自相关(序列相关)
- 格式:ppt
- 大小:269.00 KB
- 文档页数:45
时间序列的自相关
时间序列的自相关是指一个时间序列中的每个数据点和其之前
的数据点之间的相关性。
自相关可以用来检测时间序列中的趋势和周期性,以及预测未来值。
自相关系数是衡量自相关强度的指标,它可以在不同的滞后期进行计算。
自相关分析可以通过绘制自相关函数图来实现。
自相关函数图表现了自相关系数与滞后期之间的关系。
如果自相关系数在滞后期为0时最大,那么时间序列中存在一个明显的周期性。
如果自相关系数随着滞后期的增加而减小,那么时间序列中的相关性越来越弱。
除了自相关,还有一个相关的概念叫做偏自相关。
偏自相关是指两个数据点之间的相关性,控制了其他滞后期的影响。
偏自相关函数图可以用来检测时间序列中的季节性和趋势。
在实际应用中,自相关分析可以用来预测未来的趋势和周期性。
如果时间序列中存在周期性,那么自相关分析可以帮助我们确定周期的长度和强度。
如果时间序列中存在趋势,那么自相关分析可以帮助我们预测未来值的趋势。
- 1 -。
广义计量经济学:采用经济理论、统计学和数学定量讨论经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。
狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。
计量经济学:是经济学的一个分支学科,是以揭示经济活动中的客观存在的数量关系为内容的分支学科。
计量经济学模型:揭示经济活动中各种因素之间的定量关系,用随机性的数学方程加以描述。
截面数据:截面数据是很多不同的观看对象在同一时间点上的取值的统计数据集合,可理解为对一个随机变量重复抽样获得的数据。
时间序列数据:把反映某一总体特征的同一指标的数据,依据肯定的时间挨次和时间间隔排列起来,这样的统计数据称为时间序列数据面板数据:指时间序列数据和截面数据相结合的数据。
总体回归函数:指在给定Xi下Y分布的总体均值与Xi所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。
样本回归函数:指从总体中抽出的关于Y,X的若干组值形成的样本所建立的回归函数。
随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。
线性回归模型:既指对变量是线性的,也指对参数B为线性的,即解释变量与参数B只以他们的1次方消失。
最小二乘法:又称最小平方法,指依据使估量的剩余平方和最小的原则确定样本回归函数的方法。
最大似然法,又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。
总离差平方和:用TSS表示,用以度量被解释变量的总变动。
回归平方和,用ESS表示:度量由解释变量变化引起的被解释变量的变化部分。
残差平方和:用RSS表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。
协方差:用COV(X,Y)表示,度量X,Y两个变量关联程度的统计量。
拟合优度检验:检验模型对样本观测值的拟合程度,用R2表示,该值越接近1,模型对样本观测值拟合得越好。
第六章自相关性6.1 自相关性:6.1.1. 非自相关假定由第2章知回归模型的假定条件之一是,Cov(u i, u j) = E(u i u j) = 0, (i, j∈T, i≠j), (6.1)即误差项u t的取值在时间上是相互无关的。
称误差项u t非自相关。
如果Cov (u i,u j ) ≠ 0, (i≠j)则称误差项u t存在自相关。
自相关又称序列相关。
原指一随机变量在时间上与其滞后项之间的相关。
这里主要是指回归模型中随机误差项u t与其滞后项的相关关系。
自相关也是相关关系的一种。
6.1.2.一阶自相关自相关按形式可分为两类。
(1)一阶自回归形式当误差项u t只与其滞后一期值有关时,即u t = f (u t - 1) + v t称u t具有一阶自回归形式。
(2) 高阶自回归形式当误差项u t的本期值不仅与其前一期值有关,而且与其前若干期的值都有关系时,即u t = f (u t– 1, u t– 2 , …u t– p ) + v t则称u t具有P阶自回归形式。
通常假定误差项的自相关是线性的。
因计量经济模型中自相关的最常见形式是一阶自回归形式,所以下面重点讨论误差项的线性一阶自回归形式,即u t = α1 u t -1 + v t(6.2)其中α1是自回归系数,v t 是随机误差项。
v t 满足通常假设E(v t) = 0, t = 1, 2 …,T,Var(v t) = σv2, t = 1, 2 …,T,Cov(v i , v j ) = 0, i ≠ j , i , j = 1, 2 …, T , Cov(u t -1, v t ) = 0, t = 1, 2 …, T ,依据普通最小二乘法公式,模型(6.2)中 α1 的估计公式是,1ˆa= ∑∑=-=-Tt t Tt t t u u u 22121(1ˆβ=∑---2)())((x x x x y y t t t ) (6.3)其中T 是样本容量。
自相关性一、名词解释1 序列相关性2 虚假序列相关3 差分法4 广义差分法5 自回归模型6 广义最小二乘法7 DW 检验 8 科克伦-奥克特跌代法 9 Durbin 两步法10 相关系数二、单项选择题1、如果模型y t =b 0+b 1x t +u t 存在序列相关,则()A.cov(x t , u t )=0B.cov(u t , u s )=0(t ≠s)C. cov(x t , u t )≠0D. cov(u t , u s ) ≠0(t ≠s)2、DW 检验的零假设是(ρ为随机误差项的一阶相关系数)A 、DW =0B 、ρ=0C 、DW =1D 、ρ=13、下列哪个序列相关可用DW 检验(v t 为具有零均值,常数方差且不存在序列相关的随机变量)A .u t =ρu t -1+v tB .u t =ρu t -1+ρ2u t -2+…+v tC .u t =ρv tD .u t =ρv t +ρ2 v t-1 +…4、DW 的取值范围是()A 、-1≤DW ≤0B 、-1≤DW ≤1C 、-2≤DW ≤2D 、0≤DW ≤45、当DW =4时,说明()A 、不存在序列相关B 、不能判断是否存在一阶自相关C 、存在完全的正的一阶自相关D 、存在完全的负的一阶自相关6、根据20个观测值估计的结果,一元线性回归模型的DW =2.3。
在样本容量n=20,解释变量k=1,显著性水平为0.05时,查得dl=1,du=1.41,则可以决断()A 、不存在一阶自相关B 、存在正的一阶自相关C 、存在负的一阶自D 、无法确定7、当模型存在序列相关现象时,适宜的参数估计方法是()A 、加权最小二乘法B 、间接最小二乘法C 、广义差分法D 、工具变量法8、对于原模型y t =b 0+b 1x t +u t ,广义差分模型是指()0t 1t t t 01t t t t-101t t-1t t-1b B. y =b x uC. y =b +b x uD. y y =b (1-)+b (x x )(u u )ρρρρ+++--+- 9、采用一阶差分模型一阶线性自相关问题适用于下列哪种情况()A 、ρ≈0B 、ρ≈1C 、-1<ρ<0D 、0<ρ<110、假定某企业的生产决策是由模型S t =b 0+b 1P t +u t 描述的(其中S t 为产量,P t 为价格),又知:如果该企业在t-1期生产过剩,经营人员会削减t 期的产量。
第6章 自相关6.1 复习笔记考点一:什么是自相关 ★★★1.自相关的概念自相关又称序列相关,是指总体回归模型的随机误差项u i 之间存在相关关系的一种现象。
在古典假定中假设随机误差项是无自相关的,即:Cov (u i ,u j )=E (u i u j )=0(i ≠j )。
如果该假定不能满足,就称u i 与u j 存在自相关,即不同观测点上的误差项彼此相关。
自相关系数可用来表示自相关的程度。
随机误差项u t 与滞后一期的u t -1的自相关系数ρ的计算公式为:1nt t u uρ-=∑式中u t -1是u t 滞后一期的随机误差项,因此上式计算的自相关系数ρ称为一阶自相关系数。
自相关系数ρ的取值范围为-1≤ρ≤1。
如果ρ<0,则u t 与u t -1间存在负相关关系;如果ρ>0,则u t 与u t -1间存在正相关关系;如果ρ=0,则u t 与u t -1不相关。
2.自相关产生的原因(见表6-1)表6-1 自相关产生的原因自相关关系主要存在于时间序列数据中,但是在横截面数据中也可能会出现,通常称横截面数据中出现的自相关为空间自相关。
多数经济时间序列在较长时间内都表现为上升或下降的趋势,因此大多表现为正自相关。
但就自相关本身而言,既有正相关也有负相关。
3.自相关的表现形式(1)一阶自相关随机误差项的一阶自相关形式为:u t=ρu t-1+v t(-1<ρ<1)。
其中,ρ为自相关系数;v t为满足古典假定的误差项,即E(v t)=0,Var(v t)=σ2,Cov(v t,v t+s)=0,s ≠0。
一阶自回归形式记为AR(1),相应的式中的ρ称为一阶自相关系数。
(2)m阶自相关如果一阶自相关中的随机误差项v t是不满足古典假定的误差项,即v t中包含有u t的成分,如包含有u t-2,…,u t-m的影响,则需将u t-2,…,u t-m包含在回归模型中,即:u t=ρ1u t -1+ρ2u t -2+…+ρm u t -m +v t 。
时间序列自相关函数
时间序列自相关函数是时间序列分析中的一种重要工具,用于研究时间序列数据中的自相关性。
自相关是指在同一时间序列中,不同时刻的数据之间的相关性。
自相关函数(ACF)是一种描述时间序列
数据在不同时间延迟下的相关性的方法。
ACF可以通过计算时间序列数据与其自身在不同时间延迟下的相关性系数来计算。
具体来说,ACF是时间序列数据与其自身在不同时间间隔内的相关系数的函数。
在计算ACF时,一个时间序列数据集被拆分成不同的时间段,并计算在不同时间延迟下的相关性系数。
ACF的结果可以用来评估时间序列数据中的周期性和趋势性。
如果ACF显示较高的正相关性在一定时间延迟下出现,这可能表明时间序列存在明显的周期性。
另一方面,如果ACF显示较低的相关性或没有相关性,这可能表明时间序列数据是随机的。
ACF也可用于确定时间序列数据的自回归模型(AR模型),其中
每个数据点都是前几个数据点的加权和。
通过分析ACF图形,可以确定AR模型的阶数,即所需的前几个数据点的数量。
总之,时间序列自相关函数是一种有效的工具,可以帮助分析时间序列数据中的自相关性和周期性,并为预测和建模提供有用的信息。
- 1 -。