第八章 核酸的酶促
- 格式:ppt
- 大小:2.34 MB
- 文档页数:39
生物化学题库基础生物化学考试大纲一、大纲原则生物化学是植物生产类相关专业的一门重要的专业基础课,课程着重阐述生物化学的基本理论和基本概念,注意反映现代生物化学的新进展,并注意适当联系农业生产实际,为其它学科提供必要的生物化学基础知识。
考试是教学过程中必不可少的重要环节,为保证教学质量,根据农林院校本科《基础生物化学》教学大纲要求,帮助考生明确考试复习范围和有关要求,特制定本考试大纲。
二、考试内容及基本要求:绪论生物化学的概念、研究对象和内容。
第一章核酸化学核苷酸的化学组成, DNA的分子结构(一、二、三级结构,重点是Watson-Crick双螺旋模型),RNA的分子结构(tRNA,rRNA,mRNA的结构特点,重点是tRNA的三叶草结构),核酸的理化性质及应用(两性解离、紫外吸收、变性、复性、沉降特性等)。
第二章蛋白质化学蛋白质的概念及生物功能,氨基酸的一般结构特点及分类(按R 基团极性分类),20种基本氨基酸的名称和缩写符号,氨基酸的理化性质与应用(两性解离及等电点的概念,茚三酮反应),蛋白质的结构(一、二、三、四级结构的概念及维持键),蛋白质空间结构与功能关系的概念,蛋白质的理化性质及应用(两性解离、胶体性质、紫外吸收、变性、复性、双缩脲反应、茚三酮反应),结合蛋白分类的概念。
第三章酶化学酶的概念及催化特点,酶的组成,酶的重要辅因子及作用(烟酰胺、核黄素、吡哆醛、辅酶A、硫胺素、金属离子),酶的EC分类,酶的活性中心,诱导契合学说,中间产物学说,分子活化能与酶促反应高效性有关的因素(重点是共价催化和酸碱催化的概念),影响酶促反应速度的因素(底物浓度、酶浓度、温度、pH、抑制剂、激活剂),米氏方程、米氏常数的意义,别构酶、同工酶、单体酶、寡聚酶、酶原、多酶体系等概念。
第四章生物膜的结构与功能生物膜的组成(膜脂、膜蛋白和膜糖),生物膜的结构(流动镶嵌模型)。
第五章糖代谢蔗糖和多糖的酶促降解及生物合成,糖酵解的概念、生化历程、生物功能及调控位点,发酵;三羧酸循环的概念、细胞定位、反应历程、有关的酶和辅因子、调控位点、生物功能;磷酸戊糖途径的概念、总反应式、特点及生理意义;糖异生作用的概念、生物学意义;底物水平磷酸化、丙酮酸氧化脱羧、草酰乙酸的回补反应等概念。
生物化学习题第一章核酸的结构和功能一、选择题1、热变性的DNA分子在适当条件下可以复性,条件之一是(B)A、骤然冷却B、缓慢冷却C、浓缩D、加入浓的无机盐2、在适宜条件下,核酸分子两条链通过杂交作用可自行形成双螺旋,取决于(D)A、DNA的Tm值B、序列的重复程度C、核酸链的长短D、碱基序列的互补3、核酸中核苷酸之间的连接方式是(C)A、2’,5’—磷酸二酯键B、氢键C、3’,5’—磷酸二酯键D、糖苷键4、tRNA的分子结构特征是(A)A、有反密码环和 3’—端有—CCA序列B、有反密码环和5’—端有—CCA序列C、有密码环D、5’—端有—CCA序列5、下列关于DNA分子中的碱基组成的定量关系哪个是不正确的?(D)A、C+A=G+TB、C=GC、A=TD、C+G=A+T6、下面关于Watson-Crick DNA双螺旋结构模型的叙述中哪一项是正确的?(A)A、两条单链的走向是反平行的B、碱基A和G配对C、碱基之间共价结合D、磷酸戊糖主链位于双螺旋内侧7、具5’-CpGpGpTpAp-3’顺序的单链DNA能与下列哪种RNA杂交? (C)A、5’-GpCpCpAp-3’B、5’-GpCpCpApUp-3’C、5’-UpApCpCpGp-3’D、5’-TpApCpCpGp-3’8、RNA和DNA彻底水解后的产物(C)A、核糖相同,部分碱基不同B、碱基相同,核糖不同C、碱基不同,核糖不同D、碱基不同,核糖相同9、下列关于mRNA描述哪项是错误的?(A)A、原核细胞的mRNA在翻译开始前需加“PolyA”尾巴。
B、真核细胞mRNA在 3’端有特殊的“尾巴”结构C、真核细胞mRNA在5’端有特殊的“帽子”结构10、tRNA的三级结构是(B)A、三叶草叶形结构B、倒L形结构C、双螺旋结构D、发夹结构11、维系DNA双螺旋稳定的最主要的力是(C)A、氢键B、离子键C、碱基堆积力 D范德华力12、下列关于DNA的双螺旋二级结构稳定的因素中哪一项是不正确的?(A)A、3',5'-磷酸二酯键 C、碱基堆积力B、互补碱基对之间的氢键D、磷酸基团上的负电荷与介质中的阳离子之间形成的离子键13、Tm是指什么情况下的温度?(C)A、双螺旋DNA达到完全变性时B、双螺旋DNA开始变性时C、双螺旋DNA结构失去1/2时D、双螺旋结构失去1/4时14、稀有核苷酸碱基主要见于(C)A、DNAB、mRNAC、tRNAD、rRNA15、双链DNA的解链温度的增加,提示其中含量高的是(D)A、A和GB、C和TC、A和TD、C和G16、核酸变性后,可发生哪种效应?(B)A、减色效应B、增色效应C、失去对紫外线的吸收能力D、最大吸收峰波长发生转移17、某双链DNA纯样品含15%的A,该样品中G的含量为(A)A、35%B、15%C、30%D、20%18、预测下面哪种基因组在紫外线照射下最容易发生突变?(B)A、双链DNA病毒B、单链DNA病毒C、线粒体基因组 D. 细胞核基因组19、下列关于cAMP的论述哪一个是错误的?(B)A、是由腺苷酸环化酶催化ATP产生B、是由鸟苷酸环化酶催化ATP产生的C、是细胞第二信息物质D、可被磷酸二酯酶水解为5'-AMP20、下列关于Z型DNA结构的叙述哪一个是不正确的?(D)A、它是左手螺旋B、每个螺旋有12个碱基对,每个碱基对上升0.37nmC、DNA的主链取Z字形D、它是细胞内DNA存在的主要形式21、下列关于DNA超螺旋的叙述哪一个是不正确的?(B)A、超螺旋密度α为负值,表示DNA螺旋不足B、超螺旋密度α为正值,表示DNA螺旋不足C、大部分细胞DNA呈负超螺旋D、当DNA分子处于某种结构张力之下时才能形成超螺旋22、下列哪种技术常用于检测凝胶电泳分离后的限制性酶切片段?(B)A、Eastern blottingB、Southern blottingC、Northern blottingD、Western blotting二、是非题(在题后括号内打√或×)1、杂交双链是指DNA双链分开后两股单链的重新结合。
蛋白质、核酸的酶促降解和含氮化合物代谢学习要点蛋白质是生命物质的基础,是维持生命活动正常进行以及生长发育所必不可少的。
泛素系统和溶酶体系统是细胞内蛋白质两个最重要的降解系统。
氨基酸经过转氨基与氧化脱氨基和联合脱氨基作用,生成氨和相应的α-酮酸。
氨可通过多种途径安全地排出体外;α-酮酸可参入糖酵解、三羧酸循环、糖异生和酮体代谢途径。
氨基酸还可以转化成辅酶、激素、生物碱等重要物质。
自然界中的不同氮化物相互转化形成氮素循环。
固氮生物和工业固氮将N2转变成NH3,NH3被硝化细菌氧化成NO3-,植物吸收NO3-并还原成NH3,通过还原氨基化同化为Glu,再以Glu和Gln为氨基供体合成其它氨基酸和含氮有机物。
核酸酶催化核酸水解为核苷酸,可分为核酸内切酶、核酸外切酶和限制性内切酶。
核苷酸可进一步降解为戊糖、磷酸和含氮碱。
在人体内嘌呤碱的降解产物为尿酸、嘧啶碱彻底降解。
生物可利用氨基酸和其它代谢物从头合成核苷酸,还能通过补救途径利用核苷和碱基合成核苷酸。
9.1 蛋白质的酶促降解9.1.1 蛋白水解酶生物体内的蛋白质经常处于不断合成和降解的动态变化之中。
生物体内几乎到处都有水解肽键的酶,既包括消化道中消化食物蛋白的蛋白酶,血液中参与血液凝固和溶解血栓的酶以及补体系统,也包括种类繁多、结构和功能更复杂的细胞内蛋白酶。
这些酶可按其作用特点分为肽链内切酶和肽链外切酶。
肽链内切酶又称蛋白酶,水解肽链内部的肽键,对参与形成肽键的氨基酸残基有一定的专一性,常见的蛋白酶及其作用位点参看表9-1。
肽链外切酶包括氨肽酶和羧肽酶,分别降解肽链N端和C端的肽键。
如羧肽酶A优先作用于中性氨基酸为羧基端的肽键;羧肽酶B则水解以碱性氨基酸为羧基端的肽键(表9-1)。
表9-1 蛋白水解酶作用的专一性按其活性部位的结构特征可将蛋白酶分为四类:(1)丝氨酸蛋白酶类活性部位含有Ser残基,受二丙基氟磷酸(DIFP)的强烈抑制。
胰蛋白酶、胰凝乳蛋白酶、弹性蛋白酶、枯草杆菌蛋白酶等均属此类。
核酸的酶促降解和核苷酸代谢核酸是构成生物体遗传物质的重要分子之一、它们在生物体内起着关键的功能,包括存储遗传信息、传递遗传信息和参与生物体的代谢过程。
然而,核酸分子并不是永久存在的,它们会经历酶促降解和核苷酸代谢过程。
酶促降解是一种通过酶催化反应将核酸分子分解为较小的碎片的过程。
这一过程在细胞中起着至关重要的作用,因为它能够控制细胞内的核酸浓度,并对细胞进行修复和调控。
具体而言,核酸的酶促降解主要通过核酸酶参与。
核酸酶可以识别特定的核酸分子,切割磷酸二酯键并将其分解成较小的碎片。
酶促降解的过程是高度调控的,这意味着细胞可以根据需要来降解核酸分子。
核酸酶的酶促降解反应可以发生在DNA和RNA分子上。
在DNA分子中,核酸酶可以通过识别特定的序列或结构来切割DNA链。
这些酶可以在DNA复制、修复和重组过程中发挥重要的作用。
在RNA分子中,核酸酶则可以通过识别特定的次级结构来切割RNA链。
这些酶在RNA降解和剪接等过程中起着关键作用。
核苷酸的合成通常发生在两个方向上。
一方面,细胞通过核苷酸合成途径将脱氧核苷酸和核苷酸合成为DNA和RNA的单体。
这些途径包括脱氧核苷酸合成途径和核苷酸合成途径。
另一方面,细胞还可以通过核苷酸分解途径将核苷酸分解为核苷和磷酸。
这些途径包括核苷酸降解途径和氨基酸代谢途径。
核酸酶和核苷酸代谢的失调会导致DNA和RNA的不稳定和降解,影响细胞的正常功能。
此外,核苷酸代谢紊乱还与多种人类疾病的发生和发展密切相关。
因此,研究核酸的酶促降解和核苷酸代谢机制对于理解生物体的正常功能和疾病的发生具有重要意义。
核酸酶的功能
核酸酶是一种生物催化剂,可以加速水解和剪切核酸分子。
在生
命起源和进化中,核酸酶具有至关重要的作用。
在生命活动中,核酸
酶依然扮演着重要的角色,参与着许多基因表达和代谢过程。
首先,核酸酶可以催化RNA合成中的剪接过程。
RNA合成后,它需要被剪接成成熟的RNA分子,以参与到蛋白质合成或其他生物过程中去。
这个过程中需要大量的核酸酶协同作用,使RNA分子剪切成所需
要的长度。
其次,核酸酶也在DNA复制中起到了重要的作用。
在DNA复制中,需要将双螺旋的DNA分子分解成单链,以便于新的DNA分子的合成过程。
这个过程中,核酸酶协同作用,帮助DNA分子进行剪切,从而分
解成单链。
此外,核酸酶还可以参与到RNA降解的过程中。
在细胞分裂或者
其他生物过程中,需要将一些没有用处的RNA分子分解掉,避免它们
对细胞造成负担。
这个过程中,核酸酶起到了关键的作用,促进RNA
分子的降解和分解。
总之,核酸酶在生命活动中具有非常重要的作用,参与到了许多
基因表达和代谢过程中。
在未来的生物技术和医学发展中,核酸酶的
研究和应用也将具有重要的意义,为人类的健康和生命做出更大的贡献。
高一上生物核酸水解知识点核酸水解是生物学中一个重要的概念,它涉及到核酸分子的降解和合成过程。
在高一上生物学学习中,我们需要了解核酸水解的基本知识点,以便更好地理解生物学中的相关概念。
本文将从核酸的结构、水解的过程、水解的重要性等方面介绍核酸水解的知识点。
一、核酸的结构核酸是由核苷酸单元组成的生物大分子,包括DNA和RNA。
核苷酸单元由磷酸基团、五碳糖和氮碱基组成。
DNA的氮碱基包括腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),而RNA的氮碱基包括腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(U)和胞嘧啶(C)。
二、核酸水解的过程核酸水解是指将长链核酸分解为较短的小片段的过程。
核酸水解有两种主要的方式,即酸性水解和酶促水解。
1. 酸性水解:酸性水解是指在酸性条件下,核酸链中的磷酸基团被水解酶催化,将核酸分解为短链核酸和核苷酸。
在酸性条件下,磷酸基团中的磷酸键被酸催化水解,使得核酸链断裂。
2. 酶促水解:酶促水解是指在酶的催化下,核酸分子水解为短链核酸。
在生物体内,存在多种核酸酶,它们能够识别特定的酶切位点,并将核酸链断裂。
比如,限制性内切酶能够识别特定的核酸序列,并在该序列处切割链。
三、核酸水解的重要性核酸水解在生物体内具有重要的生理和生化功能。
1. DNA复制:在DNA复制过程中,DNA链需要先被水解为两条单链,然后通过DNA聚合酶合成两条新的DNA分子。
所以,核酸水解是DNA复制的重要前提。
2. RNA合成:在RNA合成过程中,DNA链需要被水解为单链,然后通过RNA聚合酶合成RNA分子。
通过核酸水解,RNA能够合成出来。
3. 生殖与发育:核酸水解在生殖和发育过程中扮演着重要的角色。
通过核酸的水解和合成,生物体能够进行细胞分裂和遗传信息的传递。
四、总结核酸水解是生物学中一个重要的概念,涉及到核酸分解和合成的过程。
核酸的酸性水解和酶促水解是核酸水解的两种主要方式。
通过核酸水解,生物体能够进行DNA复制、RNA合成以及生殖与发育等重要生理和生化过程。