三乙磷酸铝
- 格式:doc
- 大小:174.50 KB
- 文档页数:15
三乙膦酸铝含量分析Fosetyl-aluminium (fosetyl-Al)熔点:> 200℃分解蒸气压(25℃):<10-5Pa溶解度(20℃,g/L):水中120;甲醇中920;甲基乙二醇中45;乙睛、乙酸乙醋、二氯甲烷中小于5×10-3。
稳定性:在一般贮存条件下稳定实验式:C6H18AlO9P3相对分子质量:354.11(按1997年国际相对原子质量)生物活性:杀菌1 方法提要三乙膦酸铝在氢氧化钠溶液中加热碱解,生成的亚磷酸盐被碘氧化,过量的碘用硫代硫酸钠回滴。
反应方程式:2 试剂和溶液乙酸碘化钾磷酸溶液:80%。
硫酸溶液:c(H2SO4)=2mo l/L。
氢氧化钠A溶液:c(NaOH)=1 mol/L。
氢氧化钠B溶液:c(NaOH)=0. 1 mol/l。
碘标准溶液:0.1 mo l/L,按GB/T 601配制。
硫代硫酸钠标准滴定溶液:c(Na2S2O3)=0.1 mol/L,按GB/T 601配制。
酚酞指示剂:1 g /L,按GB/T 603配制。
淀粉指示剂:0.5 g /L(新鲜配制),按GB/T 603配制。
缓冲溶液:pH=7.3 ±0.2,称量100 g 氢氧化钠(精确至0.0002 g )溶解于1.8 L 水中,加磷酸溶液中和至pH-8,冷却至室温后,在pH计控制下滴加磷酸溶液至pH =7.3±0.2,加人30 g碘化钾和碘标准溶液20 ml,搅拌溶解后用水稀释至2 L。
室温暗处保存,使用之前滴加硫代硫酸钠标准滴定溶液至无色。
3 仪器电位滴定仪。
超声波水浴。
pH计。
可调电热套:1200W。
球形冷凝管。
碘量瓶:250m L具塞。
滴定管:25m L棕色。
4 测定步骤4.1 试样溶液称量约含三乙磷酸铝3 g 的试样(精确至0.0002 g ),置于500 ml 容量瓶中,加人氢氧化钠B溶液200 mL,将容量瓶放在超声波水浴中超声10 min,冷却至室温后,用氢氧化钠A溶液定容混匀。
三乙磷酸铝化学合成前言三乙瞵酸铝为白色无嗅结晶,工业品为白色粉末。
在水中的溶解度为120g/l(20℃),不溶于有机溶剂。
蒸汽压在20℃下极小,可忽略不计。
三乙瞵酸铝在乙腈和丙二醇中的溶解度均小于0.08g/l。
工业品和加工制剂在通常储藏条件下稳定,在酸性介质中不稳定,遇氧化剂则氧化。
在通常储存条件下原药和加工制剂均稳定,在温度20℃,1kg/m3的水溶液中,产品的半衰期在100天以上。
三乙瞵酸铝低毒,对皮肤、眼睛无刺激作用,对蜜蜂、鱼类及野生物安全。
产品名称:三乙膦酸铝化学名称:三——(乙基亚磷酸)铝其他名称:LS74——783、霉菌灵、克霉灵、霉疫净。
通用英文名称:Phosethyl Al分子式:C6H18AlO9P3O结构式:(C2H5O-P-O)3AlH分子量:354.1 (按1983年国际原子量)3000吨/年三乙膦酸铝原药工程设计依据a、500吨/年三乙膦酸铝施工设计方案b、《95%三乙膦酸铝原药萃取工艺鉴定报告》2001年3月c、《以水替代部分乙醇合成三乙膦酸铝原药中试报告》2001年4月d、《低温投硫酸铝合成三乙膦酸铝原药小试报告》2001年4月试验1. 主要原料的标准:1.1 三氯化磷标准号:GB10667—89质量指标:三氯化磷含量: ≥98%游离磷含量: ≤0.008%1.2 乙醇标准号:GB/T394—94质量指标:外观:无色透明液体乙醇含量(v/v): ≥95%甲醇含量mg/l : ≤20001.3. 液氨标准号:GB536—88质量指标:氨含量: ≥99.6%水油含量: ≤0.4%1.4 氨水标准号:HG1—88—81质量指标:外观:无色透明液体氨水含量(m/m): ≥12.0%1.5.硫酸铝标准号:HG2225—91质量指标:氧化铝含量(A2O3): ≥15.8%水不容物: ≤0.10%1.6. 液碱标准号:GB209—93质量指标:氢氧化钠含量(m/m): ≥30.0%碳酸钠含量(m/m): ≤0.6%氯化钠含量(m/m): ≤5.0%三氧化二铁含量(m/m): ≤0.01%2生产工艺过程及工艺流程图2.1生产工艺过程2.1.1酯化、脱酸工序经二车间计量过的三氯化磷,通过管路送到三氯化磷贮罐(或由供销购进的三氯化磷,经称量后,用泵打入三氯化磷贮罐)。
常用化学农药:一、杀菌剂(1)波尔多液理化性质:良好的波尔多液为天蓝色悬浮液,有棉絮状悬浮物,呈碱性。
放置后,产生沉淀,久置则变质,药效降低,所以波尔多液要现配现用,不能贮藏。
对金属有腐蚀作用。
毒性:有些植物对铜离子或石灰敏感易产生药害,不应使用。
对铜离子敏感的植物有苹果、梨、白菜、小麦等,对石灰敏感的有茄科、葫芦科、马铃薯、葡萄、瓜类等;要选用不同的配合量,以减弱药害因子作用;在高温干早的情况下,对石灰敏感的作物特别易产生药害。
特点:它是一种非内吸、保护性无机杀菌剂,其有效成分是碱式硫酸铜,作物喷洒后,以微粒状附着在植物表面和病菌表面,经空气、水分、二氧化碳及作物、病菌分泌物等因素的作用,慢慢地转化成可溶性铜而起杀菌作用。
配制方法:常用两液法,用1/6的水量调制石灰乳,再用5/6的水量化开硫酸铜,然后将硫酸铜溶液缓慢地倒入石灰乳中,边倒边搅拌即成。
也可各用半量的水分别将硫酸铜和生石灰溶化开,然后将两液同步缓慢地倒入第三个非金属容器中,边倒边搅拌即成。
防治应用:波尔多液有着持久的粘着性和残效期(10-15天),对林木较安全。
防治林木病害一般用配比l: 1: 100(硫酸铜:石灰:水)的药液喷雾,防治杉木细菌性叶枯病、油茶炭疽病、松及杉苗立枯病、松苗叶枯病、松枯梢病、桉树紫斑病、桉树褐斑病、桉树溃疡病、相思锈病、毛竹枯梢病等,在发病期每隔15天喷一次,共喷1-3次。
注意事项:①波尔多液属于保护性杀菌剂,宜在发病前施用(这一点会被很多人忽视),或发病初期施用。
发病时间越长,效果也越差。
植物的花期、早晨露水未干、天气阴湿、多雾天喷施后易产生药害,喷施后遇大雨,应在天晴后补喷。
在温度超过30℃的晴天中午也应避免施用;喷洒要均匀,否则也易产生药害。
②水果、蔬菜在收获前15-20大不能施用,以免造成污染。
在施用波尔多液的植株上15-20天内不得施用石硫合剂等碱性农药,否则易造成药害;而喷过石硫合剂则需间隔10天以上才能喷施波尔多液。
三乙磷酸铝标准三乙磷酸铝(Aluminum Triethylphosphinate)是一种常用的无机化合物,具有多种应用领域。
它是由铝、磷和乙基醇反应得到的白色结晶固体。
三乙磷酸铝在化学工业中广泛用作阻燃剂、催化剂和添加剂等。
本文将详细介绍三乙磷酸铝的性质、制备方法、应用领域以及相关的安全注意事项。
首先,我们来了解一下三乙磷酸铝的化学性质。
它的化学式为Al(C2H5)3PO3,相对分子质量为246.14。
三乙磷酸铝是一种稳定的化合物,可以在常温下长时间保存。
它在水中不溶,但可以溶解于有机溶剂如乙醇、甲苯等。
三乙磷酸铝具有较高的熔点和沸点,分别为240℃和300℃。
三乙磷酸铝的制备方法有多种途径。
一种常用的方法是将乙基醇和三氯化铝反应,生成三乙基氯化铝,然后再与磷酸反应得到三乙磷酸铝。
该方法简单易行,产率较高。
另外,也可以通过其他方法如直接反应法、溶液法等制备三乙磷酸铝。
三乙磷酸铝在阻燃领域具有广泛的应用。
它可以作为阻燃剂添加到塑料、橡胶、纺织品等材料中,提高其阻燃性能。
三乙磷酸铝可以抑制材料的燃烧过程,减少火焰蔓延速度,并生成不易燃烧的炭化物层,起到有效的阻燃作用。
此外,三乙磷酸铝还可以提高材料的机械性能和耐热性能。
除了在阻燃领域,三乙磷酸铝还被广泛应用于催化剂和添加剂等领域。
它可以作为催化剂用于有机合成反应中,促进反应进行并提高产率。
同时,三乙磷酸铝也可以作为添加剂添加到涂料、胶粘剂等产品中,改善其性能。
然而,在使用三乙磷酸铝时需要注意安全事项。
由于其具有一定的刺激性和腐蚀性,操作时应佩戴防护手套和眼镜,避免接触皮肤和眼睛。
同时,在储存和运输过程中要避免与氧化剂、酸类等物质接触,以免发生危险反应。
综上所述,三乙磷酸铝是一种重要的无机化合物,在阻燃、催化剂和添加剂等领域具有广泛的应用。
它具有稳定性好、阻燃效果显著等优点,但在使用过程中需要注意安全事项。
随着科学技术的不断发展,相信三乙磷酸铝在更多领域将发挥更大的作用。
乙磷铝的防治对象及使用方法
乙磷铝为内吸性杀菌剂,兼有保护和治疗作用。
纯品为白色结晶,原药为白色粉末,易溶于水,不易挥发。
原药和制剂在自然条件下稳定,在强酸、强碱介质中易分解。
对人畜无毒,对鱼、蜜蜂低毒,较安全,今天就为大家介绍一下乙磷铝的防治对象及使用方法。
乙磷铝的防治对象及使用方法:
乙磷铝对卵、菌都有防治作用,适用于多种真菌引起的病害,对霜霉病防效尤佳。
可喷洒、拌种、灌根、侵渍等。
(l)防治各种蔬菜霜霉病,用40%可湿性粉剂200-300倍液,于发病初期开始,每隔10天左右喷1次,共喷2-5次。
(2)防治西红柿晚疫病,轮纹病,黄瓜疫病,茄子绵疫病,用40%可湿性粉剂200-300倍液,于发病初期每隔7天喷1次,连喷3次。
乙磷铝的注意事项:
(1)不能与强酸、强碱性药剂混用。
(2)连续长期使用容易产生抗药性,可与代森猛锌、克菌丹、灭菌
丹等混合使用,或与其他杀菌剂轮换使用。
(3)本品易吸潮结块,贮存时应封严,并保持干燥。
(4)黄瓜、白菜在使用浓度偏高时,易产生药害;病害产生抗药性时,对上述蔬菜不应随意增加使用浓度。
乙磷铝的防治对象及使用方法就介绍到这里,乙磷铝又名疫霉灵、三乙磷酸铝、霉菌灵、克菌灵、霜霉灵、疫霉净、磷酸乙酯铝。
三乙膦酸铝的合成工艺
三乙膦酸铝是一种重要的有机金属化合物,它在催化剂、配位化学和材料科学等领域具有广泛的应用。
其合成工艺通常包括以下步骤:
1. 溶剂的选择,首先,选择合适的溶剂是合成过程中的关键一步。
常用的溶剂包括乙醚、四氢呋喃(THF)等。
这些溶剂通常需要在惰性气氛下干燥处理,以确保反应的纯净性。
2. 高纯度的三乙膦,合成三乙膦酸铝的第一步是制备高纯度的三乙膦。
这通常涉及到三乙膦和氢氧化铝的反应,生成三乙膦酸铝的前体。
3. 反应条件的控制,在反应过程中,需要严格控制温度、压力和反应时间等参数,以确保产物的纯度和产率。
通常情况下,反应温度在室温至60摄氏度之间。
4. 结晶和纯化,得到反应产物后,需要进行结晶和纯化步骤,以去除杂质并获得高纯度的三乙膦酸铝。
以上是一般情况下三乙膦酸铝的合成工艺。
需要根据具体的实
验条件和要求来进行调整和优化。
希望这些信息能够对你有所帮助。
我国是农业生产大国,由于社会经济的飞速发展,农业得到迅猛发展,随着农药用量的不断增加,所带来的环境安全隐患也不容忽视。
常见的食品中阴离子型危害物主要包括极性农药残留、植物生长调节剂、氯酸盐、高氯酸盐等。
这些农药或生长调节剂的大量使用,不仅造成了环境污染,由于其残留部分的代谢与转移,使得很多种类的极性农药残留物出现在人们日常食用的食品中,危害着人们的身体健康。
例如,doi:10.16736/41-1434/ts.2024.2.048作者简介:宋金丽(1986—),女,硕士,工程师,研究方向为食品安全抽检监测。
通信作者:肖全伟(1977—),男,博士,高级工程师,研究方向为食品安全与质量检测。
E -mail:xqw66666@;戴琴(1984—),女,硕士,高级工程师,研究方向为食品安全与质量检测。
E -mail:****************。
离子色谱-串联质谱法(IC-MS)同时测定蔬菜中17种阴离子型危害物Simultaneous Determination of 17 Anionic Hazards in Vegetables by Ion Chromatography TandemMass Spectrometry (IC-MS)◎ 宋金丽1,2,王 鑫1,2,袁 潇1,2,李龙雪莲1,2,戴 琴1,2,肖全伟1,2(1.成都市食品检验研究院,四川 成都 611130;2.国家市场监管重点实验室(营养与健康化学计量及应用),北京 100029)SONG Jinli 1,2, WANG Xin 1,2, YUAN Xiao 1,2, LI Longxuelian 1,2, DAI Qin 1,2 , XIAO Quanwei 1,2(1.Chengdu Food Inspection and Research Institute, Chengdu 611130, China;2. National Key Laboratories for Market Regulation (Nutrition and Health Chemometrics and Applications), Beijing 100029, China)摘 要:本研究建立了离子色谱-串联质谱法同时测定蔬菜中17种常见的阴离子型危害物的分析方法。
三乙磷酸铝项目可行性研究报告编制单位:北京中投信德国际信息咨询有限公司编制时间:高级工程师:高建关于编制三乙磷酸铝项目可行性研究报告编制说明(模版型)【立项 批地 融资 招商】核心提示:1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。
2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整)编制单位:北京中投信德国际信息咨询有限公司专业撰写节能评估报告资金申请报告项目建议书商业计划书可行性研究报告目录第一章总论 (1)1.1项目概要 (1)1.1.1项目名称 (1)1.1.2项目建设单位 (1)1.1.3项目建设性质 (1)1.1.4项目建设地点 (1)1.1.5项目主管部门 (1)1.1.6项目投资规模 (2)1.1.7项目建设规模 (2)1.1.8项目资金来源 (3)1.1.9项目建设期限 (3)1.2项目建设单位介绍 (3)1.3编制依据 (3)1.4编制原则 (4)1.5研究范围 (5)1.6主要经济技术指标 (5)1.7综合评价 (6)第二章项目背景及必要性可行性分析 (7)2.1项目提出背景 (7)2.2本次建设项目发起缘由 (7)2.3项目建设必要性分析 (7)2.3.1促进我国三乙磷酸铝产业快速发展的需要 (8)2.3.2加快当地高新技术产业发展的重要举措 (8)2.3.3满足我国的工业发展需求的需要 (8)2.3.4符合现行产业政策及清洁生产要求 (8)2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9)2.3.6增加就业带动相关产业链发展的需要 (9)2.3.7促进项目建设地经济发展进程的的需要 (10)2.4项目可行性分析 (10)2.4.1政策可行性 (10)2.4.2市场可行性 (10)2.4.3技术可行性 (11)2.4.4管理可行性 (11)2.4.5财务可行性 (11)2.5三乙磷酸铝项目发展概况 (12)2.5.1已进行的调查研究项目及其成果 (12)2.5.2试验试制工作情况 (12)2.5.3厂址初勘和初步测量工作情况 (13)2.5.4三乙磷酸铝项目建议书的编制、提出及审批过程 (13)2.6分析结论 (13)第三章行业市场分析 (15)3.1市场调查 (15)3.1.1拟建项目产出物用途调查 (15)3.1.2产品现有生产能力调查 (15)3.1.3产品产量及销售量调查 (16)3.1.4替代产品调查 (16)3.1.5产品价格调查 (16)3.1.6国外市场调查 (17)3.2市场预测 (17)3.2.1国内市场需求预测 (17)3.2.2产品出口或进口替代分析 (18)3.2.3价格预测 (18)3.3市场推销战略 (18)3.3.1推销方式 (19)3.3.2推销措施 (19)3.3.3促销价格制度 (19)3.3.4产品销售费用预测 (20)3.4产品方案和建设规模 (20)3.4.1产品方案 (20)3.4.2建设规模 (20)3.5产品销售收入预测 (21)3.6市场分析结论 (21)第四章项目建设条件 (22)4.1地理位置选择 (22)4.2区域投资环境 (23)4.2.1区域地理位置 (23)4.2.2区域概况 (23)4.2.3区域地理气候条件 (24)4.2.4区域交通运输条件 (24)4.2.5区域资源概况 (24)4.2.6区域经济建设 (25)4.3项目所在工业园区概况 (25)4.3.1基础设施建设 (25)4.3.2产业发展概况 (26)4.3.3园区发展方向 (27)4.4区域投资环境小结 (28)第五章总体建设方案 (29)5.1总图布置原则 (29)5.2土建方案 (29)5.2.1总体规划方案 (29)5.2.2土建工程方案 (30)5.3主要建设内容 (31)5.4工程管线布置方案 (32)5.4.1给排水 (32)5.4.2供电 (33)5.5道路设计 (35)5.6总图运输方案 (36)5.7土地利用情况 (36)5.7.1项目用地规划选址 (36)5.7.2用地规模及用地类型 (36)第六章产品方案 (38)6.1产品方案 (38)6.2产品性能优势 (38)6.3产品执行标准 (38)6.4产品生产规模确定 (38)6.5产品工艺流程 (39)6.5.1产品工艺方案选择 (39)6.5.2产品工艺流程 (39)6.6主要生产车间布置方案 (39)6.7总平面布置和运输 (40)6.7.1总平面布置原则 (40)6.7.2厂内外运输方案 (40)6.8仓储方案 (40)第七章原料供应及设备选型 (41)7.1主要原材料供应 (41)7.2主要设备选型 (41)7.2.1设备选型原则 (42)7.2.2主要设备明细 (43)第八章节约能源方案 (44)8.1本项目遵循的合理用能标准及节能设计规范 (44)8.2建设项目能源消耗种类和数量分析 (44)8.2.1能源消耗种类 (44)8.2.2能源消耗数量分析 (44)8.3项目所在地能源供应状况分析 (45)8.4主要能耗指标及分析 (45)8.4.1项目能耗分析 (45)8.4.2国家能耗指标 (46)8.5节能措施和节能效果分析 (46)8.5.1工业节能 (46)8.5.2电能计量及节能措施 (47)8.5.3节水措施 (47)8.5.4建筑节能 (48)8.5.5企业节能管理 (49)8.6结论 (49)第九章环境保护与消防措施 (50)9.1设计依据及原则 (50)9.1.1环境保护设计依据 (50)9.1.2设计原则 (50)9.2建设地环境条件 (51)9.3 项目建设和生产对环境的影响 (51)9.3.1 项目建设对环境的影响 (51)9.3.2 项目生产过程产生的污染物 (52)9.4 环境保护措施方案 (53)9.4.1 项目建设期环保措施 (53)9.4.2 项目运营期环保措施 (54)9.4.3环境管理与监测机构 (56)9.5绿化方案 (56)9.6消防措施 (56)9.6.1设计依据 (56)9.6.2防范措施 (57)9.6.3消防管理 (58)9.6.4消防设施及措施 (59)9.6.5消防措施的预期效果 (59)第十章劳动安全卫生 (60)10.1 编制依据 (60)10.2概况 (60)10.3 劳动安全 (60)10.3.1工程消防 (60)10.3.2防火防爆设计 (61)10.3.3电气安全与接地 (61)10.3.4设备防雷及接零保护 (61)10.3.5抗震设防措施 (62)10.4劳动卫生 (62)10.4.1工业卫生设施 (62)10.4.2防暑降温及冬季采暖 (63)10.4.3个人卫生 (63)10.4.4照明 (63)10.4.5噪声 (63)10.4.6防烫伤 (63)10.4.7个人防护 (64)10.4.8安全教育 (64)第十一章企业组织机构与劳动定员 (65)11.1组织机构 (65)11.2激励和约束机制 (65)11.3人力资源管理 (66)11.4劳动定员 (66)11.5福利待遇 (67)第十二章项目实施规划 (68)12.1建设工期的规划 (68)12.2 建设工期 (68)12.3实施进度安排 (68)第十三章投资估算与资金筹措 (69)13.1投资估算依据 (69)13.2建设投资估算 (69)13.3流动资金估算 (70)13.4资金筹措 (70)13.5项目投资总额 (70)13.6资金使用和管理 (73)第十四章财务及经济评价 (74)14.1总成本费用估算 (74)14.1.1基本数据的确立 (74)14.1.2产品成本 (75)14.1.3平均产品利润与销售税金 (76)14.2财务评价 (76)14.2.1项目投资回收期 (76)14.2.2项目投资利润率 (77)14.2.3不确定性分析 (77)14.3综合效益评价结论 (80)第十五章风险分析及规避 (82)15.1项目风险因素 (82)15.1.1不可抗力因素风险 (82)15.1.2技术风险 (82)15.1.3市场风险 (82)15.1.4资金管理风险 (83)15.2风险规避对策 (83)15.2.1不可抗力因素风险规避对策 (83)15.2.2技术风险规避对策 (83)15.2.3市场风险规避对策 (83)15.2.4资金管理风险规避对策 (84)第十六章招标方案 (85)16.1招标管理 (85)16.2招标依据 (85)16.3招标范围 (85)16.4招标方式 (86)16.5招标程序 (86)16.6评标程序 (87)16.7发放中标通知书 (87)16.8招投标书面情况报告备案 (87)16.9合同备案 (87)第十七章结论与建议 (89)17.1结论 (89)17.2建议 (89)附表 (90)附表1 销售收入预测表 (90)附表2 总成本表 (91)附表3 外购原材料表 (93)附表4 外购燃料及动力费表 (94)附表5 工资及福利表 (96)附表6 利润与利润分配表 (97)附表7 固定资产折旧费用表 (98)附表8 无形资产及递延资产摊销表 (99)附表9 流动资金估算表 (100)附表10 资产负债表 (102)附表11 资本金现金流量表 (103)附表12 财务计划现金流量表 (105)附表13 项目投资现金量表 (107)附表14 借款偿还计划表 (109) (113)第一章总论总论作为可行性研究报告的首章,要综合叙述研究报告中各章节的主要问题和研究结论,并对项目的可行与否提出最终建议,为可行性研究的审批提供方便。
三乙磷酸铝化学合成前言三乙瞵酸铝为白色无嗅结晶,工业品为白色粉末。
在水中的溶解度为120g/l(20℃),不溶于有机溶剂。
蒸汽压在20℃下极小,可忽略不计。
三乙瞵酸铝在乙腈和丙二醇中的溶解度均小于0.08g/l。
工业品和加工制剂在通常储藏条件下稳定,在酸性介质中不稳定,遇氧化剂则氧化。
在通常储存条件下原药和加工制剂均稳定,在温度20℃,1kg/m3的水溶液中,产品的半衰期在100天以上。
三乙瞵酸铝低毒,对皮肤、眼睛无刺激作用,对蜜蜂、鱼类及野生物安全。
产品名称:三乙膦酸铝化学名称:三——(乙基亚磷酸)铝其他名称:LS74——783、霉菌灵、克霉灵、霉疫净。
通用英文名称:Phosethyl Al分子式:C6H18AlO9P3O结构式:(C2H5O-P-O)3AlH分子量:354.1 (按1983年国际原子量)3000吨/年三乙膦酸铝原药工程设计依据a、500吨/年三乙膦酸铝施工设计方案b、《95%三乙膦酸铝原药萃取工艺鉴定报告》2001年3月c、《以水替代部分乙醇合成三乙膦酸铝原药中试报告》2001年4月d、《低温投硫酸铝合成三乙膦酸铝原药小试报告》2001年4月试验1. 主要原料的标准:1.1 三氯化磷标准号:GB10667—89质量指标:三氯化磷含量: ≥98%游离磷含量: ≤0.008%1.2 乙醇标准号:GB/T394—94质量指标:外观:无色透明液体乙醇含量(v/v): ≥95%甲醇含量mg/l : ≤20001.3. 液氨标准号:GB536—88质量指标:氨含量: ≥99.6%水油含量: ≤0.4%1.4 氨水标准号:HG1—88—81质量指标:外观:无色透明液体氨水含量(m/m): ≥12.0%1.5.硫酸铝标准号:HG2225—91质量指标:氧化铝含量(A2O3): ≥15.8%水不容物: ≤0.10%1.6. 液碱标准号:GB209—93质量指标:氢氧化钠含量(m/m): ≥30.0%碳酸钠含量(m/m): ≤0.6%氯化钠含量(m/m): ≤5.0%三氧化二铁含量(m/m): ≤0.01%2生产工艺过程及工艺流程图2.1生产工艺过程2.1.1酯化、脱酸工序经二车间计量过的三氯化磷,通过管路送到三氯化磷贮罐(或由供销购进的三氯化磷,经称量后,用泵打入三氯化磷贮罐)。
开车前用泵将三氯化磷打入三氯化磷计量(2200kg/批)罐备用。
有仓库用泵送来的乙醇,在乙醇贮罐中计量、贮存。
开车前用泵打入乙醇计量罐(2200kg/批)备用。
通知司泵工序,开启酯化正空泵。
酯化、脱酸工序,开启二酯计量罐、酯化冷凝器冷冻盐水,降膜吸收气冷却水,脱酸罐加热蒸汽、脱酸甩盘。
当系统真空达到0.064MPa以上、脱酸罐内温度达到80℃以上时,开启降膜吸收器吸收水阀,依次打开酯化乙醇、三氯化磷进料阀,通过转子流量计均匀的控制乙醇、三氯化磷投料速度为300——400 kg/h。
乙醇、三氯化磷经酯化混合器混合酯化、酯化液与酯化冷凝器冷却下来的过量乙醇再次混合后,连续不断的流入脱酸罐,经甩盘甩到脱酸罐壁脱酸后,流入二酯计量罐以备氨化用。
通过酯化混合器反应产生的氯化氢气以及脱酸罐脱出的氯化氢气和部分过量的乙醇,一起进入酯化冷凝器进行冷凝分离,分离出的液相再次进入酯化,气相(氯化氢气体和氯乙烷气体)进入降膜吸收器,控制吸收水700——1000 kg/h,通过两级吸收、吸收成18——25%的盐酸流入盐酸储罐。
氯乙烷气体和微量的氯化氢气体通过碱洗罐,通过碱洗、水洗进入真空泵排空。
2.1.2氨化、复分解工序a氨化开启氨化复分解真空泵,控制氨化罐内负压为100—200Pa(约10—20mmH2O柱),根据二酯计量罐中的二酯量计算出需要投的氨水量,开启氨化氨水计量灌放料阀,先投入计算量的80—90%的12%氨水。
开启氨化罐冷冻盐水出、进口阀,氨化冷却器冷冻盐水出、进口阀,氨化循环泵进口阀、循环阀,开启氨化循环泵,当氨化罐中氨水温度降到20℃以下,开启二酯计量罐的放料阀,控制氨化罐罐内在40—55℃,不得超过55℃滴加二酯,滴加二酯时间约为1—1.5小时。
滴加完后,用12%的氨水调节氨化罐内氨化液的pH值,使氨化液的pH值达到8—9。
当氨化罐罐内温度达到40℃时,停氨化循环泵,静止保温2小时。
在静止保温期间每0.5小时测一次pH值,如pH值低于7,则开启氨化循环泵补加氨水时pH值达到7—8。
静止完毕后,测氨化液pH值应小于8,以备复分解用。
b复分解操作开启复分解回收乙醇冷却器循环冷却水出、进口阀,关闭复分解回收乙醇计量罐排空阀、放疗法。
关闭复分解反应罐方料阀,关闭以平衡好的氨化液计量罐氨化液平衡阀。
开启氨化液计量罐放料阀,分别向复分解反应罐投氨化液,带投料完毕,关闭氨化液计量罐放料阀。
分别开启复分解反应罐的搅拌,一次投入硫酸铝900——950kg,投完硫酸铝后,盖好复分解反应罐硫酸铝投料口。
开启复分解反应罐真空阀,使复分解反应罐保持为负压100—200Pa (约10——20mmH2O柱),缓慢开启复分解反应罐加热蒸汽阀,保持蒸汽压力小于0.2Mpa。
当复分解反应罐罐内温度升到80℃以上时有回收乙醇流出,此时,要关小蒸汽,以防止加热过快复分解反应罐冲料。
当复分解反应罐罐内温度升到90℃以上时,关闭复分解反应罐的加热蒸汽阀,保温0.5小时,保温完毕,趁热抽率或离心。
2.1.3离心、抽滤工序离心:将复分解罐内反应好的物料,分批加入离心机过滤布袋内,摊匀、摊平、离心后,运到干燥工序,以备干燥。
从复以上操作,直到复分解罐内物料全部离净。
抽滤:开启抽滤真空泵,将复分解罐内反应好的物料,分批加入抽滤器过滤布袋内,同时开启抽滤器的抽滤阀,将滤液抽入滤液储罐。
将抽滤器内的三乙瞵酸铝运往干燥工序,以备干燥。
2.1.4干燥工序首先开启一级引风机、二级引风机、空气压缩机、然后开启一级加热蒸汽进口阀、冷凝水排水阀;二级加热器蒸汽进口阀、冷凝水排水阀;待干燥腔内温度达到100℃以上时,开启干燥强化器,开启上料机控制一定的速度,给干燥强化器进料。
在干燥过程中一级干燥温度控制在70℃以上,二级干燥温度控制在90℃以上。
2.1.5司泵工序接酯化开车通知后,按以下程序操作:首先启动酯化真空泵,关闭碱洗罐排空阀或放净阀。
开启酯化真空泵曲轴箱加油阀,向曲轴箱加油到刻度;开启酯化真空泵泵头加油阀、泵头降温水阀、排气阀和放空阀,关闭放空阀,缓慢开启抽气阀。
当酯化真空泵达到极限真空时,泵的真空应≥0.086MPa。
配碱与抽碱:当酯化真空泵的启动后,开启碱洗罐的进水阀,向碱洗罐加水约200kg,关闭碱洗罐的进水阀;开启液碱储罐抽碱阀,开启碱洗罐进碱阀,向碱洗罐抽检约100kg。
2.1.6回收乙醇蒸馏工序将氨化、复分解工序回收的60%左右的乙醇,经过用硫酸中和、分离后,进行蒸馏成90%以上的乙醇备酯化脱酸工序用。
2.1.7氨水制造工序有仓库用送来的液氨贮存于液氨汽化罐。
液氨在液氨汽化罐汽化后,经氨器缓冲罐缓冲,通过转子流量计控制,在降膜吸收器内吸收成11.5—16%的氨水贮存于氨水贮罐,经调制后成12±0.5%的氨水备氨化复分解用。
2.2关键设备的开、停车要点及正常操作2.2.1酯化混合、脱酸罐三氯化磷与乙醇反应时,生成二乙酯的同时产生大量的氯乙烷、氯化氢气体和放出大量的热。
因为二乙之中含有大量的氯化氢,因此脱酸罐在投料前5分钟应开启蒸汽预热;同时开启二酯计量罐、酯化冷凝器盐水进、出口阀;降膜吸收器冷却水进、出口阀;开启脱酸罐甩盘以备脱酸。
开车时,应首先开启降膜吸收器吸收水阀、乙醇进料阀,然后开启三氯化磷进料阀。
停车时,应首先关闭三氯化磷进料阀,然后关闭乙醇进料阀,待酯化冷凝器回流很小时停脱酸罐蒸汽、脱酸罐甩盘,降膜吸收器吸收水、降温水,关闭酯化冷凝器、二酯计量罐冷冻盐水进、出口阀等。
正常操作时,应控制原料配比、降膜吸收器吸收水、脱酸罐罐内温度、酯化真空等工艺要求范围之内。
2.2.2液氨汽化罐液氨汽化需要吸收大量的热,因此要对液氨汽化罐进行喷淋加热。
为安全起见,不允许液氨汽化罐内存有大量液氨,液氨汽化罐的装料系数应小于0.5。
正常情况下,进入液氨汽化罐的液氨量、汽化量、吸收量三者平衡。
因此开车前要对液氨汽化罐进行预热。
开液氨汽化罐进料阀时一定要缓慢开启,当达到平衡后,要有专门人员看管液氨汽化罐压力的变化情况,视压力的变化情况采取相应的措施。
停车时,应首先关闭液氨汽化罐喷淋加热阀,然后关闭液氨汽化罐进料阀,再相应关闭其它阀门。
2.2.3氨化罐氨化投料必须先投氨水后滴加二酯。
如先投二酯后滴加氨水对复分解收率影响很大,大约低5%左右。
其原因是二酯在氨水中水解成压磷酸和乙醇,铵盐在水中则是稳定的不易水解。
先投氨水后滴加二酯,则在氨化罐中氨过量,滴入二酯后首先生成铵盐,因而产品收率高。
由于二乙酯与氨水反应放出大量的热,因此在投氨水后要开启氨化罐、氨化冷凝器冷冻盐水进、出口阀。
在氨化过程中氨气易挥发,因此在氨化过程中要开启氨化真空泵。
投氨水不易过量太多。
过量太多虽然滴加完二酯后不需要补加氨水,但造成氨的浪费。
复分解前氨化液pH值必须大于7。
否则,氨化不彻底,从而造成复分解收率低。
2.2.4复分解罐由于在氨化时二乙酯与氨水反应生成一乙酯铵盐和乙醇。
因此,当复分解反应罐罐内温度达到80℃以上时有回收乙醇流出,这时一定要关小蒸汽,以防止加热过快,回收乙醇出的过于集中,从而造成复分解反应罐冲料。
2.2.5干燥机对干燥强化器干燥前必须进行检查,检查干燥强化器腔内是否有杂物,如有杂物清理干净,否则将损坏强化器。
强化器启动前要用手转动干燥强化器数周确系无阻,方可启动干燥强化器,启动时注意转动方向是否与要求相符以及工作电流是否超过额定电流。
干燥器在停车时,要将强化器内的三乙膦酸铝全部干燥完毕,否则物料将粘到强化起器壁上,影响干燥效果。
清理完强化器后,要等干燥器内物料全部干燥完毕后方可停车,否则三乙膦酸铝吸潮发粘粘在风筒、旋风分离器壁上,影响干燥效果。
停车后,要将布袋除尘器内的三乙膦酸铝清理干净,如果布袋除尘器内的三乙膦酸铝过多,则造成除尘效果下降,从而影响干燥效果。
由于干燥过程是以连续过程,所以干燥进料要求均匀进料。
如进料不均则造成干燥后三乙膦酸铝含水高低不均,影响干燥效果,浪费能源。
2.3生产工艺流程图(见附图)3生产工艺条件及生产控制一览表3.1工艺条件工艺条件生产工艺条件一览表表——13.2生产控制项目3.3生产控制一览表表——23.4工艺概况结果与讨论三乙膦酸铝各工序物料平衡表(单位kg )说明:酯化以投一批三氯化磷、乙醇(各2200kg )计。
氨化以每批投2084kg 二乙酯,12%的氨水2900kg 。
复分解将氨化液分为两批,每批投氨化液2485.35kg ,硫酸铝900kg (硫酸铝成分:Al 2(SO 4)3 52.31%;H 2O 47.24%;杂质 0.45%);回收乙醇350kg (其中含乙醇:59.82% , 氨 :0.6%,水 :39.58%);三乙膦酸铝原药836.1kg (其中:三乙膦酸铝含量:90.42%,水:2%,杂质 ,7.58%)。