立体几何专题二-存在性问题讲义
- 格式:doc
- 大小:2.77 MB
- 文档页数:27
第77讲 存在性问题本节主要内容是存在性问题. 存在性问题有三种:第一类是肯定性问题, 其模式为“已知A, 证明存在对象B, 使其具有某种性质”. 第二类是否定性问题, 其模式为“已知A, 证明具有某种性质B 的对象不可能存在”. 第三类是探索性问题, 其模式为“已知A, 问是否存在具有某种性质B 的对象”.解决存在性问题通常有两种解题思路. 一种思路是通过正确的逻辑推理(包括直接计算), 证明(或求出)符合条件或要求的对象B 必然存在. 常利用反证法、数学归纳法、抽屉原则、计数法等. 另一种思路是构造法. 直接构造具有某种性质B 的对象. 常常采用排序原则、极端性原则进行构造.A 类例题例1 已知函数f (x )=|1-1x|.(1)是否存在实数a ,b (a <b ), 使得函数的定义域和值域都是[a ,b ]?若存在,请求出a ,b 的值;若不存在,请说明理由。
(2)若存在实数a ,b (a <b ), 使得函数的定义域是[a ,b ],值域是[ma ,mb ](m ≠0),求实数m 的取值范围.(2005年天津市数学竞赛试题)分析 函数f (x )是分段函数,它的值域是[0,).+∞ [a ,b ]是[0,)+∞的子集,而f (0)>0,所以a >0,因为函数f (x )在(0,1)上是减函数,在(1,+∞)上是增函数,所以我们分三种情况(i) 当a ,b ∈(0,1)时;(ii) 当 a ,b ∈(1,+∞)时;(iii)当a ∈(0,1),b ∈[1,+∞)时加以讨论.解 (1)不存在实数a ,b (a <b )满足条件.事实上,若存在实数a ,b (a <b ), 使得函数的定义域和值域都是[a ,b ],则有x ≣a >0.故f (x )=11, 1.11, 1.x x x x⎧-≥⎪⎪⎨⎪-<⎪⎩(i)当a ,b ∈(0,1)时, f (x )= 1x-1在(0,1)上是减函数,所以,(),(),f a b f b a =⎧⎨=⎩即11,11.b aa b⎧-=⎪⎪⎨⎪-=⎪⎩ 由此推出a =b 与已知矛盾. 故此时不存在实数a ,b 满足条件. (ii)当a ,b ∈(1,+∞)时, f (x )=1-1x在(1,+∞)上为增函数,所以,(),(),f a a f b b =⎧⎨=⎩即11,11.a ab b⎧-=⎪⎪⎨⎪-=⎪⎩ 于是,a ,b 是方程x 2-x +1=0的实根,而此方程无实根,故此时不存在实数a ,b 满足条件.(iii) 当a ∈(0,1),b ∈[1,+∞)时,显然,1∈[a ,b ],而f(1)=0,所以0∈[a ,b ],矛盾. 故故此时不存在实数a ,b 满足条件.综上可知,不存在实数a ,b (a <b )满足条件.(2)若存在实数a ,b (a <b ), 使得函数的定义域是[a ,b ],值域是[ma ,mb ](m ≠0)易得m >0,a >0. 仿照(1)的解答,当a ,b ∈(0,1)或a ∈(0,1),b ∈[1,+∞)时,满足条件的a ,b 不存在. 只有当a ,b ∈(1,+∞)时,f (x )=1-1x在(1,+∞)上为增函数,有(),(),f a ma f b mb =⎧⎨=⎩即11,11.ma amb b⎧-=⎪⎪⎨⎪-=⎪⎩ 于是,a ,b 是方程mx 2-x +1=0的两个大于1的实数根.所以,140,1,m x ∆=->⎧⎪⎨=>⎪⎩只须0,140,12.m m m ⎧>⎪->⎨⎪>⎩解得0<m <14. 因此,m 的取值范围是0<m <14.说明 本题首先要注意题目的隐含条件a >0,因为函数的值域是[0,).+∞例2 已知常数a >0,在矩形ABCD 中,AB=4, BC=4a ,O 为AB 的中点,E 、F 、G 分别在BC 、CD 、DA 上移动,且BE BC = CF CD = DGDA ,P 为CE 与OF 的交点. 问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.(2003年全国高考江苏卷试题)分析 根据题设满足的条件, 首先求出动点P 的轨迹方程,根据轨迹是否是椭圆,就可断定是否存在两个定点(椭圆的两个焦点), 使得P 到这两点的距离的和为定值.解 按题意有A(-2,0),B(2,0),C(2,4a ),D(-2, 4a ).设BE BC = CF CD = DGDA = k (0≤k ≤1).由此有E(2,4ak ),F(2-4k , 4a ),G(-2, 4a -4ak ).直线OF 的方程为2ax +(2k -1)y =0, ① 直线GE 的方程为-a (2k -1)x + y -2a =0, ② 由①②消去参数k 得点P(x ,y )坐标满足方程2a 2x 2+y 2-2ay =0,整理得x 212+(y -a )2a 2=1.当a 2=12时,点P 的轨迹为圆弧,所以不存在符合题意的两点;当a 2≠12时,点P 的轨迹为椭圆的一部分,点P 到该椭圆的两个焦点的距离的和是定长;当a 2<12时,P 到椭圆两个焦点(-12-a 2,a ),(12-a 2,a )的距离之和为定长2; 当a 2>12时,P 到椭圆两个焦点(0, a -a 2-12),(0, a +a 2-12)的距离之和为定长2a .说明 要解决轨迹问题首先要建立适当的直角坐标系,有时还要选择适当的参数作过渡.情景再现1.已知二次函数f (x )=ax 2+bx +a 满足条件f (x +74)= f (74-x ), 且方程f (x )=7x +a 有两个相等的实数根.(1) 求f (x )的解析式;(2) 是否存在实数m 、n (0<m <n ),使得f (x )的定义域和值域分别是[m ,n ]和[3n ,3m ]? 若存在, 求出m 、n 的值; 若不存在, 请说明理由. (2004年河南省数学竞赛试题)2.直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(I) 求实数k 的取值范围;(II)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F?若存在,求出k 的值;若不存在,说明理由. (2004年湖北省高考理科试题)B 类例题例3将平面上每个点都以红、蓝两色之一着色,证明:存在这样的两个相似三角形,它们的相似比为1995,并且每一个三角形的三个顶点同色.(1995年全国高中数学联赛第二试试题)分析 因为平面上的每点不是红色就是蓝色,由抽屉原理,对任何一个无穷点集,至少有一个无穷子集是同色点集,对一个含n 个元素的有限点集,至少有一个含]21n [+个元素的子集是同色点集.(其中[ ]为高斯符号),于是利用抽屉原理,在半径为1和1995的两个同心圆上,寻找两个三顶点同色的相似三角形.证明 在平面上,以O 为圆心,作两个半径为1和1995的同心圆.根据抽屉原理,小圆周上至少有5点同色,不妨设为A 1,A 2,A 3,A 4,A 5,连接OA 1,OA 2,OA 3,OA 4,OA 5,分别交大圆 于B 1,B 2,B 3,B 4,B 5,根据抽屉原理,B 1,B 2,B 3,B 4,B 5中必有三点同色,不妨设为B 1,B 2,B 3,分别连接A 1A 2,A 2A 3,A 3A 1,B 1B 2,B 2B 3,B 3B 1,则△A 1A 2A 3∽△B 1B 2B 3,其相似比为1995,且两个三角形三顶点同色.说明 解决有关染色问题抽屉原理是经常使用的.例4 在坐标平面上,纵、横坐标都是整数的点称为整点.试证:存在一个同心圆的集合,使得 (1) 每个整点都在此集合的某一个圆周上; (2) 此集合的每个圆周上,有且仅有一个整点.(1987年全国高中数学联赛第二试试题)分析 构造法.先设法证明任意两整点到P ⎪⎭⎫⎝⎛31,2的距离不可能相等,从而将所有整点到P 点的距离排序造出同心圆的集合,这里同心圆的坐标不是惟一的,可取⎪⎭⎫ ⎝⎛31,2外的其它值.证明 取点P ⎪⎭⎫ ⎝⎛31,2.设整点(a ,b )和(c ,d )到点P 的距离相等,则2222222211(()((),3322(().3a b c d c a c a d b b d -+-=-+--=-+-+-即上式仅当两端都为零时成立.所以c =a ①c 2-a 2+d 2-b 2+32(b -d )=0 ②将①代入②并化简得d 2-b 2+32(b -d )=0.1即 (d -b )(d +b -32)=0 由于b ,d 都是整数,第二个因子不能为零,因此b =d ,从而点(a ,b )与(c ,d )重合,故任意两个整点到P ⎪⎭⎫ ⎝⎛31,2的距离都不相等.将所有整点到P 点的距离从大到小排成一列 d 1,d 2,d 3,……,d n ,…….显然,以P 为圆心,以d 1,d 2,d 3,…为半径作的同心圆集合即为所求.说明 同心圆的圆心坐标不是惟一的.例5 (1)给定正整数n (n ≣5), 集合A n ={1,2,3,…,n }, 是否存在一一映射φ:A n →A n 满足条件:对一切k (1≢k ≢n -1), 都有k |(φ(1)+ φ(2)+ … +φ(n ));(2)N +为全体正整数的集合, 是否存在一一映射φ:N +→N +满足条件:对一切k ∈N +, 都有k |(φ(1)+ φ(2)+ … +φ(n )).注 映射φ:A →B 称为一一映射, 如果对任意b ∈B, 有且仅有一个a ∈A, 使得b =φ(a ).题中“|”为整除符号. (2004年福建省数学竞赛试题)分析 对于问题(1)不难用反证法结合简单的同余理论可以获解;对于问题(2)采用归纳构造.解(1)不存在. 记S k =∑=ni i 1)(ϕ.当n =2m +1(m ≣2)时, 由2m |S 2m 及S 2m = (2m +1)(2m +2)2-φ(2m +1)得φ(2m +1)≡m +1(mod2m ).但φ(2m +1)∈A 2m +1, 故φ(2m +1)=m +1. 再由(2m -1)|S 2m -1及S 2m -1=(2m +1)(2m +2)2-(m +1)-φ(2m )得φ(2m )≡m +1(mod(2m -1)).所以, φ(2m ) =m +1, 与φ的双射定义矛盾. 当n =2m +1(m ≣2)时, S 2m +1=(2m +2)(2m +3)2-φ(2m +2)给出φ(2m +2)=1或2m +2, 同上又得φ(2m +1)=φ(2m )=m +2或m +1, 矛盾.(2) 存在.对n 归纳定义φ(2n -1)及φ(2n )如下:令φ(1)=1, φ(2)=3. 现已定义出不同的正整数φ(k )(1≢k ≢2n )满足整除条件且包含1,2,…,n , 又设v 是未取到的最小正整数值. 由于2n +1与2n +2互质, 根据孙子定理, 存在不同于v 及φ(k )(1≢k ≢2n )的正整数u 满足同余式组u ≡-S 2n (mod(2n +1)) ≡-S 2n -v (mod(2n +2)).定义φ(2n +1)= u , φ(2n +2)=v . 正整数φ(k )(1≢k ≢2n +2)也互不相同, 满足整除条件, 且包含1,2,…,n +1. 根据数学归纳法原理, 已经得到符合要求的一一映射φ:N +→N +.说明 数论中的存在性问题是竞赛命题的一个热点.情景再现3.将平面上每个点都以红、蓝两色之一着色. 存在有两个内角分别为2π7、 4π7,且夹边长为1996的三角形,其三个顶点同色.(1996年北京市数学竞赛试题)4. 在平面直角坐标系中,横坐标和纵坐标都是整数的点称为格点,任取6个格点P I (x i ,y i )(i =1,2,3,4,5,6)满足(1)|x i |≢2,| y i |≢2, (i =1,2,3,4,5,6); (2)任何三点不在同一条直线上.试证 在P i ( i =1,2,3,4,5,6)以为顶点的所有三角形中,必有一个三角形,它的面积不大于2.(1992年全国高中数学联赛第二试试题)5. 在坐标平面上,是否存在一个含有无穷多条直线l 1,l 2,…,l n ,…的直线族,它满足条件: (1)点(1,1)∈l n ,n =1,2,…; (2)k n +1=a n —b n ,其中k 1是l 1的斜率,k n +1是l n +1的斜率,a n 和b n 分别是l n 在x 轴和y 轴上的截距,n =1,2,3, …; (3)k n k n +1≣0,n =1,2,3, ….并证明你的结论. (1988年全国高中数学联赛第二试试题)C 类例题例6 平面上是否存在100条直线, 使它们恰好有1985个交点.(第26届IMO 预选题)分析 由于100条直线最多有C 1002=4950(>1985)个交点, 所以符合要求的直线可能存在.减少交点的个数可有两种途径:一是利用平行线, 二是利用共点线. 所以用构造法.解法一 由于x 条直线与一族100-x 条平行线可得x (100-x )个交点. 而x (100-x )=1985没有整数解, 于是可以考虑99条直线构成的平行网格.由于x (99-x )<1985的解为x ≢26或x ≣73,x ∈N , 且1985=73×26+99-12, 于是可作如下构造: (1) 由73条水平直线和26条竖直直线 x =k ,k =1,2,3,...,73; y = k ,k =1,2,3, (26)共99条直线, 可得73×26个交点.(2)再作直线y =x +14与上述99条直线都相交, 共得到99个交点, 但其中有12个交点(1,15),(2,16),…,(12,26)也是(1)中99条直线的彼此的交点, 所以共得99-12个交点. 由(1)、(2),这100条直线可得到73×26+99-12=1985个交点.解法二 若100条直线没有两条是平行的, 也没有三条直线共点, 则可得到C 1002=4950(>1985)个交点, 先用共点直线减少交点数.注意到若有n 1条直线共点, 则可减少12n C -1个交点. 设有k 个共点直线束, 每条直线束的直线条数依次为n 1, n 2,…, n k . 则有 n 1+n 2+…+ n k ≢100,122221112965k n n n C C C -+-++-=L ( C 1002-1985=2965). 因为满足12n C -1<2965的最大整数是n 1=77, 此时C 772-1=2925. 因此可构造一个由77条直线组成的直线束,这时还应再减少40个交点. 而满足22n C -1<40的最大整数为n 2=9, 此时C 92-1=35. 因此又可构造一个由9条直线组成的直线束. 这时还应减少5个交点. 由于C 42-1=5,所以最后可构造一个由4条直线组成的直线束.因为77+9+4=90<100, 所以这100条直线可构成为77条,9条,4条的直线束, 另10条保持不动即可. 说明 本题的基本数学思想方法是逐步调整,这在证明不等式时经常使用,但学会在几何中应用,会使你的解题思想锦上添花.例7 设n 是大于等于3的整数, 证明平面上存在一个由n 个点组成的集合, 集合中任意两点之间的距离为无理数, 任三点组成一个非退化的面积为有理数的三角形. (第28届IMO 试题)分析 本题的解决方法是构造法,一种方法在抛物线y =x 2上选择点列,另一种方法在半圆周上选择点列.解法一 在抛物线y =x 2上选取n 个点P 1,P 2,…,P n , 点P i 的坐标为(i ,i 2) (i =1,2,…,n ).因为直线和抛物线的交点至多两个, 故n 个点中任意三点不共线, 构成三角形为非退化的. 任两点P i 和P j 之间的距离是|P i P j |=(i -j )2+(i 2-j 2)2=|i -j |1+(i +j )2 (i ≠j , i , j =1,2,…,n ).由于(i +j )2<1+(i +j )2<(i +j )2+2(i +j )+1=(i +j +1)2, 所以1+(i +j )2 是无理数. 从而|P i P j |是无理数.△P i P j P k 的面积=12222111i jk i j k =12|(i -j ) (i -k )(j -k )|, 显然是有理数. 因此,所选的n 个点符合条件.解法二 考虑半圆周x 2+y 2=r 2(y ∈R +, r =2)上的点列{A n },对一切n ∈N *,令∠x OA n =αn ,则任意两点A i ,A j 之间的距离为|A i A j |=2r |sin αi -αj 2|,其中,0<αn ≢π, cos αn 2 = n 2-1n 2+1, sin αn 2= 2nn 2+1.∴|A i A j |=2r |sin αi 2cos αj 2―cos αi 2sin αj2|为无理数.又sin αn =2sin αn 2cos αn 2∈Q, cos αn = cos 2 αn 2―sin 2 αn2∈Q.任何三点A i ,A j ,A k 不共线,必然构成非退化三角形,注意到r =2,其面积 S=12111cos cos cos sin sin sin ij k ijk r r r r r r αααααα=r22111cos cos cos sin sin sin i j k ijk αααααα=111cos cos cos sin sin sin i j k ijkαααααα为有理数.说明 本题与第17届IMO 试题(见情景再现7)有一定的联系,请读者参考本解答完成它的解答. 例8一个n ×n 的矩阵(正方阵)称为“银矩阵”,如果它的元素取自集合S={1,2,…,2n -1}, 且对每个i =1,2,…,n , 它的第i 行和第i 列中的所有元素合起来恰好是S 中所有元素.证明(1) 不存在n =1997阶的银矩阵;(2) 有无穷多个的n 值,存在n 阶银矩阵.(第38届IMO 试题)分析 根据银矩阵的结构特征可以证明不存在奇数阶银矩阵,对任意自然数k , 用构造法构造出2k 阶银矩阵.解 (1)设n >1且存在n 阶银矩阵A. 由于S 中所有的2n -1个数都要在矩阵A 中出现,而A 的主对角线上只有n 个元素,所以,至少有一个x ∈S 不在A 的主对角线上. 取定这样的x . 对于每个i =1,2,…,n , 记A 的第i 行和第i 列中的所有元素合起来构成的集合为A i ,称为第i 个十字,则x 在每个A i 中恰好出现一次. 假设x 位于A 的第i 行、第i 列(i ≠j). 则x 属于A i 和A j,将A i 与A j配对,这样A 的n 个十字两两配对,从而n 必为偶数. 而1997是奇数,故不存在n =1997阶的银矩阵.(2)对于n =2,A=1231骣÷ç÷ç÷ç÷桫即为一个银矩阵,对于n =4,A=1256317546127431骣÷ç÷ç÷ç÷ç÷ç÷÷ç÷ç÷ç÷ç÷ç÷桫为一个银矩阵. 一般地,假设存在n 阶银矩阵A ,则可以按照如下方式构造2n 阶银矩阵D,D=A B C A 骣÷ç÷ç÷ç÷桫,其中B 是一个n ×n 的矩阵,它是通过A 的每一个元素加上2n 得到,而C 是通过把B 的主对角线元素换成2n 得到.为证明D 是2n 阶银矩阵,考察其第i 个十字. 不妨设i ≢n ,这时,第i 个十字由A 的第i 个十字以及B 的第i 行和C 的第i 列构成. A 的第i 个十字包含元素{1,2,…,2n -1}. 而B 的第i 行和C 的第i 列包含元素{2n , 2n +1,…,4n -1}.所以D 确实是一个2n 阶银矩阵.于是,用这种方法可以对任意自然数k,造出2k阶银矩阵.说明读者可以构造任意偶数阶银矩阵.情景再现6.证明不存在具有如下性质的由平面上多于2n(n>3)个两两不平行的向量构成的有限集合G:(1)对于该集合中的任何n个向量, 都能从该集合中再找到n-1个向量, 使得这2n-1个向量的和等于0;(2)对于该集合中的任何n个向量, 都能从该集合中再找到n个向量, 使得这2n个向量的和等于0.(2003年俄罗斯数学奥林匹克试题)7.试证:在半径为1的圆周上存在1975个点, 其中任意两点之间的距离都是有理数.(第17届IMO试题)8.是否存在平面上的一个无穷点集,使得其中任意三点不共线,且任意两点之间的距离为有理数?(1994年亚太地区数学奥林匹克试题)习题771.已知抛物线y2=4ax(0<a<1)的焦点为F,以A(a+4,0)为圆心,|AF|为半径在x轴上方作半圆交抛物线于不同的两点M和N,设P为线段MN的中点.(1)求|MF|+|NF|的值;(2)是否存在这样的a值,使|MF|,|PF|,|NF|成等差数列?若存在,求出a的值;若不存在,说明理由.(1996年昆明市数学选拔赛试题)2.证明:不存在正整数n使2n2+1,3n2+1,6n2+1都是完全平方数. (2004年日本数学奥林匹克试题)3.证明只存在一个三角形,它的边长为三个连续的自然数,并且它的三个内角中有一个为另一个的两倍.(第10届IMO试题)4.是否存在这样的实系数多项式P(x):它具有负实数,而对于n>1, P n(x)的系数全是正的.(1994年莫斯科数学奥林匹克试题)5.证明不存在对任意实数x均满足f[f(x)]= x2-1996的函数. (1996年城市数学联赛试题)6.是否存在有界函数f : R→R, 使得f(1)>0, 且对一切的x、y∈R, 都有f 2(x+y)≣f 2(x)+2 f(xy)+ f 2 (y)成立. (2005年俄罗斯数学奥林匹克试题)7.是否存在数列x1,x2,…,x1999,满足(1)x i<x i+1(i=1,2,3,…,1998);(2) x i+1- x i = x i- x i-1(i=2,3,…,1998);(3)( x i的数字和)<( x i+1的数字和) (i=1,2,3,…,1998);(4) (x i+1的数字和)-( x i的数字和) = ( x i的数字和)–( x i-1的数字和)(i=2,3,…,1998).(1999年江苏省数学冬令营试题)8.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有a2n+1≣2a n a n+2?(2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有a2n+1≣2a n a n+2?(2004年中国东南地区数学奥林匹克试题)9.是否存在一个无限素数数列p1, p2,…,p n,…,对任意n满足|p n+1-2p n|=1.(2004年波罗的海数学奥林匹克试题) 10.证明:对于每个实数M, 存在一个无穷多项的等差数列, 使得(1)每项是一个正整数, 公差不能被10整除;(2)每项的各位数字之和超过M. (第40届IMOY预选题)11.是否存在定义在实数集R上的函数f(x),使得对任意的x∈R,f(f(x))=x, ①且f(f(x)+1)=1-x? ②若存在,写出一个符合条件的函数;若不存在,请说明理由.(2004年河南省数学竞赛试题)12. 对于给定的大于1的正整数n ,是否存在2n 个两两不同的正整数a 1,a 2,…,a n ; b 1,b 2,…,b n 同时满足以下两个条件:(1) a 1+a 2+…+a n = b 1+b 2+…+b n ;(2)n -1>1ni i i i ia b a b =-+å> n -1- 11998.(1998年CMO 试题)“情景再现”解答1.(1)由条件有f (x )=ax 2-72a x +a . 又f (x )=7x +a 有两个相等的实数根,则由ax 2-(72a +7)=0可知, ∆=(72a +7)2-4a ·0=0, 解得a =-2.故f (x )= -2x 2+7x -2.(2)存在. 如图. 设g (x )= 3x (x >0). 则当f (x )= g (x )时, 有-2x 2+7x -2= 3x ,即2x 3-7x 2+2x +3=0. 故(x -1)(x -3)(2x +1)=0. 解得x 1=1, x 2=3, x 2=-12(舍去).因为f (x )max = 4ac -b 24a = 338,此时,x = 74∈[1,3],所以, 3f (x )max = 811<1. 故取m =811, n =3时, f (x )= -2x 2+7x -2在[811,3]上的值域为[1, 338]符合条件. 2. (I)将直线l 的方程y =kx +1代入双曲线C 的方程2x 2-y 2=1后,整理后得(k 2-1)x 2+2kx +2=0 ①依题意,直线l 与双曲线C 的右支交于不同的两点,故k 2-2≠0,Δ=(2k )2-8(k 2-2)>0,-2kk 2-2>0, 2k 2-2>0. 解得k 的取值范围为-2<k <-2.(II)设A 、B 两点的坐标分别为A(x 1, y 1),B(x 2, y 2),则由①得x 1+x 2=-2kk 2-2,x 1x 2=2k 2-2. ②假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F(c ,0), 则由FA ⊥FB 得(x 1-c )( x 2-c )+ y 1y 2=0,即(x 1-c )( x 2-c )+( kx 1+1)( kx 2+1)=0. 整理得(k 2+1)x 1x 2+(k -c )(x 1+x 2)+c 2+1=0. ③将②式及c= 62代入③式化简得5k 2+26kx -6=0.解得k =- 6+65或k = 6-65∉(-2,-2)(舍去).可知k =- 6+65使得以线段AB 为直径的圆经过双曲线C 的右焦点F .43A3. 任作一个边长为1996的正七边形A 1A 2A 3A 4A 5A 6A 7.这7个顶点中必有4点同色,而在这同色四点中,必有两点是相邻顶点, 为确定起见, 不妨设这两点就是A 1、A 2,并且它们均是红色. (1) A 4或A 6中有一个是红色的, 比如, A 6是红色的, △A 1A 2A 6即为所求.(2) A 4与A 6都是蓝色的. 若A 7是蓝色的, 则△A 4A 6A 7即为所求;若A 3是蓝色的, 则△A 4A 6A 7即为所求; 若A 3、A 7都是红色, 则为△A 1A 3A 7所求.4. 设存在6个格点P 1, P 2 ,P 3 ,P 4 ,P 5 ,P 6 落在区域S={(x ,y )||x |≢2,|y |≢2}内,它们任3个点所成的三角形面积都大于2.记P={ P 1, P 2 ,P 3 ,P 4 ,P 5 ,P 6}(1)若x 轴具有P 中的点数小于2,则由抽屉原理,x 轴的上半平面(或下半平面——不包括x 轴)至少有P i 的三个点.此三点所成的三角形面积不大于2.矛盾.故x 轴上恰有P 的2个点(因不能有3点共线).又剩下P 的4个点不可能有一点在直线y =±1上,否则出现P 中的点为顶点的面积不大于2的三角形.这就证明了,在直线y =2,和y =-2上,分别恰有P 的两个点.注意到S 的对称性,同理可证:直线x =-2, x =0, x =2上分别有P 的两个点. 于是,在每条直线y =2i ,x =2i (i =0,±1)上恰有P 的两个点.(2)P 必不能包含原点,否则,因S 内纵,横坐标均为偶数的所有格点落在且仅落在过原点的4条直线上,由 抽屉原理,剩下的P 的5个点,至少有两个点落在这些直线的其中一条上,于是3点共线,矛盾. 因此,P 中在x 轴的两点必是(-2,0),(2,0).同理,在y 轴上的两点必是(0,-2),(0,2).剩下的两点只能取(-2,-2),(2,2),或(-2,2),(2,-2).不论哪一种情形,都得到一个以P 点为顶点的面积不大于2的三角形,矛盾.5. 满足条件(1)、(2)、(3)的直线族不存在. 若不然,l n 的方程为y —1=k n (x —1)1111,1,n n n n n n n n na b k a b k k k k +=-=--=-=都存在,故k n ≠0,n =1,2,3, …. 对于n ≣1,有1112111121,1,,1.111n n n n n n n nk k k k k k k k k k k k k k +---=--=--=-=-+++相加得:()由于k n ≠0及(III)有k n k n +1>0可知诸k n 符号相同,不妨设k n >0,n =1,2,……. 由11111121111111,,(),n n n n n n n n nk k k k k k k k k k k k k +++=-<>=-+++<-有 但当n >k 12时k n +1<0,矛盾.同理可证,当k n <0,n =1,2, …,也会出现矛盾. 6. 假设题目的结论不真.选取一条直线l , 使其不与集合G 中的任何一个向量垂直. 于是, G 中至少有n 个向量在直线l 上的投影指向同一方向, 设它们为e 1, e 2, …, e n . 在直线l 上取定方向,使得这些向量的投影所指的方向为负. 再在集合G 中选取n 个向量f 1, f 2 ,…, f n ,使得它们的和在直线l 上的投影的代数值s 达到最大. 由题中条件(2)知s >0.由条件(1),可以找到n -1个向量a 1, a 2 ,…,a n -1,使得f 1+ f 2+…+f n = -(a 1+a 2+…+a n -1).显然, 至少有某个向量e i 不出现在上式右端, 不妨设为e 1. 从而a 1+a 2+…+a n -1+e 1的投影为负, 且其绝对值大于s .再由条件(2)知, 又可以找到n 个向量, 使得它们的代数和等于-(a 1+a 2+…+a n -1+e 1),从而,该和的投影代数值大于s . 此与我们对f 1, f 2 ,…, f n 的选取相矛盾. 7. 取θn =arctan n 2-12n (1≢n ≢1975), 则sin θn = n 2-1n 2+1 , cos θn = 2nn 2+1都是有理数, 且2θn 互不相同.对单位圆上辐角为2θ1,2θ2,…,2θ1975的点P 1,P 2,…,P 1975,|P i P j |=2|sin(θi -θj )|=2| sin θi cos θj - cos θi sin θj )|为有理数.8. 答案是肯定的,下面提供两种构造这样的点集的方法.方法一 存在角α,使得cos α与sin α都是有理数(例如sin α=35,cos α=45).考虑一个以有理数R 为半径的圆周,和一个弧度为2α的圆弧,显然a2R = sin α,其中a 是上述圆弧所对的弦长,因此弦长为有理数.从此弧的端点出发,在圆周上连续截取弧度为2α的圆弧,显然,任一弧所对的弦长XY 是有理数.由作图法知XY2R = |sin n α|,对某个正整数n ,由于cos α与sin α都是有理数,所以由数学归纳法可以证明sin n α和cos n α都是有理数. 下面证明此过程产生一个无穷点集.为了此目的,设sin α=p r , cos α=qr ,其中(p ,q )=1,p 2+q 2=r 2,由棣美弗定理得(q r +i pr )n =cos n α+ i sin n α. 若其值为1,则1= cos n α=Σ(-1)k C n 2k p n -2k q 2krn. 由于q 2≡-p 2(mod r 2),则r n ≡p n 2n -1(mod r 2). 故2| r ,然而从p 2+q 2=r 2, (p ,q )=1可知这是不可能的.这就证明了我们描述的集合是无限集. 方法二 在平面上取一点P 和一条与P 距离为1的直线l ,设Q 是l 上与P 相距为1的点,考察l 上所有满足SQ,PS 都是有理数的点S,由于毕达哥拉斯基本的三元数组有无穷多个,而且与点S 一一对应,故存在无穷多个这样的点.作一个以P 为中心,半径为1的反演.此变换保持点之间的距离的有理性(这容易通过△PSR ∽△PS'R'证明,其中S 和R 是点集中的点,S'和R'分别为它们的象).用这样的方法构造的点集在一个圆周上,因此,无三点共线.习题 解答1. 解 (1)由已知得F(a ,0),半圆为[x -(a +4)]2+y 2=16(y ≣0). 把y 2=4ax 代入,可得x 2-2(4-a )x +a 2+4a =0. 设M(x 1, y 1),N(x 2, y 2).则由抛物线的定义得|MF|+|NF|=(x 1+a )+(x 2+a )=( x 1+ x 2)+2a =2(4-a ) +2a =8. (2)若|MF|,|PF|,|NF|成等差数列,则有 2|PF|=|MF|+|NF|.另一方面,设M, P, N 在抛物线准线上的射影为M', P', N'. 则在直角梯形M'MNN'中,P'P 是中位线,又有 2|P'P|=|M'M|+|N'N|=|FM|+|FN|,因而|PF|=|P'P|.这说明了点P 应在抛物线上.但由已知P 是线段MN 的中点,即P 并不在抛物线上.所以不存在这样的a 值,使|MF|,|PF|,|NF|成等差数列.2. 假设存在这样的n , 使2n 2+1,3n 2+1,6n 2+1都是完全平方数, 那么(2n 2+1)( 3n 2+1)(6n 2+1)必定为完全平方数, 而(2n 2+1)(3n 2+1)(6n 2+1)=36n 6+36n 4+11n 2+1,(6n 3+3n )2=36n 6+36n 4+9n 2,(6n 3+3n +1)2=36n 6+36n 4+12n 3+9n 2+6n +1,所以 (6n 3+3n )2<(2n 2+1)(3n 2+1)(6n 2+1)<(6n 3+3n +1)2, 显然,与(2n 2+1)( 3n 2+1)(6n 2+1)为完全平方数矛盾.3. 设△ABC 满足题设条件, 即AB=n ,AC=n -1,BC=n +1, 这里n 是大于1的自然数. 并且△ABC 的三个内角分别为α、2α和π-3α,其中0<α<π3. 由于在同一个三角形中,较大的边所对的角也较大, 因此出现的情况只有如图所示的三种.对于情况(1), 因为sin(π-3α)sin α = sin3αsin α =4cos 2α-1=(sin2αsin α)2-1, 所以利用正弦定理可知n n -1 = sin(π-3α)sin α = (sin2αsin α)2-1= (n +1n -1)2-1, 从而得到n 2-5n =0, 解得n =5.同样,在情况(2)中,有n +1n -1 =(n n -1)2-1,解得n =2. 但n =2,此时三边为1,2,3,不能构成三角形. 在情况(3)中, 有n -1n =(n +1n)2-1,整理得n 2-3n -1=0, 但这个方程无整数解. 综上, 满足题设条件的三角形三边长只有4,5,6.可以证明cosB=34,cos2A= 18=cos2B, A=2B . 4. 存在.P(x )=10(x 3+1)(x +1)- x 2 =10x 4+10x 3- x 2+10x +10具有负系数, 但是P 2(x )= x 4+100(x 3+1)2(x +1)2-20x 2(x 3+1)(x +1)= x 4+20(x 3+1)[5(x 3+1)(x +1)2- x 2(x +1)]= x 4+20(x 3+1)(5x 5+10x 4+4x 3+4x 2+10x +5)的系数全是正的.P 3(x )=1000(x 3+1)3(x +1)3-300 x 2(x 3+1)2(x +1)2+30x 4(x 3+1)(x +1)-x 6=100(x 3+1)2(x +1)[10(x 3+1)(x +1)2-3x 2(x +1)]-x 6+30x 4(x 3+1)(x +1)=100(x 3+1)2(x +1)(10x 5+20x 4+7x 3+7x 2+20x +1)-x 6+30x 4(x 3+1)(x +1)=Q 1(x )-x 6+Q 2(x )Q 1(x )中的x 6的系数不小于1000,所以P 3(x )的系数也全是正的.又当k ≣2时,有P 2k (x )=[P 2(x )] k , P 2k +1(x )=[P 2(x )] k -1· P 3(x ).所以,对一切n >1, P n (x )的系数全是正的.5. 令g (x )= f [f (x )] = x 2-1996, 设a 、b 为方程x 2-1996= x 的两个实数根, 则a 、b 是g (x )的不动点. 设f (a )=p , 则f [f (p )]= f [f (f (a ))]= f (a )=p , 即p 也是g (x )的不动点. 所以f (a )∈{a ,b }.同理, f (b )∈{a ,b }.令h (x )= g [g (x )]=(x 2-1996)2-1996, 则h (x ) = x ∴ (x 2-1996)2-1996= x ∴ (x 2- x -1996)( x 2+ x -1995)=0所以h (x )存在四个不动点a 、b 、c 、d .因为c 2+c -1995=0, 所以g (c )= c 2-1996=- c -1= d .同理, g (d )=c .令f (c )=r , 则h [f (c )]= f [h (c )]= f (c ),即r 也是h (x )的不动点.若r ∈{a ,b },则d = f (r )∈{a ,b },矛盾; 若r = c , 则g (c )= f (r )= f (c )=r = c ,矛盾; 若r = d , 则d =g (c )= f (r )= f (d ),g (d )=g (r )=g (f (c ))=f (g (c ))= f (d )=d, 矛盾.综上所述, 满足条件的函数f (x )不存在.6. 不存在. 任取x 1≠0, 令y 1= 1x 1, 有 f 2(x 1+y 1)≣f 2(x 1)+2 f (1)+ f 2 (y 1) ≣f 2(x 1)+a ,其中a =2f (1)>0.令x n =x n -1+y n -1, y n = 1x n, n ≣2. 于是, 有 f 2(x n +y n )≣f 2(x n )+a = f 2(x n -1+y n -1) +a ≣f 2(x n -1)+2a ≣…≣f 2(x 1)+na ,故数列{ f (x 1), f (x 2),…, f (x n ) ,…}并非有界.7. 存在,构造如下:取x 1= 00000 00001 00002 00003…09999,x 2= 00001 00002 00003 00004…10000,x 3= 00002 00003 00004 00005…10001,…………,x 1998= 01997 01998 01999 02000…11996,x 1999= 01998 01999 02000 02001…11997,这是公差为00001 00001 00001 00001…00001的等差数列(项数取1999),且各项数字和为公差是1的等差数列.8.(1)不存在.假设存在正整数数列{a n }满足条件a 2n +1≣2a n a n +2.因为a 2n +1≣2a n a n +2, a n >0,所以a n a n -1≢12·a n -1a n -2≢122·a n -2a n -3≢…≢12n -2·a 2a 1(n =3,4,…), 又a 2a 1≢122-2 · a 2a 1, 所以有a n a n -1≢12n -2·a 2a 1(n =2,3,4,…)成立, 于是 a n ≢(12n -2·a 2a 1)a n -1≢12(n -2)+(n -3)·(a 2a 1)2·a n -2≢…≢12(n -2)+(n -3)+…+1·(a 2a 1)n -2·a 2, 所以12222211().2≢n n n n a a a ---× 设212[2,2),k k a k+挝N *, 取N=k +3,则有 1221222221111121()() 1.22≢≢N k k N N N k k a a a a -++--++?这与a N 是正整数矛盾.所以, 不存在正整数数列{a n }满足条件.(2) a n = π2(n -1)( n -2)就是满足条件的一个无理数数列, 此时有a 2n +1=4a n a n +2≣2a n a n +2.9. 若存在这样的数列{ p n }满足条件. 由| p n +1-2p n | =1得 p n +1=2p n ±1>2p n , 则数列{ p n }严格递增数列, 所以p 3>3且不能被3整除, 若p 3≡1(mod3)时, 可得p 4= 2p 3-1(否则p 4= 2p 3+1≡0(mod3), 即p 4能被3整除,舍去), 类似的有, p 5= 2p 4-1, …,p n =2p n -1-1,容易得到p n =2n -3p 3-2n -3+1(n ≣3),令n -3= p 3-1, 由费尔马小定理)(mod 12313p p ≡-,则p n =2n -3p 3-2n -3+1≡0(mod p 3), 即p 3|p n , 矛盾. 当p 3≡2(mod3)时, 也可得到类似的结论.综上, 不存在这样的数列.10. 我们证明这个等差数列的公差为10m +1的形式. 设a 0是一个正整数, a n = a 0+n (10m +1)=10s s b b b -L , 这里s 和数字b 0,b 1,…,b s 依赖于n . 若l ≡k (mod2m ), 设l =2mt +k ,则10l =102mt +k =(10m +1-1)2t ·10k ≡(mod(10m +1)).于是, a 0≡a n =10s s b b b -L ≡2110m i i i c -=×å( mod(10m +1)).其中c i =b i +b 2m +i +b 4m +i +…,i =0,1,2,…,2m -1.令N 是大于M 的正整数, 满足c 0+c 1+…+c 2m -1≢N 的非负整数解(c 0,c 1,…,c 2m -1)的个数等于严格递增数列0≢c 0<c 0+c 1+1<c 0+c 1+ c 2+1<c 0+c 1+…+c 2m -1+2m -1≢N+2m -1的数目, 即K N,2m =C 2m +N 2m =C 2m +N N = (2m +N)(2m +N -1)…(2m +1)N!. 对于足够大的m , 则有K N,2m <10m . 取a 0∈{1,2,…, 10m },使得a 0与集合 {21220m m --|c 0+c 1+…+c 2m -1≢N}中的任意元素模10m +1不同余, 因此, a 0的各位数字之和大于N . 从而, a n 的各位数字之和也大于N .11. 这样的函数不存在.下面用反证法证明.若存在函数f (x )使得条件均成立,先证明是f (x )是一一映射. 对于任意的a 、b , 若f (a )= f (b ),则由①有a = f (f (a ))= f (f (b ))= b , 即f (x )是一一映射.将x =0代入①,则有f (f (0))= 0. ③ 将x =1代入②,得f (f (1)+1)= 0. ④ 由式③、④得f (f (0))= f (f (1)+1).因为f (x )是一一映射,所以,f (0)=f (1)+1. ⑤ 同理,分别将x =1和x =0代入①、②,得f (f (1))= f (f (0)+1).则f (1) = f (0)+1. ⑥ ⑤+⑥得0=2. 矛盾.12. 存在符合命题要求的2n 个正整数.令a i =2M i ,b i =2i ,(i =1,2,3,n -1;M 是大于或等于8000n 的正整数),a n =(M -1)2n (n -1),b n =M(M -1)n (n -1).显然,上述2n 个正整数两两不同,且a 1+a 2+…+a n = b 1+b 2+…+b n = n (n -1)(M 2-M+1), 另一方面,我们有1ni i i i ia b a b =-+å=(n -1) M -1M+1 - 12M -1<n -1, 1ni i i i ia b a b =-+å=n -1- 2(n -1)M+1 - 12M -1>n -1-2(n -1)8000n - 18000>n -1- 11998. 因此,上述所给的2n 个正整数符合命题要求.。
用向量法(坐标法)解决点的存在性问题点的存在问题(即探索性问题)是历年高考的热点,立体几何中,探索满足某个条件的点是否存问题,能很好的考查学生的逻辑推理能力和空间想象能能力,休现了的新课标的要求,故倍受命题人青睐。
下面结合具体例题讲解此类问题的大致类型及解题策略。
例1:如图,在正方体1111ABCD A B C D -中,E 是1DD 的中点,(1)在棱B 1C 1是否存一点G ,使得AG ⊥平面1A BE ;(2)在线段BE 上是否存一点M ,使得M-CD-A 的平面角的余弦值为25. (3)在正方形ABCD 内(含边界线段)否存一点N ,使得C 1N ⊥1A BE点评:立何几何中的点的存在问题通常使用坐标法来进得解答,此方法不需要进行复杂的作图、推理及论证,只需要通过坐标运算进行判断。
解题策略:先假设满足条件的点存在,把要成立的结论当作条件,据此列方程或解方程组,把“是否存在”问题转化为“点的坐标是否在规定范围内有解问题。
命题类型:(1)在与坐标轴平行的线段上寻求一点满点某个条件,此种类型较易,直接设出该点坐标(横、纵,竖三个坐标中,己知两个),据条件得方程即可求解;(2)在与坐标轴不平行的线段上寻求一点满点某个条件,此种类型,此点的横、纵,竖三个坐标,可能己知一个,或者都不清楚,解题时需要根据三点共线进行坐标代换。
比如:在线段AB(AB 与坐标轴不平行)上寻找一点M 满足条件f 。
具体做法:设M (x,y,z)与AM=λAB (01λ≤≤),由坐标相等概念则可将M 点的坐标全部用λ表示M (f(λ),g(λ),φ(λ)),然后根据假设的结论列方程即求得λ。
(3)在某个面上寻求一点满点某个条件,直接列方程组解决。
命题规律:所探求的点一般是线段的中点或三等分点,故此种也可先估计此点的位置,然后进行证明。
专项训练1.(2010马鞍山模拟)如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.(Ⅰ)求二面角B—DE—C的平面角的余弦值;(Ⅱ)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.2,(2010绍兴模拟)如图,在三棱锥S-ABC中,SA=AB=AC=BC=2SB=2SC,O为BC的中点,(1)求证:SO ABC平面;(2)求异面直线SC与AB所成角的余弦值;(3)在线段AB上是否存在一点E,使得二面角B-SC-E的平面角的余弦值为15;5若存在,求BE:BA的值;若不存在,试说明理由。
C1B1A一、立体几何的存在性问题1、已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.(I)证明:BN⊥平面C1B1N;(II)M为AB中点,在线段CB上是否存在一点P,使得MP∥平面CNB1,若存在,求出BP的长;若不存在,请说明理由.俯视图左视图2、如图:在四棱锥P ABCD-中,底面ABCD是菱形,60,ABC PA∠=︒⊥平面ABCD,点,M N分别为,BC PA的中点,且2==ABPA.(1)证明:BC⊥平面AMN;(2)求三棱锥AMCN-的体积;(3)在线段PD上是否存在一点E,使得//NM平面ACE;若存在,求出PE的长;若不存在,说明理由.M CDD3、在直三棱柱111ABC A B C -中,1CC BC =,BC AB ⊥.点N M ,分别是1CC ,C B 1的中点,G 是棱AB 上的动点.(Ⅰ)求证:⊥C B 1平面BNG ; (Ⅱ)若CG //平面M AB 1,试确定G 点的位置,并给出证明.4、如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD //BC ,∠ADC =90°,BC =12AD ,P A =PD ,Q 为AD 的中点.(Ⅰ)求证:AD ⊥平面PBQ ;(Ⅱ)若点M 在棱PC 上,设PM =tMC ,试确定t 的值,使得P A //平面BMQ .PABCD Q M二、应用题综合【基本不等式】1、某单位建造一间地面面积为12m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过a米,房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5800元,如果墙高为3m,且不计房屋背面的费用.(1)把房屋总造价y表示成x的函数,并写出该函数的定义域.(2)当侧面的长度为多少时,总造价最底?最低总造价是多少?【导数】2、为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=k3x+5(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式.(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【线性规划】。
立体几何中的存在性问题1、如图,已知直三棱柱111ABC A B C -,90ACB ∠=o ,E 就是棱1CC 上动点,F 就是AB 中点 ,2==BC AC ,41=AA 、(Ⅰ)求证:CF ⊥平面1ABB ;(Ⅱ)当E 就是棱1CC 中点时,求证:CF ∥平面1AEB ;(Ⅲ)在棱1CC 上就是否存在点E ,使得二面角1A EB B --的大小就是45o ,若存在,求CE 的长,若不存在,请 说明理由、2、如图,在底面就是正方形的四棱锥P-ABCD 中,PA ⊥面ABCD,BD 交AC 于点E,F 就是PC 中点,G 为AC 上一点。
(Ⅰ)求证:BD ⊥FG;(Ⅱ)确定点G 在线段AC 上的位置,使FG//平面PBD,并说明理由;(Ⅲ)当二面角B-PC-D 的大小为23π时,求PC 与底面ABCD 所成角的正切值。
3、在四棱锥P ABCD -中,侧面PCD ⊥底面ABCD ,PD CD ⊥,E 为PC 中点,底面ABCD 就是直角梯形,//AB CD ,90ADC ∠=o ,1AB AD PD ===,2CD =、(Ⅰ)求证://BE 平面PAD ; (Ⅱ)求证:BC ⊥平面PBD ;(Ⅲ)设Q 为侧棱PC 上一点,PQ PC λ=u u u r u u u r ,试确定λ的值,使得二面角Q BD P--为45o4、如图,三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112,AA AC AC AB BC ====, 且AB BC ⊥,O 为AC 中点、 (Ⅰ)证明:1A O ⊥平面ABC ;GFE AABCD EP(Ⅱ)求直线1A C 与平面1A AB 所成角的正弦值;(Ⅲ)在1BC 上就是否存在一点E ,使得//OE 平面1A AB ,若不存在,说明理由;若存在,确定点E 的位置、5、如图,棱锥P —ABCD 的底面ABCD 就是矩形,PA ⊥平面ABCD ,PA =AD =2,BD =22、 (Ⅰ)求证:BD PAC ⊥平面; (Ⅱ)求二面角B PD C --的余弦值; (III)在线段PD 上就是否存在一点Q ,使CQ 与平面PBD 所成的角的正弦值为962,若存在,指出点Q 的位置,若不存在,说明理由、6、如图,四棱锥,,P ABCD AB AD CD AD PA ABCD -⊥⊥⊥中,底面,22PA AD CD AB ====,M PC 为的中点、(1)求证:BM PAD 平面P ;(2)在侧面PAD 内找一点N,使MN PBD ⊥平面7、如图,三棱柱ABC —A 1B 1C 1中,AA 1⊥面ABC,BC ⊥AC,BC=AC=2,AA 1=3,D 为AC 的中点、 (Ⅰ)求证:AB 1//面BDC 1;(Ⅱ)在侧棱AA 1上就是否存在点P,使得CP ⊥面BDC 1?并证明您的结论、8、 如图,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA = AD = CD = 2AB = 2,M 为PC 的中点、 (1)求证:BM ∥平面PAD ;1A BCO A 1B 1C DPABCA C 1B C 1(2)平面PAD 内就是否存在一点N ,使MN ⊥平面PBD ? 若存在,确定N 的位置,若不存在,说明理由;9、直三棱柱A 1B 1C 1—ABC 的三视图如图所示,D 、E 分别为棱CC 1与B 1C 1的中点。
微课堂设计《立体几何中的存在性问题》立体几何中的存在性问题在近几年的全国卷高考中大题第二问一直都有体现,存在性问题也就是探究性问题。
存不存在,存在又如何,我们处理的总的思路是什么?立体几何中的存在问题都是先假设存在,在存在的背景下去完成这个问题。
立体几何中有许多存在性问题,主要是针对直线上是否存在一点(平面内一点)使得满足一定的位置关系(平行、垂直)或一定的角度要求(线面角、二面角)。
存在性问题解决:(1)采用先猜后证,猜中点或三等分点等等然后证明位置关系:平行多用中位线、垂直多用三线合一等;(2)采用先设后求,运用待定系数法和空间向量解决,特别运用三点共线设一般直线上一点。
一.教学目标:掌握处理立体几何中探究性问题的一般思路;二.教学重点:利用先猜后证和先设后求处理探究性问题;三.教学难点:如何猜点及设点;四.教学过程4.1例题讲解例1.如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【答案】P为AM的中点【解析】当P为AM的中点时,MC∥平面PBD.证明如下:连结AC交BD于O.因为ABCD为矩形,所以O为AC中点.连结OP,因为P为AM中点,所以MC∥OP.MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.【分析】先猜后证,为什么要猜中点?根据已知条件没有比例关系,关键是连接对角线会产生中点,平行多用中位线、垂直多用三线合一。
例2.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30,求PC 与平面PAM 所成角的正弦值.【解析】(2)以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz - .则(0,0,0),(2,0,0),(0,2,0),(0,2,0),(0,0,23),(0,2,23)O B A C P AP -= 取平面PAC 的法向量(2,0,0)OB =.设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-.设平面PAM 的法向量为(,,)n x y z =.由0,0AP n AM n ⋅=⋅=得2230(4)0y z ax a y ⎧+=⎪⎨+-=⎪⎩ , 可取2(3(4),3,)n a a a =--所以22223(4)cos 23(4)3a OB n a a a -〈⋅〉=-++ .由已知得3cos 2OB n 〈⋅〉= .所以22223|4|3223(4)3a a a a -=-++ . 解得4a =-(舍去),43a = .所以83434,,333n ⎛⎫=-- ⎪ ⎪⎝⎭ .又(0,2,23)PC =- ,所以3cos ,4PC n 〈〉= .所以PC 与平面PAM 所成角的正弦值为34. 【分析】本题关键在于设M 的坐标,由于M 在xoy 平面内,可以放在xoy 平面去设M 坐标,根据M 点在直线BC 上,可以得到BC 方程,从而设出M 坐标。
巧解立体几何中的存在性问题发布时间:2021-04-20T15:13:42.997Z 来源:《教学与研究》2021年第2期作者:唐义志[导读] 在近些年的立体几何试题中,逐渐出现了一类带有探究和开放性的试题唐义志湖南省道县第一中学摘要:在近些年的立体几何试题中,逐渐出现了一类带有探究和开放性的试题,这类试题本身涉及的点带有显著的运动性和不确定性特征,使用传统的解题方式有着较大的难度。
笔者在几何本人工作经历的基础上,分析当下学生解答立体几何存在性问题的状况,并在文后通过立体讲述了一些立体几何存在性问题的解答技巧,以期为今后立体几何的存在性问题教学解答提供借鉴。
关键词:立体几何;存在性问题;解答技巧1、立体几何存在性问题解决现状当下高中阶段的试题中,立体几何占据的比例相对较大,这类试题在学生空间思维等方面的培养上发挥了关键作用,其中又以点的存在性和位置待定的问题设置为主,问题中通常带有是否存在等字眼,以便告知学生结论有待进一步确定,在解答问题的过程中,渗透了反证法和分析法等解题思路,也是高考中的热门题目[1]。
这类问题的设置能够帮助学生进一步体会空间内直线之间、直线与平面之间、平面之间平行的位置关系,并使用相关定理有效解决在线平行中的存在性问题,。
同时,学生需要将空间层面的转化为平面问题,并使用多种方式寻找结论证明所需的点、线、面。
但是,学生在具体的问题解答过程中,因其基本掌握了直线之间、直线与平面之间、平面之间平行的判定及其性质等知识,具备一定的解题思路,但解答存在性问题通常以特殊点猜想的方式为主,并未做到从深层次上意识到这个特殊点寻找的意义,再加之学生复习中忽视反证法的应用,导致在结论证明不存在的情况下,无法有效进行叙述。
2、巧妙解决立体几何存在性问题的技巧2.1肯定性问题解答即证明符合条件的对象一定存在,其中常见的一类是只要求证明符合条件的几何对象存在即可,对存在对象的数量并不作要求.常见的证明方法有综合法、构造法、反证法等[2]。