正”)练习:(1)函数24x y -=的单调递减区间是 ,单调递增区间为 .(2)5412+-=x x y 的单调递增区间为 .3、函数单调性应注意的问题:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在增函数: )()(2121x f x f x x <⇒< 减函数: )()(2121x f x f x x >⇒<x y 0 x 1 x 2 f(x 1) f(x 2) x y 0x 1 x 2 f(x 1)f(x 2)上是增(或减)函数例题精讲;二函数单调性的证明.例题分析例1,证明:函数1()f x x=在(0,)+∞上是减函数。
证明:设任意1x ,2x ∈(0,+∞)且12x x <,则2112121211()()x x f x f x x x x x --=-=,由1x ,2x ∈(0,+∞),得120x x >,又12x x <,得210x x ->, ∴12()()0f x f x ->,即12()()f x f x >所以,1()f x x=在(0,)+∞上是减函数。
说明:一个函数的两个单调区间是不可以取其并集,比如:xy 1=不能说)0,(-∞Y ),0(+∞是原函数的单调递减区间;练习:1..根据单调函数的定义,判断函数3()1f x x =+的单调性。
2.根据单调函数的定义,判断函数()f x x =的单调性例2,,下图是定义在区间[-5,5]上的函数)(x f y =,根据图象说出函数的单调区间,以及在每个区间 上,它是增函数还是减函数?思维点拔: 观察曲线升、降部分的横坐标所在的区域. xy 1 2 3 4 5 -2 -4 -1 -3 -5 12 3 -1 -2 -3O例3, 物理学中的玻意耳定律Vkp =(k 为正常数)告诉我们,对于一定量的气体,当其体积V 减小时,压强p 将增大,试用函数的单调性证明之. 思维点拔: 只需证明函数Vkp =在区间()+∞,0上是减函数即可.三,函数单调性的应用例4.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 . .解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx例5.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论..解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.例6.试讨论函数f (x )=21x -在区间[-1,1]上的单调性..解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2).当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.例7.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数..解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2) ∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212aa-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.例8.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)例9.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. .解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xa x x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数,当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.【拓展训练】1.下列函数中,在)0,(-∞上为减函数的是( )A.y=3xB.y=-x 2C.y=︱x ︱D.y=2x+1 2.函数3)1()(-+=x k x f 在),(+∞-∞上单调递减,则k 的取值范围是( ) A.k>0 B.k<0 C.k>-1 D.k<-1 3.函数1062+-=x x y 在区间(1,4)上为( )函数.A.单调递增B.单调递减C.先增后减D.先减后增 4.已知函数)(x f 在(-2,3)上是减函数,则有( )A.f(-1)<f(0)B.f(0)<f(2)C.f(1)<f(0)D.f(-1)<f(1) 5.证明函数xx x f 23)(-=在区间)0,(-∞上是增函数.课后作业:函数单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5)4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞) 5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2),那么函数g (x ) ( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9)9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3B .a ≥-3C .a ≤5D .a ≥311.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( )A .f (a )+f (b )≤-f (a )+f (b )]B .f (a )+f (b )≤f (-a )+f (-b )C .f (a )+f (b )≥-f (a )+f (b )]D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (-3)D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ .参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,。