初三锐角三角函数综合提高测试题
- 格式:doc
- 大小:467.50 KB
- 文档页数:6
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.在ABC 中,若21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭,则C ∠的度数是( ) A .45︒ B .60︒ C .75︒ D .105︒ 2.如图,这是某市政道路的交通指示牌,BD 的距离为5m ,从D 点测得指示牌顶端A 点和底端C 点的仰角分别是60°和45°,则指示牌的高度,即AC 的长度是( )A .53mB .52mC .()5352m -D .()535m - 3.如图,旗杆AB 竖立在斜坡CB 的顶端,斜坡CB 长为65米,坡度为125i =小明从与点C 相距115米的点D 处向上爬12米到达建筑物DE 的顶端点E ,在此测得放杆顶端点A 的仰角为39°,则旗杆的高度AB 约为( )米.(参考数据:sin390.63︒≈,cos390.78︒≈,tan390.81︒≈)A .12.9B .22.2C .24.9D .63.14.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8m ,坡面上的影长为4m .已知斜坡的坡角为30,同一时刻,一根长为2m 且垂直于地面放置的标杆在地面上的影长为4m ,则树的高度为( )A .10mB .12mC .()63m +D .()423m - 5.下列说法中,正确的有( )个①a 为锐角,则1sina cosa +>;②314172︒+︒=︒cos cos cos ﹔③在直角三角形中,只要已知除直角外的两个元素,就可以解这个三角形﹔④坡度越大,则坡角越大,坡越陡;⑤1302==︒sinA ; ⑥当Rt ABC ∆的三边长扩大为2倍时,则sinA 的值也相应扩大2倍. A .1 B .2 C .3 D .46.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E . F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75︒;③BE+DF=EF ;④正方形对角线AC=1+3,其中正确的序号是( )A .①②④B .①②C .②③④D .①③④ 7.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B 25C 5D .128.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A=35°,则直角边AC 的长是( )A .m·sin35°B .cos35m ︒C .sin 35m ︒D .m·cos35° 9.已知二次函数y =ax 2+6ax +c (a <0),设抛物线与x 轴的交点为A (﹣7,0)和B ,与y 轴的交点为C ,若∠ACO =∠CBO ,则tan ∠CAB 的值为( )A .142B .22C .73D .7710.如图,半径为5的O 中, OA BC ⊥,30ADC ∠=︒,则BC 的长为( )A .52B .53C .522D .53211.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=( )A .26B 26C .2613D 13 12.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°()()12323232323AC CD -====-++-.类比这种方法,计算tan22.5°的值为( )A .21+B .2﹣1C .2D .1213.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .114.如图所示,矩形ABCD 的边长AB =2,BC =23,△ADE 为正三角形.若半径为R 的圆能够覆盖五边形ABCDE (即五边形ABCDE 的每个顶点都在圆内或圆上),则R 的最小值是( )A .3B .4C .2.8D .2.5二、填空题15.如图,在扇形OAB 中,2OB =,点C 是OB 的中点,CD OB ⊥于点C ,交AB 于点D ,则图中阴影部分的面积为______.16.如图,一艘船由A港沿北偏东65°方向航行302km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为______km.17.已知AD是△ABC的高,CD=1,AD=BD=3,则∠BAC=_______.18.如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为_____.19.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45和30.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为______米(结果保留根号).20.如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为_____.21.如图,在ABC 中,已知90,4,8C AC BC ∠=︒==,将ABC 绕着点C 逆时针旋转到''A B C 处,此时线段''A B 与BC 的交点D 为BC 的中点,那么'B D 的长度为_________.22.如图所示,AOB ∠是放置在正方形网格中的一个角,则sin AOB ∠的值是________.23.如图,△ABC 是等边三角形,AB =3,点E 在AC 上,AE 23=AC ,D 是BC 延长线上一点,将线段DE 绕点E 逆时针旋转90°得到线段FE ,当AF ∥BD 时,线段AF 的长为____.24.如图,已知直线l :y =33x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为_____.25.如图,已知2AB a =,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE .点P ,C ,E 在一条直线上,60DAP ∠=︒,M 、N 分别是对角线AC 、BE 的中点.当点P 在线段AB 上移动时,点M 、N 之间的距离最短为_______.26.如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2,将△AOB 绕点O 逆时针旋转90°,点B 的对应点B'的坐标是_______.三、解答题27.如图,以ABC ∆的一边BC 为直径的O ,交AB 于点D ,连结CD ,OD ,已知 1902A DOC ∠+∠=︒.(1)判断AC 是否为O 的切线?请说明理由.(2)①若60A ∠=︒,1AD =,求O 的半径.②若DOC α∠=︒,AC m =,OB r =,请用含r 、α的代数式表示m . 28.小明的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且tanα=13,若直线AF 与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行. (1)求BC 的长度; (2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 1点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点),求障碍物的高度.29.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长50cm AB =,拉杆BC 的伸长距离最大时可达35cm ,点A 、B 、C 在同一条直线上,在箱体底端装有圆形的滚筒A ,A 与水平地面切于点D ,在拉杆伸长至最大的情况下,当点B 距离水平地面38cm 时,点C 到水平面的距离CE 为59cm ,设AF ∥MN .(1)求A 的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C 端拉旅行箱时,CE 为80cm ,64CAF ∠=︒,求此时拉杆BC 的伸长距离.(精确到1cm ,参考数据:sin 640.90︒≈,cos640.39︒≈,tan64 2.1︒≈)30.计算:(1)()2222cos30sin 45cos 601tan 60tan 45-+︒+-︒︒︒︒(2)23260x x --=(3)2(1)5(1)140x x -+--=【参考答案】一、选择题1.C2.D3.C4.C5.B6.A7.D8.D9.D10.B11.B12.B13.A14.C二、填空题15.【分析】连接DO则OD=OB=2先由得出∠OCD=90°然后在Rt△COD中求出cos∠COD=得到∠COD=60°再根据扇形面积公式计算三角形面积公式即可【详解】连接DO则OD=OB=2∵∴∠OC16.【分析】BE⊥AC于点E根据题意计算可得解直角三角形ABE可得BE=AE=30根据平行线性质计算可得解直角三角形CEB可得AE+CE的值即是AC两港之间的距离【详解】解:设过A点正北方向直线为AD过17.75°或15°【分析】分两种情形求高的位置然后再根据三角函数的定义求出∠BAD∠CAD 的度数最后再相加或相减即可求出∠BAC的度数【详解】解:如图所示:①tan∠BAD==1∴∠BAD=45°tan18.【详解】解:根据圆周角定理可得∠AED=∠ABC所以tan∠AED=tan∠ABC=故答案为:【点睛】本题考查圆周角定理;锐角三角函数19.【解析】【分析】在和中利用锐角三角函数用CH表示出AHBH的长然后计算出AB的长【详解】由于在中米在米米故答案为【点睛】本题考查了解直角三角形的应用——仰角俯角问题题目难度不大解决本题的关键是用含C20.2+【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC==BC=OB﹣OC=2﹣在Rt△ABC中根据tan∠ABO=可得答案【详解】如图连接OA过点A 作AC⊥OB于点21.【分析】根据题意先考虑多种情况①与D重合=AB;②与D不重合过点C作CE于点E利用的余弦值求出由等腰三角形三线合一得求出再用减去得到【详解】①如图与D重合②如图与D不重合过点C作CE于点E∵旋转∴在22.【分析】由题意可知要求出答案首先需要构造出直角三角形连接AB设小正方形的边长为1可以求出OAOBAB的长度由勾股定理的逆定理可得是直角三角形再根据三角函数的定义可以求出答案【详解】连接AB如图所示:23.1【分析】过点E作EM⊥AF于M交BD于N根据30°直角三角形的性质求出AM=1再根据∠60°的三角函数值求出EN的长再依据△EMF≌△DNE(AAS)得出MF=EN据此可得当AF∥BD时线段AF的24.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l:y=x∴l与x轴的夹角为30°∵AB∥x轴∴∠ABO=30°∵OA=1∴AB=∵A1B⊥l∴∠ABA1=625.【分析】连接PMPN根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x则PB=2a -x然后利用锐角三角函数求出PM和P26.(3)【分析】如图作B′H⊥y轴于H解直角三角形求出B′HOH即可【详解】如图作B′H⊥y轴于H由题意:OA′=A′B′=2∠B′A′H=60°∴∠A′B′H=30°∴AH′=A′B′=1B′H=∴三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】 根据偶次方和绝对值的非负性可得1cos 02A -=,1tan 0B -=,利用特殊角的三角函数值可得A ∠和B 的度数,利用三角形内角和定理即可求解.【详解】 解:21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭, 21cos 0,|1tan |02A B ⎛⎫∴-=-= ⎪⎝⎭, 1cos 02A ∴-=,1tan 0B -=,则1cos 2A =,tan 1B =, 解得:60A ∠=︒,45B ∠=︒,则180604575C ∠=︒-︒-︒=︒.故选:C .【点睛】本题考查偶次方和绝对值的非负性、特殊角的三角函数值、三角形内角和定理,熟悉特殊角的三角函数值是解题的关键. 2.D解析:D【分析】由题意可得到BD=BC=5,根据锐角三角函数关系得出方程,然后解方程即可.【详解】解:由题意可得:∠CDB=∠DCB=45°,∴BD=BC=5,设AC=x m ,则AB=(x +5)m ,在Rt △ABD 中,tan60°=AB BD , 则535x +=, 解得:535x =-,即AC 的长度是()535m -;故选:D .【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键. 3.C解析:C【分析】通过作高,构造直角三角形,利用直角三角形的边角关系和坡度即可求出答案.【详解】解:过点B 作BF ⊥CD ,垂足为F ,过点E 作EG ⊥BF ,垂足为G ,在Rt △BCF 中,由斜坡BC 的坡度i=125,得,BF FC =125, 又BC=65,设BF=12x ,FC=5x ,由勾股定理得,(12x )2+(5x )2=652,∴x=5,∴BF=60,FC=25,又∵DC=115,∴DF=DC-FC=115-25=90=EG ,在Rt △AEG 中,AG=EG•tan39°≈90×0.81=72.9,∴AB=AG+FG-BF=72.9+12-60=24.9(米),故选:C .【点睛】本题考查坡度、仰角以及直角三角形的边角关系,理解坡度、仰角和直角三角形的边角关系式解决问题的关键. 4.C解析:C【分析】延长AC 交BF 延长线于D 点,则BD 即为AB 的影长,然后根据物长和影长的比值计算即可.【详解】延长AC 交BF 延长线于D 点,作CE ⊥BD 于E ,则∠CFE=30°,在Rt △CFE 中,∠CFE=30°,CF=4m ,∴CE=2(m ),EF=4cos30°3m ),在Rt △CED 中,∵同一时刻,一根长为2m 、垂直于地面放置的标杆在地面上的影长为4m ,CE=2(m ),则CE :DE=2:4=1:2,AB :BD=1:2,∴DE=4(m ),∴3m ),在Rt △ABD 中,AB=12BD=1233m ), 故选:C .【点睛】本题考查了解直角三角形的应用以及相似三角形的性质.解决本题的关键是作出辅助线得到AB 的影长. 5.B解析:B【分析】①根据三角函数的定义判断;②函数值不是简单度数相加;③至少已知一条边能解直角三角形;④根据坡度的性质即可判定④对;⑤只能说∠A=30°;⑥角度数不变,函数值就不变.【详解】①在Rt △ACB 中,设c 为斜边,∠α的对边、邻边分别为a ,b ,那么sinα+cosα=1a b c+>,所以①对;②不对,函数值是角与边的关系,不是简单度数相加;③不对,只知道角不知道边也不能解直角三角形;④垂直高度与水平距离之比即坡度所以④对;⑤也不对,sinA=1302=︒,是明显错误; ⑥不对,角度数不变,函数值就不变.综上,①④正确,共2个,故选:B .【点睛】 本题主要考查了解直角三角形以及锐角三角函数.学生学这一部分知识时要细心去理解文字所表达的意思.关键是熟练掌握有关定义和性质.6.A解析:A【分析】根据三角形的全等的判定和性质可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,根据三线合一的性质,可判定AC ⊥EF ,然后分别求得AG 与CG 的长,继而求得答案.【详解】∵四边形ABCD 是正方形,∴AB=AD= BC=DC ,∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt △ADF 中,AB AD AE AF =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,AE=AF ,∵BC=DC ,∴BC-BE=CD-DF ,∴CE=CF ,故①正确;∵CE=CF ,∴△ECF 是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=180°-60°-45°=75°,故②正确;如图,连接AC ,交EF 于G 点,∵AE=AF ,CE=CF ,∴AC ⊥EF ,且AC 平分EF ,∵∠CAF≠∠DAF ,∴DF≠FG ,∴BE+DF≠EF ,故③错误;∵△AEF 是边长为2的等边三角形,∠ACB=∠ACD=45°,AC ⊥EF ,∴EG=FG=1,∴AG=AE•sin60°3232=⨯=,CG=112EF =, ∴AC=AG+CG=31+;故④正确.综上,①②④正确故选:A . 【点睛】本题考查了正方形的性质,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质以及解直角三角形.注意准确作出辅助线是解此题的关键.7.D解析:D 【分析】连接AC ,根据网格图不难得出=90CAB ∠︒,求出AC 、BC 的长度即可求出ABC ∠的正切值.【详解】连接AC ,由网格图可得:=90CAB ∠︒,由勾股定理可得:AC 2AB =2∴tan ABC ∠=21222AC AB ==.故选:D .【点睛】本题主要考查网格图中锐角三角函数值的求解,根据网格图构造直角三角形是解题关键. 8.D解析:D【分析】根据Rt △ABC 中cos35AC AB AC m ︒==,即可得到AC 的长. 【详解】在Rt △ABC 中, AB=m ,∠A=35°,cos35AC AB AC m ︒==, ∴AC=cos35m ⋅︒,故选:D.【点睛】此题考查锐角三角函数的实际应用,正确掌握各三角函数对应边的比值是解题的关键. 9.D解析:D【分析】根据根和系数的关系,求出点B (1,0),利用tan ∠ACO =tan ∠CBO ,求出OC =7±,进而求解.【详解】解:如图所示,∵A (﹣7,0),则OA =7,设点B 的横坐标为b ,根据根和系数的关系,则﹣7+b =﹣6a a =﹣6, 解得b =1,∴ 点B (1,0),则OB =1,∵∠ACO =∠CBO ,∴tan ∠ACO =tan ∠CBO ,∴AO OC OC OB =,即71OC OC =,解得OC =7tan∠CAB=OCOA=77,故选:D.【点睛】本题考查的是抛物线与x轴的交点、三角函数公式,利用根和系数的关系求出点B的坐标,是解题的关键.10.B解析:B【分析】连接OC,设BC与OA交于点E,根据圆周角定理即可求出∠AOC,然后根据垂径定理可得BC=2CE,利用锐角三角函数求出CE,即可求出结论.【详解】解:连接OC,设BC与OA交于点E∵30ADC∠=︒∴∠AOC=2∠ADC=60°∵OA BC⊥∴BC=2CE,在Rt△OCE中,CE=OC·sin∠53 2∴BC=53故选B.【点睛】此题考查的是圆周角定理、垂径定理和锐角三角函数,掌握圆周角定理、垂径定理和锐角三角函数是解题关键.11.B解析:B【分析】作BD⊥AC于D,根据勾股定理求出AB、AC,利用三角形的面积求出BD,最后在直角△ABD中根据三角函数的意义求解.【详解】解:如图,作BD ⊥AC 于D ,由勾股定理得,22223213,3332AB AC =+==+=,∵1113213222ABC S AC BD BD =⋅=⨯⋅=⨯⨯, ∴22BD =, ∴2262sin 2613BD BAC AB ∠===. 故选:B .【点睛】本题考查了勾股定理,解直角三角形,三角形的面积,三角函数的意义等知识,根据网格构造直角三角形和利用三角形的面积求出BD 是解决问题的关键.12.B解析:B【分析】作Rt △ABC ,使∠C =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,根据构造的直角三角形,设AC =x ,再用x 表示出CD ,即可求出tan22.5°的值.【详解】解:作Rt △ABC ,使∠C =90°,∠ABC =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,设AC =x ,则:BC =x ,AB =2x ,CD =()1+2x , ()22.5==211+2AC x C tan ta D x n D =∠=-︒故选:B.【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.13.A解析:A【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和OE ,然后三角形的面积公式可得S △ODE=4OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC2即可判断②和③;求出BDE 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC 是等边三角形,点O 是ABC 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120°∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH ∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠∴DE=2EH=3OE∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE′=12BC=12a 在Rt △OBE′中 OE′=BE′·tan ∠OBE′=12a 33 ∴S △ODE 3223 ∵△ODB ≌△OEC ∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 ∵23=1423 ∴S △ODE ≤14S 四边形ODBE 即ODE 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE 23 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE ∴DE 最小时BDE 的周长最小 ∵3OE∴OE 最小时,DE 最小而OE 的最小值为3∴DE6a =12a ∴BDE 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.14.C解析:C【分析】连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,根据勾股定理可得AC ,根据直角三角形的边角关系可得∠ACB =30°,∠CAD =30°,再根据正三角形的性质可得:∠EAD =∠EDA =60°,AE =AD =DE =△EAC 是直角三角形,由勾股定理可得EC 的长.判断△EAB ≌△EDC ,根据全等三角形的性质可得EB =EC ,继而根据题意可判断能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE ,从而此圆的圆心到△BCE 的三个顶点距离相等.根据等腰三角形的判定和性质可得F 是BC 中点,BF =CF EF ⊥BC ,由勾股定理可得EF 的长,继而列出关于R 的一元二次方程,解方程即可解答.【详解】如图所示,连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,∵四边形ABCD 是矩形,∴∠ABC =∠DAB =∠BCD =∠ADC =90°,AD ∥BC ,AD =BC =AB =CD =2∵BC =AB =2由勾股定理可得:AC 4∴sin ∠ACB =24AB AC ==12,sin ∠CAD =24CD AC ==12∴∠ACB =30°,∠CAD =30°∵△ADE 是正三角形 ∴∠EAD =∠EDA =60°,AE =AD =DE =∴∠EAC =∠EAD +∠CAD =90°,∴△EAC 是直角三角形,由勾股定理可得:EC =22AE AC +=()22234+=27∵∠EAB =∠EAD +∠BAD =150°∠EDC =∠EDA +∠ADC =150°∴∠EAB =∠EDC∵EA =ED ,AB =DC∴△EAB ≌△EDC∴EB =EC =27即△EBC 是等腰三角形∵五边形ABCDE 是轴对称图形,其对称轴是直线EF ,∴能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE .从而此圆的圆心到△BCE 的三个顶点距离相等.设此圆圆心为O ,则OE =OB =OC =R ,∵F 是BC 中点∴BF =CF =3,EF ⊥BC在Rt △BEF 中,由勾股定理可得:EF =22EB BF -=()()22273-=5 ∴OF =EF -OE =5-R在Rt △OBF 中,222BF OF OB 即()()22235R R +-= 解得:R =2.8∴能够覆盖五边形ABCDE 的最小圆的半径为2.8.故选C .【点睛】本题考查勾股定理的应用、全等三角形的判定及其性质、等腰三角形的判定及其性质、直角三角形的边角关系.解题的关键是理解圆内接五边形的特点,并且灵活运用所学知识.二、填空题15.【分析】连接DO 则OD=OB=2先由得出∠OCD=90°然后在Rt △COD 中求出cos ∠COD=得到∠COD=60°再根据扇形面积公式计算三角形面积公式即可【详解】连接DO 则OD=OB=2∵∴∠OC 解析:2332π- 【分析】连接DO ,则OD=OB=2.先由CD OB ⊥,得出∠OCD =90°,然后在Rt △COD 中求出cos ∠COD=12,得到∠COD=60°,再根据扇形面积公式计算、三角形面积公式即可. 【详解】连接DO ,则OD=OB=2.∵CD OB ⊥,∴∠OCD=90°,∵C 为OB 的中点,∴CO=1OB 2=12DO , ∴cos ∠COD=CO DO =12, ∴∠COD=60°, 则2222213OD OC -=-∴阴影部分的面积26021231336023ππ⨯=-⨯=. 故答案为:233π-. 【点睛】本题考查了扇形面积的计算,解直角三角形,利用三角函数定义及特殊角的三角函数值求出∠COD=60°是解题的关键. 16.【分析】BE ⊥AC 于点E 根据题意计算可得解直角三角形ABE 可得BE=AE=30根据平行线性质计算可得解直角三角形CEB 可得AE+CE 的值即是AC 两港之间的距离【详解】解:设过A 点正北方向直线为AD 过解析:30103+【分析】BE ⊥AC 于点E ,根据题意计算可得45EAB ∠=︒,解直角三角形ABE ,可得BE=AE=30,根据平行线性质计算可得60C ∠=°,解直角三角形CEB 可得,103CE =,AE+CE 的值即是AC 两港之间的距离.【详解】解:设过A 点正北方向直线为AD ,过B 点正北方向直线为BG ,过B 作BE ⊥AC 于E ,过C 作CF ∥AD ,如图:∵由题意得:∠CAB =65°﹣20°=45°,∠AEB =∠CEB =90°,AB 2km .∴在Rt ABE △中,∠ABE =45°,∴△ABE 是等腰直角三角形.∵AB 2km ,∴AE =BE 2=30(km ). ∵CF ∥AD ∥BG ,∴∠ACF =∠CAD =20°,∠BCF =∠CBG =40°,∴∠ACB =20°+40°=60°, ∵在Rt CBE 中,∠ACB =60°,tan ∠ACB =BE CE , ∴CE =tan 603BE ︒=3km ),∴AC =AE +CE 3km ),∴A 、C 两港之间的距离为(3km .故答案为:(3【点睛】本题考查解直角三角形的应用——方位角问题,添加辅助线构建直角三角形,熟练运用解直角三角形的方法是解题关键.17.75°或15°【分析】分两种情形求高的位置然后再根据三角函数的定义求出∠BAD ∠CAD 的度数最后再相加或相减即可求出∠BAC 的度数【详解】解:如图所示:①tan∠BAD==1∴∠BAD=45°tan解析:75°或15°【分析】分两种情形求高的位置,然后再根据三角函数的定义求出∠BAD、∠CAD的度数,最后再相加或相减即可求出∠BAC的度数.【详解】解:如图所示:①tan∠BAD=BDAD=1,∴∠BAD=45°,tan∠CAD=CDAD=33,∴∠BAD=30°,∴∠BAC=45°+30°=75°;②tan∠BAD=BDAD=1,∴∠BAD=45°,tan∠CAD=CDAD=33,∴∠BAD=30°,∴∠BAC=45°﹣30°=15°.故∠BAC=75°或15°.【点睛】本题考查了三角函数的应用,灵活应用三角函数求角和分类讨论思想是解答本题的关键.18.【详解】解:根据圆周角定理可得∠AED=∠ABC所以tan∠AED=tan∠ABC=故答案为:【点睛】本题考查圆周角定理;锐角三角函数解析:1 2【详解】解:根据圆周角定理可得∠AED=∠ABC,所以tan∠AED=tan∠ABC=12 ACAB.故答案为:12.【点睛】本题考查圆周角定理;锐角三角函数.19.【解析】【分析】在和中利用锐角三角函数用CH 表示出AHBH 的长然后计算出AB 的长【详解】由于在中米在米米故答案为【点睛】本题考查了解直角三角形的应用——仰角俯角问题题目难度不大解决本题的关键是用含C 解析:()120031- 【解析】 【分析】在Rt ACH 和Rt HCB 中,利用锐角三角函数,用CH 表示出AH 、BH 的长,然后计算出AB 的长.【详解】由于CD//HB , CAH ACD 45∠∠∴==,B BCD 30∠∠==,在Rt ACH 中,CAH 45∠∴=,AH CH 1200∴==米,在Rt HCB ,CH tan B HB∠=, CH 12001200HB 12003(tan B tan3033∠∴====米), ()AB HB HA 120031200120031∴=-=-=-米, 故答案为()120031-. 【点睛】本题考查了解直角三角形的应用——仰角、俯角问题,题目难度不大,解决本题的关键是用含CH 的式子表示出AH 和BH .20.2+【分析】连接OA 过点A 作AC ⊥OB 于点C 由题意知AC=1OA=OB=2从而得出OC==BC=OB ﹣OC=2﹣在Rt △ABC 中根据tan ∠ABO=可得答案【详解】如图连接OA 过点A 作AC ⊥OB 于点解析:2+3.【分析】连接OA ,过点A 作AC ⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出OC=22OA AC -=3、BC=OB ﹣OC=2﹣3,在Rt △ABC 中,根据tan ∠ABO=AC BC 可得答案.【详解】如图,连接OA ,过点A 作AC ⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt △AOC 中,OC=222221OA AC -=-=3,∴BC=OB ﹣OC=2﹣3,∴在Rt △ABC 中,tan ∠ABO=123AC BC =-=2+3. 故答案是:2+3.【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键. 21.【分析】根据题意先考虑多种情况①与D 重合=AB ;②与D 不重合过点C 作CE 于点E 利用的余弦值求出由等腰三角形三线合一得求出再用减去得到【详解】①如图与D 重合②如图与D 不重合过点C 作CE 于点E ∵旋转∴在 解析:12545,5【分析】根据题意,先考虑多种情况,①A '与D 重合,B D '=AB ;②A '与D 不重合,过点C 作CE ⊥A B ''于点E ,利用CA B ''∠的余弦值求出A E ',由等腰三角形三线合一得2A D A E ''=,求出A D ',再用A B ''减去A D '得到B D '.【详解】①如图,A '与D 重合,45B D AB '==.②如图,A '与D 不重合,过点C 作CE ⊥A B ''于点E ,∵旋转,∴4AC A C '==,8BC B C '==,在Rt A B C ''△中,由勾股定理,22224845A B A C B C ''''=++=5cos 545A C CA B A B '''∠===', 在Rt A EC '中,5cos 4A E A E CA E A C '''∠===',∴455A E '=∵D 是BC 中点∴4CD CA '== 在等腰三角形ACD '中,由“三线合一”得8525A D A E ''==, ∴851254555B D A B A D ''''=-=-=.故答案是:5125. 【点睛】 本题考查图形的旋转,等腰三角形三线合一,锐角三角函数,关键在于要画出对应的图象进行分类讨论,把情况考虑全面.22.【分析】由题意可知要求出答案首先需要构造出直角三角形连接AB 设小正方形的边长为1可以求出OAOBAB 的长度由勾股定理的逆定理可得是直角三角形再根据三角函数的定义可以求出答案【详解】连接AB 如图所示: 解析:22【分析】由题意可知,要求出答案首先需要构造出直角三角形,连接AB ,设小正方形的边长为1,可以求出OA 、OB 、AB 的长度,由勾股定理的逆定理可得ABO 是直角三角形,再根据三角函数的定义可以求出答案.【详解】连接AB 如图所示:设小正方形的边长为1,∴2OA=23+1=10,22BA=3+1=10,222OB=4+2=20,∴ABO是直角三角形,∴BA102sin AOB==OB220∠=,故答案为:2 2.【点睛】本题主要考查了勾股定理的逆定理和正弦函数的定义,熟练掌握技巧即可得出答案. 23.1【分析】过点E作EM⊥AF于M交BD于N根据30°直角三角形的性质求出AM=1再根据∠60°的三角函数值求出EN的长再依据△EMF≌△DNE(AAS)得出MF=EN据此可得当AF∥BD时线段AF的解析:132 +.【分析】过点E作EM⊥AF于M,交BD于N,根据30°直角三角形的性质求出AM =1,再根据∠60°的三角函数值求出EN的长,再依据△EMF≌△DNE(AAS)得出MF=EN32=,据此可得,当AF∥BD时,线段AF的长为132 +.【详解】如图过点E作EM⊥AF于M,交BD于N.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ACB=60°.∵AE23=AC,∴AE=2,EC=1.∵AF ∥BD ,∴∠EAM =∠ACB =60°.∵EM ⊥AF ,∴∠AME =90°,∴∠AEM =30°,∴AM 12=AE =1. ∵AF ∥BD ,EM ⊥AF ,∴EN ⊥BC ,∴EN =EC •sin60°2=, ∵∠EMF =∠END =∠FED =90°,∴∠MEF +∠MFE =90°,∠MEF +∠DEN =90°,∴∠EFM =∠DEN .∵ED =EF ,∴△EMF ≌△DNE (AAS ),∴MF =EN 2=,∴AF =AM +MF =1.故答案为:1. 【点评】 本题主要考查了直角三角形的性质、特殊角的三角函数值和全等三角形的判定的综合运用,解题的关键是作辅助线构造直角三角形和全等三角形,熟记特殊角的三角函数值. 24.(0256)【分析】利用锐角三角函数分别计算得到的坐标利用规律直接得到答案【详解】解:∵l :y =x ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB =∵A1B ⊥l ∴∠ABA1=6解析:(0,256)【分析】利用锐角三角函数分别计算得到12,A A 的坐标,利用规律直接得到答案.【详解】解:∵l :y ∴l 与x 轴的夹角为30°∵AB ∥x 轴∴∠ABO =30°∵OA =1∴AB =3 ∵A 1B ⊥l∴∠ABA 1=60°∴AA 1=3∴A 1(0,4)同理可得A 2(0,16)…∴A 4纵坐标为44=256∴A 4(0,256)故答案为:(0,256).【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到123,,A A A …的点的坐标是解决本题的关键.25.【分析】连接PMPN 根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x 则PB=2a -x 然后利用锐角三角函数求出PM 和P解析:32a 【分析】连接PM 、PN ,根据菱形的性质求出∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30°,从而求出∠MPN=90°,设AP=x ,则PB=2a -x ,然后利用锐角三角函数求出PM 和PN ,然后利用勾股定理求出MN 2与x 的函数关系式,化为顶点式即可求出MN 2的最小值,从而求出结论.【详解】解:连接PM 、PN∵四边形APCD 和四边形PBFE 为菱形,60DAP ∠=︒∴∠CPA=180°-∠DAP=120°,∠EPB=∠DAP=60°,PM ⊥AC ,PN ⊥EB ,AC 平分∠DAP ,PM 平分∠APC ,PN 平分∠EPB∴∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30°∴∠MPN=∠MPC +∠EPN=90°设AP=x ,则PB=2a -x∴PM=AP·sin ∠CAP=12x ,PN=PB·cos ∠BPN=32(2a -x ) 在Rt △MON 中MN 2= PM 2+PN 2=214x +34(2a -x )2=(x -32a )2+34a 2 当x=32a 时,MN 2取最小值,最小为34a 2 ∴MN 的最小值为32a 故答案为:32a . 【点睛】 此题考查的是菱形的性质、锐角三角函数、勾股定理和二次函数的应用,掌握菱形的性质、锐角三角函数、勾股定理和利用二次函数求最值是解决此题的关键.26.(3)【分析】如图作B′H ⊥y 轴于H 解直角三角形求出B′HOH 即可【详解】如图作B′H ⊥y 轴于H 由题意:OA′=A′B′=2∠B′A′H=60°∴∠A′B′H=30°∴AH′=A′B′=1B′H=∴解析:(3-,3)【分析】如图,作B′H ⊥y 轴于H .解直角三角形求出B′H ,OH 即可.【详解】如图,作B′H ⊥y 轴于H ,由题意:OA′=A′B′=2,∠B′A′H=60°,∴∠A′B′H=30°,∴AH′=12A′B′=1,B′H=3- ∴OH=3,∴B′(3-3),故答案为:(3-3).【点睛】。
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .【解析】试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.试题解析:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为连接GD,如图2所示.∵KG2=KD•GE,即,∴,又∵∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∵∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如图3所示,∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r-3t)2+(4t)2=r2,解得r= t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,∴FG=【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.2.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.3.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.4.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m 【解析】 【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解. 【详解】解:在Rt △AFG 中,tan ∠AFG =3, ∴FG =tan 3AG AFG =∠,在Rt △ACG 中,tan ∠ACG =AGCG, ∴CG =tan AGACG ∠=3AG .又∵CG ﹣FG =24m ,即3AG ﹣3=24m , ∴AG =123m , ∴AB =123+1.6≈22.4m .5.如图,在ABC △中,10AC BC ==,3cos 5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P与边BC相切时,求P的半径;()2联结BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围;()3在()2的条件下,当以PE长为直径的Q与P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409;(2)()25880010320x x xy xx-+=<<+;(3)1025-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=R10R-=45,即可求解;(2)PD∥BE,则EBPD=BFPF,即:2248805x x x yx y--+-=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=35,sinC=HPCP=R10R-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=45,则:tan∠CAB=2BP=()2284x+-=2880x x-+,DA=25x,则BD=45-25x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则55EB=BDcosβ=(555x)525x,∴PD∥BE,∴EBPD=BFPF,即:2248805x x x yx y--+=,整理得:y=)2x8x800x103x20-+<<+;(3)以EP为直径作圆Q如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=45,设圆的半径为r,在△ADG中,AD=2rcosβ=5,DG=5,AG=2r,5+2r=45,解得:2r=51,则:DG=5=10-25,相交所得的公共弦的长为10-25.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.6.关于三角函数有如下的公式:sin(α+β)=sinαcosβ+cosαsinβ①cos(α+β)=cosαcosβ﹣sinαsinβ②tan(α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan(45°+60°)==﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.【答案】建筑物CD的高为84米.【解析】分析:如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.详解:如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,CD=BE,∠ADE=60°,∴在Rt△ABC和Rt△ADEAB=BC•tan75°=42tan75°=,AE=,∴CD=AB﹣AE=(米).答:建筑物CD的高为84米.睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.7.如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)【答案】潜艇C离开海平面的下潜深度约为308米【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD=tan AD ACD=tan30x= 3x在Rt△BCD中,BD=CD•tan68°,∴325+x=3x•t an68°解得:x≈100米,∴潜艇C离开海平面的下潜深度为100米.点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.视频8.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形;(2)若,,,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP试题解析:(1)∵AE平分∠BAD BF平分∠ABC∴∠BAE=∠EAF ∠ABF=∠EBF∵AD//BC∴∠EAF=∠AEB ∠AFB=∠EBF∴∠BAE=∠AEB ∠AFB=∠ABF∴AB=BE AB=AF∴AF=AB=BE∵AD//BC∴ABEF为平行四边形又AB=BE∴ABEF为菱形(2)作PH⊥AD于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数9.如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.【答案】解:(1)在菱形ABCD中,∵AC⊥BD,AC=80,BD=60,∴。
中考数学专题《锐角三角函数》综合检测试卷含答案一、锐角三角函数1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.【答案】553【解析】【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【详解】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∠COD=30°,∴∠COP=12∴QM=OP=OC•cos30°=3∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=1OA=5(分米),2∴AM=AQ+MQ=5+3∵OB∥CD,∴∠BOD=∠ODC=60°在Rt △OFK 中,KO =OF•cos60°=2(分米),FK =OF•sin60°=23(分米), 在Rt △PKE 中,EK =22EF FK -=26(分米), ∴BE =10−2−26=(8−26)(分米),在Rt △OFJ 中,OJ =OF•cos60°=2(分米),FJ =23(分米),在Rt △FJE′中,E′J =2263-(2)=26, ∴B′E′=10−(26−2)=12−26, ∴B′E′−BE =4.故答案为:5+53,4.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )?【答案】【解析】于F,根据锐角三角函数的定义用θ1、θ2表示出DF、EF的值,又可证过A作AF CD四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可.3.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.【解析】分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵AC=BD ,CD=AE , ∴AF=AC . ∵∠FAC=∠C=90°, ∴△FAE ≌△ACD ,∴EF=AD=BF ,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°, ∴∠FEA+∠CAD=90°=∠EHD . ∵AD ∥BF , ∴∠EFB=90°. ∵EF=BF , ∴∠FBE=45°, ∴∠APE=45°.(2)(1)中结论不成立,理由如下:如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵3BD ,3AE ,∴3AC CDBD AE ==. ∵BD=AF ,∴3AC CDAF AE==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD ,∴3AC AD BFAF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°.在Rt △EFB 中,tan ∠FBE=33EF BF =, ∴∠FBE=30°, ∴∠APE=30°,(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形, ∴BE=DH ,EH=BD . ∵AC=3BD ,CD=3AE ,∴3AC CDBD AE==. ∵∠HEA=∠C=90°, ∴△ACD ∽△HEA ,∴3AD ACAH EH==,∠ADC=∠HAE . ∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.在Rt △DAH 中,tan ∠ADH=3AHAD=, ∴∠ADH=30°, ∴∠APE=30°.点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.4.如图13,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.【答案】(1)详见解析;(2)①②和走完全程所需时间为【解析】试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.试题解析:解:(1)证明:四边形是矩形.与交于点O,且关于对称四边形是菱形.(2)①连接,直线分别交于点,交于点关于的对称图形为在矩形中,为的中点,且O为AC的中点为的中位线同理可得:为的中点,②过点P作交于点由运动到所需的时间为3s由①可得,点O以的速度从P到A所需的时间等于以从M运动到A即:由O运动到P所需的时间就是OP+MA和最小.如下图,当P运动到,即时,所用时间最短.在中,设解得:和走完全程所需时间为考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置5.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【答案】(1)tan∠DBC=;(2)P(﹣,).【解析】试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).试题解析:(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,解得 x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).当x=3时,y=﹣32+3×3+4=4,∴D(3,4).如图,连接CD,过点D作DE⊥BC于点E.∵C(0,4),∴CD//AB,∴∠BCD=∠ABC=45°.在直角△OBC中,∵OC=OB=4,∴BC=4.在直角△CDE中,CD=3.∴CE=ED=,∴BE=BC﹣DE=.∴tan∠DBC=;(2)过点P作PF⊥x轴于点F.∵∠CBF=∠DBP=45°,∴∠PBF=∠DBC,∴tan∠PBF=.设P(x,﹣x2+3x+4),则=,解得 x1=﹣,x2=4(舍去),∴P(﹣,).考点:1、二次函数;2、勾股定理;3、三角函数6.如图,二次函数y=x2+bx﹣3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点D,其纵坐标为3,l与x轴的交点为E,经过A、T、D三点作⊙M.(1)求二次函数的表达式;(2)在点T的运动过程中,①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;②若MT=12AD,求点M的坐标;(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT 时,求y的最大值与最小值(用含a的式子表示).【答案】(1)y=x2﹣2x﹣3(2)①在点T的运动过程中,∠DMT的度数是定值②(0,3)(3)见解析【解析】【分析】(1)把点B的坐标代入抛物线解析式求得系数b的值即可;(2)①如图1,连接AD.构造Rt△AED,由锐角三角函数的定义知,tan∠DAE=3.即∠DAE=60°,由圆周角定理推知∠DMT=2∠DAE=120°;②如图2,由已知条件MT=12AD,MT=MD,推知MD=12AD,根据△ADT的外接圆圆心M在AD的中垂线上,得到:点M是线段AD的中点时,此时AD为⊙M的直径时,MD=12AD.根据点A、D的坐标求得点M的坐标即可;(3)如图3,作MH⊥x于点H,则AH=HT=12AT.易得H(a﹣1,0),T(2a﹣1,0).由限制性条件OH≤x≤OT、动点T在射线EB上运动可以得到:0≤a﹣1≤x≤2a﹣1.需要分类讨论:(i)当2111(1)211aa a-⎧⎨----⎩……,即413a<„,根据抛物线的增减性求得y的极值.(ii)当0112111(1)211aaa a<-⎧⎪->⎨⎪--<--⎩„,即43<a≤2时,根据抛物线的增减性求得y的极值.(iii)当a﹣1>1,即a>2时,根据抛物线的增减性求得y的极值.【详解】解:(1)把点B(3,0)代入y=x2+bx﹣3,得32+3b﹣3=0,解得b=﹣2,则该二次函数的解析式为:y=x2﹣2x﹣3;(2)①∠DMT的度数是定值.理由如下:如图1,连接AD .∵抛物线y =x 2﹣2x ﹣3=(x ﹣1)2﹣4.∴抛物线的对称轴是直线x =1.又∵点D 的纵坐标为∴D (1,由y =x 2﹣2x ﹣3得到:y =(x ﹣3)(x+1),∴A (﹣1,0),B (3,0).在Rt △AED 中,tan ∠DAE=2DE AE ==. ∴∠DAE =60°.∴∠DMT =2∠DAE =120°.∴在点T 的运动过程中,∠DMT 的度数是定值;②如图2,∵MT =12AD .又MT =MD , ∴MD =12AD . ∵△ADT 的外接圆圆心M 在AD 的中垂线上, ∴点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,MD =12AD . ∵A (﹣1,0),D (1,∴点M 的坐标是(0(3)如图3,作MH ⊥x 于点H ,则AH =HT =12AT . 又HT =a ,∴H (a ﹣1,0),T (2a ﹣1,0).∵OH≤x≤OT ,又动点T 在射线EB 上运动,∴0≤a ﹣1≤x≤2a ﹣1.∴0≤a ﹣1≤2a ﹣1.∴a≥1,∴2a ﹣1≥1.(i )当2111(1)211a a a -⎧⎨----⎩……,即14a 3剟时, 当x =a ﹣1时,y 最大值=(a ﹣1)2﹣2(a ﹣1)﹣3=a 2﹣4a ;当x =1时,y 最小值=4.(ii )当0112111(1)211a a a a <-⎧⎪->⎨⎪--<--⎩„,即43<a≤2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=1时,y最小值=﹣4.(iii)当a﹣1>1,即a>2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=a﹣1时,y最小值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系;另外,解答(3)题时,一定要分类讨论,以防漏解或错解.7.如图,MN为一电视塔,AB是坡角为30°的小山坡(电视塔的底部N与山坡的坡脚A在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A处测得塔顶M的仰角为45°;沿着山坡向上行走40m到达C处,此时测得塔顶M的仰角为30°,请求出电视塔MN的高度.(参考数据:2≈1.41,3≈1.73,结果保留整数)【答案】95m【解析】【分析】过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,求AE=3m,在RT△MFC中,设MN=x m,则AN=xm.FC3xm,可得x+33 ( x-20),解方程可得答案..【详解】解:过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,AC=40m,∠CAE=30°∴CE=FN=20m,AE=3设MN=x m,则AN=xm.FC3,在RT△MFC中MF=MN-FN=MN-CE=x-20FC =NE =NA +AE =x +203 ∵∠MCF =30°∴FC =3MF ,即x +203=3 ( x -20)解得:x =40331- =60+203≈95m答:电视塔MN 的高度约为95m .【点睛】本题考核知识点:解直角三角形.解题关键点:熟记解直角三角形相关知识,包括含特殊角的直角三角形性质.8.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.(1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.【详解】解:(1)把0x =代入4y kx =+,4y =,∴4BO =,又∵4ABO S ∆=, ∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+,得044k =-+,解得1k =.故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒,∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =,∴90POD EOC ∠+∠=︒,∴OPD EOC ∠=∠,∴POD OCE ∆≅∆,∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒,∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =,∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠, OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CM y P 轴,∵90PNM POC ∠=∠=︒,∴BM OC P ,∴四边形BOCM 是平行四边形,∴4832BOCM S BO OM =⨯=⨯=Y .故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.9.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN 是水平线,MN ∥AD ,AD ⊥DE ,CF ⊥AB ,垂足分别为D ,F ,坡道AB 的坡度为1:3,DE =3米,点C 在DE 上,CD =0.5米,CD 是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF 的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41, 3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出tan B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF的长.【详解】解:由题意得,tan3B=∵MN∥AD,∴∠A=∠B,∴tan A,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE在Rt△CEF中,设EF=x,CF x(x>0),CE=2.5,代入得(52)2=x2+3x2,解得x=1.25,∴CFx≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.10.如图,直线y=12x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣12x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)根据图象,直接写出满足12x +2≥﹣12x 2+bx +c 的x 的取值范围; (3)设点D 为该抛物线上的一点、连结AD ,若∠DAC =∠CBO ,求点D 的坐标.【答案】(1)213222y x x =--+;(2)当x ≥0或x ≤﹣4;(3)D 点坐标为(0,2)或(2,﹣3).【解析】【分析】(1)由直线y =12x +2求得A 、B 的坐标,然后根据待定系数法即可求得抛物线的解析式; (2)观察图象,找出直线在抛物线上方的x 的取值范围;(3)如图,过D 点作x 轴的垂线,交x 轴于点E ,先求出CO =1,AO =4,再由∠DAC =∠CBO ,得出tan ∠DAC =tan ∠CBO ,从而有,DE CO AE BO =,最后分类讨论确定点D 的坐标. 【详解】解:(1)由y =12x +2可得: 当x =0时,y =2;当y =0时,x =﹣4,∴A (﹣4,0),B (0,2),把A 、B 的坐标代入y =﹣12x 2+bx +c 得: 322b c ⎧=-⎪⎨⎪=⎩,, ∴抛物线的解析式为:213222y x x =--+ (2)当x ≥0或x ≤﹣4时,12x +2≥﹣12x 2+bx +c (3)如图,过D 点作x 轴的垂线,交x 轴于点E ,由213222y x x =-+令y =0, 解得:x 1=1,x 2=﹣4,∴CO =1,AO =4,设点D 的坐标为(m ,213222m m --+),∵∠DAC =∠CBO , ∴tan ∠DAC =tan ∠CBO ,∴在Rt △ADE 和Rt △BOC 中有DE CO AE BO=, 当D 在x 轴上方时,213212242--+=+m m m 解得:m 1=0,m 2=﹣4(不合题意,舍去),∴点D 的坐标为(0,2).当D 在x 轴下方时,213(2)12242---+=+m m m 解得:m 1=2,m 2=﹣4(不合题意,舍去),∴点D 的坐标为(2,﹣3),故满足条件的D 点坐标为(0,2)或(2,﹣3).【点睛】本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式.解题的关键是能够熟练掌握一次函数和二次函数的有关知识解决问题,分类讨论是第(3)题的难点.11.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式.【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--. 【解析】【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0)∴y =a (x+2)(x ﹣4)把点C (0,3)代入得:﹣8a =3∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D∴∠CDP =∠COB =90°∵∠DCP =∠OCB∴△CDP ∽△COB ∴PC PD BC OB= ∵B (4,0),C (0,3)∴OB =4,OC =3,BC∴PD =45PC ∴5PA+4PC =5(PA+45PC )=5(PA+PD )∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小∵A (﹣2,0),OC ⊥AB ,AE ⊥BC∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90°∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个此时,连接FQ ,过点Q 作QG ⊥x 轴于点G∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点∴F (1,0),FQ =FA =3∵T (﹣4,0)∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ = ∴FG =35FQ =95∴x Q =1﹣9455=-,QG125== ①若点Q 在x 轴上方,则Q (41255-,)设直线l 解析式为:y =kx+b ∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,) ∴直线l :334y x =--综上所述,直线l的解析式为334y x=+或334y x=--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论12.在△ABC中,∠B=45°,∠C=30°,点D是边BC上一点,连接AD,将线段AD绕点A 逆时针旋转90°,得到线段AE,连接DE.(1)如图①,当点E落在边BA的延长线上时,∠EDC=度(直接填空);(2)如图②,当点E落在边AC上时,求证:BD=12 EC;(3)当AB=22,且点E到AC的距离等于3﹣1时,直接写出tan∠CAE的值.【答案】(1)90;(2)详见解析;(3)633 tan11EAC-∠=【解析】【分析】(1)利用三角形的外角的性质即可解决问题;(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP=3x,EH=2PH=2x,由此FH=2x+3﹣1,CF=23x+3﹣3,由△BAD≌△PAE,得BD=EP=3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=1+3,由此tan∠EAF=2﹣3,根据对称性可得tan∠EAC=6-33.11【详解】(1)如图1中,∵∠EDC=∠B+∠BED,∠B=∠BED=45°,∴∠EDC=90°,故答案为90;(2)如图2中,作PA⊥AB交BC于P,连接PE.∵∠DAE=∠BAP=90°,∴∠BAD=∠PAE,∵∠B=45°,∴∠B=∠APB=45°,∴AB=AP,∵AD=AE,∴△BAD≌△PAE(SAS),∴BD=PE,∠APE=∠B=45°,∴∠EPD=∠EPC=90°,∵∠C=30°,∴EC=2PE=2BD;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,∴EP3,EH=2PH=2x,∴FH=31,CF3FH=33∵△BAD≌△PAE,∴BD=EP3,AE=AD,在Rt△ABG中,∵AB=2∴AG=GB=2,在Rt△AGC中,AC=2AG=4,∵AE2=AD2=AF2+EF2,∴22+(23)231)2+(4﹣3﹣32,整理得:9x2﹣12x=0,解得x=43(舍弃)或0∴PH=0,此时E,P,H共点,∴AF=3∴tan∠EAF=EFAF 3131-+=23根据对称性可知当点E在AC的上方时,同法可得tan∠EAC 6-33.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.13.如图(1),已知正方形ABCD 在直线MN 的上方BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)连接GD ,求证:△ADG ≌△ABE ;(2)连接FC ,观察并直接写出∠FCN 的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD 改为矩形ABCD ,AB =6,BC =8,E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变,若∠FCN 的大小不变,请求出tan ∠FCN 的值.若∠FCN 的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43.理由见解析. 【解析】【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论.【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°,∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE ,∴∠BAE =∠DAG ,在△ADG 和△ABE 中, ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ABE (AAS ).(2)解:∠FCN =45°,理由如下:作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE ,∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°,∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFH ≌△ABE (AAS ),∴FH =BE ,EH =AB =BC ,∴CH =BE =FH ,∵∠FHC =90°,∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下:作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG =∠BAD =∠AEF =90°,结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,∴EH =AD =BC =8,∴CH =BE , ∴EH FH FH AB BE CH==; 在Rt △FEH 中,tan ∠FCN =8463FH EH CH AB ===, ∴当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43. 【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.14.如图,在▱ABCD中,AC与BD交于点O,AC⊥BC于点C,将△ABC沿AC翻折得到△AEC,连接DE.(1)求证:四边形ACED是矩形;(2)若AC=4,BC=3,求sin∠ABD的值.【答案】(1)证明见解析(2)613【解析】【分析】(1)根据▱ABCD中,AC⊥BC,而△ABC≌△AEC,不难证明;(2)依据已知条件,在△ABD或△AOC作垂线AF或OF,求出相应边的长度,即可求出∠ABD的正弦值.【详解】(1)证明:∵将△ABC沿AC翻折得到△AEC,∴BC=CE,AC⊥CE,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形,∵AC⊥CE,∴四边形ACED是矩形.(2)解:方法一、如图1所示,过点A作AF⊥BD于点F,∵BE=2BC=2×3=6,DE=AC=4,∴在Rt△BDE中,2222BD BE DE64213=+=+=∵S△BDE=12×DE•AD=12AF•BD,∴AF613213=,∵Rt△ABC中,AB2234+5,∴Rt△ABF中,sin ∠ABF =sin ∠ABD =61361313655AF AB ==.方法二、如图2所示,过点O 作OF ⊥AB 于点F ,同理可得,OB =1132BD =, ∵S △AOB =11OF AB OA BC 22⋅=⋅, ∴OF =23655⨯=, ∵在Rt △BOF 中,sin ∠FBO =0613513F OB ==, ∴sin ∠ABD =613.【点睛】本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出sin ∠ABD .15.如图所示,一堤坝的坡角62ABC ∠=︒,坡面长度25AB =米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角50ADB ∠=︒,则此时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数据:sin620.88︒≈,cos620.47︒≈,tan50 1.20︒≈)【答案】6.58米【解析】试题分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DE﹣BE即可求解.试题解析:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DE﹣BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.考点:解直角三角形的应用-坡度坡角问题.。
人教版九年级数学下册《第28章锐角三角函数》自主提升测评(附答案)一、单选题(满分40分)1.如图,在△ABC中,∠C=90°,BC=1,ABA.sin A B.tan A=2C.cos B=2D.sin B2.如图,为方便行人过某天桥,市政府在10米高的天桥两端修建斜道,设计斜坡满足sin A=1,则斜道AC的长度是( )3A.25B.30C.35D.403.如图,在等边△ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE交于点F,连接CF,则CF的最小值是( )A.3B.C.4D.4.如图,在5×5的正方形网格中,△ABC的顶点都在格点上,则tan∠BAC的值等于()A B.3C.1D.135.如图,在 ABC中,∠A=120°,AB=4,AC=2,则sin B的值是()A B C D6.如图给出了一种机器零件的示意图,其中2m =米、3n =米,则AB 的长为( )A .1⎛+ ⎝米B .1⎛ ⎝米C .)1-米D .)1+米7.如图,在△ABC 中,AD ⊥BC 于点D .若BD =9,DC =5,cos B =35,E 为边AC 的中点,则 cos ∠ADE 的值为( )A .45B .513C .512D .12138.边心距为 )A .B .C .D .二、填空题(满分40分)9.在△ABC 中,AB =6,BC =8,∠B =60°,则△ABC 的面积是 ___.10.在Rt ABC △中,90C ∠=︒,若1tan 3A =,则sin B =__________11.如图,在 ABC 中,AB =AC =6,∠BAC =120°,点E 是AB 边上不与端点重合的一个动点,作ED ⊥BC 交BC 于点D ,将 BDE 沿DE 折叠,点B 的对应点为F ,当 ACF 为直角三角形时,则BE 的长为_______.12.如图,ABC 中,点D 在AC 上,3tan 4ADB ∠=,点E 在BD 上,180AEC ADB ∠+∠=︒,AC BE =,15EC =,41BC =,则AEC △的面积为______.13.已知tan 5α=,则223sin cos 2sin cos αααα=+________.14.如图,已知菱形ABCD 的对角线经过原点O ,且60B ∠=︒,A 、C 分别在双曲线4y x =的图象上,若B 在双曲线ky x=的图象上,则k 的值为__.15.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是___________16.如图:已知O 的半径为2,OC ⊥直径,D 点是 ACB 的一个三等分点,P 为OC 上一动点,则PA PD +的最小值是_________.三、解答题(满分40分)17.某中学数学活动小组设计了如图检测公路上行驶的校车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 睡直,测得 CD 的长等于30米,在l 上点D 的同侧取点A ,B ,使∠CAD =30°,∠CBD =45°(1)求AB 的长(精确到0.1 1.73≈ 1.41≈);(2)已知本路段对校车限速为40千米/小时,若测得菜制校车从A 到B 用时2炒,这辆校车是否超速?说明理由.18.如图,某大楼的顶部竖有一块广告牌CD ,小马同学在山坡的坡脚A 处测得广告牌底部D 的仰角为53°,沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡比i =1AB =10米,AE =21米.(测角器的高度忽略不计,参考数据:sin53°434,cos53,tan 53553︒︒=≈≈(1)求点B 距水平地面AE 的高度;(2)求广告牌的高度CD 的长度.(结果保留根号)19.海上测绘船沿正北方向航行,在A 点观察东北方向的岛屿的西端M 在A 点的北偏东36.9°方向航行4km 后到达B 点,测得该岛屿东端N 在B 点的北偏东67.4°方向,又航行6km 后到达C 点,测得该岛屿正好在C 点的正东方向(即C ,M ,N 在同一直线上)求该岛屿东西两端M ,N 之间的距离.(参考数据:sin 36.90.60︒≈,tan 36.90.75︒≈,sin 67.40.92︒≈,tan 67.4 2.40︒≈)20.如图,已知AB是⊙O的直径.BC是⊙O的弦,弦ED垂直AB于点F,交BC于点G.过点C作⊙O的切线交ED的延长线于点P(1)求证:PC=PG;(2)判断PG2=PD·PE是否成立?若成立,请证明该结论;(3)若G为BC中点,OG sin B=,求DE的长.21.如图,抛物线交x轴于A(﹣2,0),B(3,0)两点,与y轴交于点C(0,3),连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.22.阅读下面材料:小腾遇到这样一个问题:如图①,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD =30°,AD=2,BD=2DC,求AC的长.∥交AD的延长线于点E,通过构造△ACE,经过推理和计算能小腾发现过点C作CE AB够使问题得到解决(如图②).请回答:∠ACE的度数为 ,AC的长为 .参考小腾思考问题的方法,解决问题:如图③,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.参考答案1.D解:在△ABC 中,∠C =90°,BC =1,AB∴2AC ==,∴1sin tan ,cos 2BC BC BC AC A A B B AB AC AB AB =======;故选D .2.B解:在Rt △ABC 中,∠ABC =90°,BC =10米,sin A =13,则BC AC=13,即10AC=13,解得:AC =30(米),故选:B .3.B解:在ABD 与BCE 中,60AB BC ABC ACB BD CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴ABD ≅BCE ,∴BAD CBE ∠=∠,∴60ABF BAF ABF CBE ∠+∠=∠+∠=︒,∴120AFB ∠=︒,作ABF 的外接圆,则点F 的运动轨迹为以O 为圆心,OB 为半径的圆,如图所示,连接OB 、OC ,交劣弧 AB 于点F’,当点F 与点F’重合时,CF 的长度最小,由切线定理可得:BC 与O 相切于点B ,∴OB BC ⊥,30BCO ∠=︒,在Rt OBC中,tan 30OB BC =︒=∴2OC OB ==∴CF OC OF =-=''∴CF 的最小值为故选:B .4.B解:∵AC =AB =BC =,∴AC 2=2,AB 2=20,BC 2=18,∴AB 2=AC 2+BC 2,∴△ABC 是直角三角形,∠ACB =90°,∴tan ∠BAC =3BC AC ==,故选:B .5.D解:如图所示,过点C 作CD ⊥AB 于D ,∵ ∠BAC =120°,∴ ∠CAD =60°,又∵ AC =2,∴ AD =1,CD∴ BD =BA +AD =5,在Rt △BCD 中,BC ===∴ sin CD B BC ===故选:D .6.C解:如图,作CE BA ⊥交BA 的延长线于,E 作BF CD ⊥交CD 的延长线于F ,而90,F ABF Ð=Ð=° ∴ 四边形FBEC 为矩形,,,BF CE CF BE \==在Rt BDF V 中,,30,BF n DBF =Ð=°tan ,DF BF DBF \=Ðg 在Rt ACE △中,90,45,AEC ACE Ð=°Ð=°,AE CE BF n \===AB BE AE CD DF AE \=-=+-,m n =- 当2m =米、3n =米,)231AB \==米,故选:C 7.D解:∵AD BC ⊥于D ,9BD =,3cos 5B =,∴15cos BDAB B==,12AD ==,∵5DC =,∴13AC ==,∵E 为AC 中点,∴12ED AC EC ==,∴EDA DAE ∠=∠,∴12cos cos 13AD EDA DAE AC ∠=∠==,故选:D .8.A解:如图所示,由题意可得:AD AB ⊥,OD =OA OB =,60AOB ∠=︒∴AOB 是等边三角形∴OA OB AB ==,60OAB ∠=︒∴4sin 60ODOA ==︒∴4AB =11422AOB S AB OD =⨯=⨯⨯=△正六边形的面积66AOB S ==⨯=△故选:A9.解:如图,过点A 作AD BC ⊥于点D ,在Rt ABD △中,sin AD B AB =,即sin 606AD =︒=,解得AD =,则ABC 的面积是11822BC AD ⋅=⨯⨯=故答案为:10解:如图所示:∵90C ∠=︒,1tan 3A =,∴设BC x =,则3AC x =,∴AB ==,则sin AC B AB ===,11.2或3①当∠CAF =90°时,如图1,∵AB =AC =6,∠BAC =120°,∴∠B =∠C =30°=∠BAF ,∴AF ===BF ,由翻折可知,BD =DF =在Rt △BDE 中,∠B =30°,BD =∴BE cos30BD ==︒2;②当∠AFC =90°时,如图2,由翻折变换可知,BD =DF ,∠EDF =90°=∠AFC ,∴DE ∥AF ,∴BE =AE 12=AB =3,综上所述,BE 的长为2或3,故答案为:2或3.12.1172解:作CF AE ⊥,BG CG ⊥,如下图:则90G F ∠=∠=︒∵180AEC ADB ∠+∠=︒,180AEC FEC ∠+∠=︒,180BDC ADB ∠+∠=︒∴FEC ADB ∠=∠,EDC AEC∠=∠∴FAC DEC GEB∠=∠=∠∵3tan 4ADB ∠=∴3tan 4CF FEC EF ∠==,设3CF a =,4EF a =由勾股定理可得:222EF CF CE +=,即222(3)(4)15a a +=解得3a =(负值已舍去)∴9CF =,12EF =在BGE △和CFA △中G F GEB FACAC BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BGE CFA AAS △≌△∴9BG CF ==,设GE AF x ==,则15GC x =+由勾股定理得222GC BG BC +=,即2229(15)41x ++=解得25x =或65x =-(舍去)即25GE AF ==,251213AE AF EF =-=-=11117139222AEC S AE CF =⨯=⨯⨯=△故答案为117213.517解:sin tan 5cos ααα== ,sin 5cos αα∴=,∴22222223sin cos 15cos 15cos 52sin cos 50cos cos 51cos 17ααααααααα===++,故答案是:517.14.12-解:如图作AE ⊥x 轴于E ,BF ⊥x 轴于F .连接OB .∵A 、C 关于原点对称,∴OA =OC ,∵BC =AB ,OA =OC ,∠ABC =60°,∴OB ⊥AC ,1302ABO CBO ABC ∠∠∠︒===,∴tan 30OA OB ︒==∵∠BFO =∠BOA =∠AEO =90°,∵∠BOF +∠AOE =90°,∠AOE +∠EAO =90°,∴∠BOF =∠OAE ,∴BFO OEA ∽,∴21()3OEA BOF S OA S OB ==△△,A 点在4y x=图像上1422OEA S ∴=⨯=△∴21=132k ,∴12k =∵0k <,∴12k =-,故答案为﹣12.15.2解:如图,将AB 平移至CQ ,连接PC ,则AB ∥CQ ,∠QMB =∠CQP ,由题意,2222640PQ =+=,2224432PC =+=,222228CQ =+=,∵222PQ PC CQ =+,∴△PCQ 为直角三角形,∠PCQ =90°,∴tan tan 2PCQMB CQP CQ ∠=∠===,故答案为:2.16.解:连接PB ,与CO 相交于P ,连接AD ,BD .∵AB 为直径, ∴∠ADB =90°,∵点D 是 ACB 的一个三等分点,∴弧AD 的度数为60°,∴∠ABD =30°,∴cos 30°= BDAB ,∴DB =ABcos =∵PA +PD =PB +PD ≥BD =∴PA +PD 的最小值是故答案为:17.(1)21.9米;(2)不超速,解:(1)由题意得,在Rt △ADC 中,AD =tan 30CD (米),在Rt △BDC 中,BD =tan 45CDo =301=30(米),则AB =AD -BD ≈51.9-30=21.9(米);(2)不超速.理由:∵汽车从A 到B 用时2秒,∴速度为21.9÷2=10.95(米/秒),∵10.95×3600=39420(米/时),∴该车速度为39.42千米/小时,∵小于40千米/小时,∴这辆校车在AB 路段不超速.18.(1)5米;(2)2)-米,解:(1)如图,过点B 作BM ⊥AE ,BN ⊥CE ,垂足分别为M 、N ,由题意可知,∠CBN =45°,∠DAE =53°,i =1AB =10米,AE =21米.∵tan BM i BAM AM===∠,∴∠BAM =30°,∴BM =12AB =5(米),即点B 距水平地面AE 的高度为5米;(2)在Rt △ABM 中,∴BM =12AB =5(米)=NE ,AM AB ==,∴ME =AM +AE =21)米=BN ,∵∠CBN =45°,∴CN =BN =ME =21)米,∴CE =CN +NE =26)米,在Rt △ADE 中,∠DAE =53°,AE =21米,∴4tan 5321283DE AE ︒=⋅≈⨯=(米),∴CD =CE -DE 262)=-米,19.6.9km解:由题意得:4610AC AB BC =+=+=(km ),在Rt ACM 中,tan tan 36.90.75CM CAM AC ∠==︒≈,∴7.5CM ≈(km ),在Rt BCN 中,tan tan 67.4 2.40CN CBN CB=︒∠=≈,∴14.4CN ≈(km ),∴14.47.5 6.9MN CN CM =-≈-=(km ).答:该岛屿东西两端M ,N 之间的距离约为6.9km .20.(1);(2)成立;(3)ED =解:(1)连接OC ,∵OC OB =,∴OCB OBC ∠=∠,∵CP 是O 的切线,∴90OCP ∠=︒,∵弦ED 垂直AB 于点F ,AB 是O 的直径,∴90GFB ∠=︒,∴FGB PCG ∠=∠,∵FGB PGC ∠=∠,∴PCG PGC ∠=∠,∴PC PG =;(2)如图1,连接EC 、CD ,∵ED AB ⊥,AB 是圆O 的直径,∴ EBBD =,∴ECB BCD ∠=∠,∵PG PC =,∴PCG PGC ∠=∠,∵CGP E ECB ∠=∠+∠,GCP PCD BCD ∠=∠+∠,∴PCD E ∠=∠,∴PCD PEC ∽,∴PC PD PE PC=,∴2PC PE PD =⋅,∵PC PG =,∴2PG PD PE =⋅;(3)如图2,连接OG ,EO ,∵G 为BC 中点,∴OG BC ⊥,在Rt BOG △中,OG =,sin B =∴5OB =,BG =∵GF OG ⊥,∴90B FGB ∠+∠=︒,90B BOG ∠+∠=︒,∴GOB FGB ∠=∠,∴FGB GOB ∽△△,∴GB FB OB GB =,=,∴4FB =,∴1OF =,在Rt EOF △中,1OF =,5EO =,∴EF =∴ED =21.(1)y 12=-x 212x ++3;(2)PN =21322m m -+);当m 32=时,PN 最大(3)存在,Q (1,23.解:(1)设抛物线的表达式为:y =a (x +2)•(x ﹣3),∴a •2×(﹣3)=3,∴a 12=-,∴抛物线的关系式是y 12=-(x +2)•(x ﹣3)12=-x 212x ++3;(2)∵B (3,0),C (0,3),∴直线BC 的表达式是y =﹣x +3,由(),0M m ,∴Q (m ,﹣m +3),∴QM =﹣m +3,∵P (m ,211322m m -++),∴PM 211322m m =-++,∴PQ =PM ﹣QM 21322m m =-+,∵OB =OC ,∴∠OBC =∠OCB =45°,∵QM //OC ,∴∠PQN =∠OCB =45°,∴sin PN PQ PQN =⋅∠=21322m m -+)=m 32-)2∴当m 32=时,PN 最大=;(3)设Q (m ,﹣m +3),AC 2=22+32=13,AQ 2=(m +2)2+(﹣m +3)2=2m 2﹣2m +13,CQ 2=m 2+m 2=2m 2,当AQ =AC 时,2m 2﹣2m +13=13,∴m 1=0(舍去),m 2=1,∴Q 1(1,2),当AC =CQ 时,2m 2=13,∴m 3=m 4=,∴Q 2,3,当AQ =CQ 时,2m 2﹣2m +13=2m 2,∴m 132=>3,故舍去,综上所述,Q (1,2,3).22.∠ACE =75°,AC 的长为3,BC =解:CE AB ∥Q ,∠BAD =75°,∠CAD =30°,,75,ECD B BAD DEC \Ð=ÐÐ=Ð=° ∴ ∠ABC +∠ACB =∠ECD +∠ACB =∠ACE =180°﹣75°﹣30°=75°,75,ACE AEC \Ð=Ð=°,AE AC ∴=,CE AB ∥Q BD =2DC ,,ABD ECD ∴ ∽2,AD BD DE DC\== ∴AD =2DE ,而2,AD =1,DE ∴=∴ AE =AD +DE =3,∴AC =AE =3,故答案为:∠ACE =75°,AC 的长为3.过点D 作DF ⊥AC 于点F .90,BAC ∠=︒∴ ∠BAC =90°=∠DFA ,∴AB DF ∥,∴△ABE ∽△FDE ,而2,BE DE =∴2AB AE BE DF EF DE===,而2,AE = ∴EF =1,AB =2DF .在△ACD 中,∠CAD =30°,∠ADC =75°,∴∠ACD =75°,AC =AD .∵DF ⊥AC ,∴∠AFD =90°,在△AFD 中,AF =2+1=3,∠FAD =30°,∴DF =AF tan30°AD =2DF =∴AC =AD =AB =2DF =∴BC =。
北师大版九年级数学运用锐角三角函数测试题 一、选择题1.如图, 一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里2. 如图,为了测量河的宽度,王芳同学在河岸边相距200m 的M 和N 两点分别测定对岸一棵树P 的位置,P 在M 的正北方向,在N 的北偏西30的方向,则河的宽度是( )A.B.3m C.D .100m第1题 第2题 第6题 第8题3. 王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60 o, 又知水平距离BD =10m ,楼高AB =24m ,则树高CD 为( ) A .()31024-mB .⎪⎪⎭⎫⎝⎛-331024m C .()3524-m D .9m4. 某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米B .C D 5. 一架5米长的梯子斜靠在墙上,测得它与地面的夹角是40°,则梯子底端到墙的距离为( )A .5sin 40°B .5cos 40°C .5tan 40°D .5cos 40°6. 如图,小明为了测量其所在位置A 点到河对岸B 点之间的距离,沿着与AB 垂直的方向走了m 米,到达点C ,测得∠ACB =α,那么AB 等于( )(A) m ·sin α米 (B) m ·tan α米 (C) m ·cos α米 (D)αtan m米 7. 小明沿着坡度为2:1的山坡向上走了m 1000,则他升高了( )A .m 5200B .m 500C .m 3500D .m 10008. 如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8m ,则乘电梯从点B 到点C 上升的高度h 是( ) A m B .4 m C .m D .8 mABCmα9. 河堤横断面如图所示,堤高BC=5米,迎水坡AB 的坡比是度BC 与水平宽度AC 之比),则AC 的长是( )A. 米 B . 10米 C .15米 D.10. 如图,为测量一幢大楼的高度,在地面上距离楼底O 点20 m 的点A 处,测得楼顶B点的仰角∠OAB =65°,则这幢大楼的高度为(结果保留3个有效数字)( ) (A )42.8 m (B )42.80 m (C )42.9 m (D )42.90 m二、填空题11. 如图,AB 是伸缩式的遮阳篷,CD 是窗户.要想在夏至的正午时刻阳光刚好不能射入窗户,则AB 的长度是米.(假设夏至的正午时刻阳光与地平面夹角为︒60)12. 将一副三角尺如图所示叠放在一起,若AB =14cm ,则阴影部分的面积是_________cm 2.第14题13. 如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .14. 如图,某河道要建造一座公路桥,要求桥面离地面高度AC 为3米,引桥的坡角∠ABC 为15°,则引桥的水平距离BC 的长是 米(精确到0.1米) .15. 如图,河岸AD 、BC 互相平行,桥AB 垂直于两岸,从C 处看桥的两端A 、B ,夹角∠BCA =60,测得BC =7m ,则桥长AB = m (结果精确到1m )16. 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1). 1.4141.732第11题2第12题AC EBA B第13题CBA DCBA 15题第16题60° 30°第19题SBA北南西东 17. 水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度α(α指缠绕中将部分带子拉成图中所示的平面ABCD 时的∠ABC ,其中AB 为管道侧面母线的一部分).若带子宽度为1,水管直径为2,则α的余弦值为 .第18题 第20题18. 课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的投影BC长为24米,则旗杆AB 的高度约是 米.(结果保留3个有效数字,3≈1.732)19. 如图,一艘船向正北航行,在A 处看到灯塔S 在船的北偏东30°的方向上,航行12海里到达B 点.在B 处看到灯塔S 在船的北偏东60°的方向上.此船继续沿正北方向航行过程中距灯塔S 的最近距离是 海里(不作近似计算).20. 如图,一副三角板拼在一起,O 为AD 的中点,AB = a .将△ABO 沿BO 对折于△A ′BO ,M 为BC 上一动点,则A ′M 的最小值为 .三、应用题21. 某商场为缓解我市“停车难”问题,拟建造地下停车库,下图是该地下停车库坡道入口的设计示意图,其中,AB ⊥BD ,∠BAD =18o ,C 在BD 上,BC =0.5m .根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD 的长就是所限制的高度,而小亮认为应该以CE 的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(结果精确到0.1m)第17题45︒60︒A ′BMAODC22. 水务部门为加强防汛工作,决定对程家山水库大坝进行加固.原大坝的横断面是梯形ABCD ,如图(9)所示,已知迎水面AB 的长为10米,60B ∠=°,背水面DC 的长度为.ABED 若CE 的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米; (2)求新大坝背水面DE 的坡度.(计算结果保留根号........)23. 据交管部门统计,高速公路超速行驶是引发交通事故的主要原因.我县某校数学课外小组的几个同学想尝试用自己所学的知识检测车速,渝黔高速公路某路段的限速是:每小时80千米(即最高时速不超过80千米),如图,他们将观测点设在到公路l 的距离为0.1千米的P 处.这时,一辆轿车由綦江向重庆匀速直线驶来,测得此车从A 处行驶到B 处所用的时间为3秒(注:3秒=12001小时),并测得∠APO =59°,∠BPO =45°. 试计算AB 并判断此车是否超速?(精确到0.001).(参考数据:sin59°≈0.8572,cos59°≈0.5150,tan59°≈1.6643).24. 如图,热气球的探测器显示,从热气球A 看一栋大楼顶部B 的俯角为30°,看这栋大楼底部C 的俯角为60°,热气球A 的高度为240米,求这栋大楼的高度.ABC25. 如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D 、B 、C 在同一水平面上. (1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:141.12=,732.13=,449.26=,以上结果均保留到小数点 后两位.26. 某乡镇中学数学活动小组,为测量教学楼后面的山高AB ,用了如下的方法.如图所示,在教学楼底C 处测得山顶A 的仰角为60︒,在教学楼顶D 处,测得山顶A 的仰角为45︒.已知教学楼高12CD =米,求山高AB .1.73 1.41==,精确到0.1米,化简后再代参考数据运算)一、选择题第1题答案.B第2题答案.A第3题答案.A第4题答案. C第5题答案.B第6题答案.B第7题答案.A第8题答案.B第9题答案.A第10题答案. C二、填空题第11题答案. 3第12题答案. 492第13题答案.tan tan m n αα-⋅第14题答案.11.2第15题答案.12第16题答案.82.0第17题答案.π21第18题答案.13.9第19题答案.第20题答案.a 426- 三、应用题第21题答案.解:在△ABD 中,∠ABD =90 ,∠BAD =18,BA =10∴tan ∠BAD =BABD…………………………………2分 ∴BD =10×tan 18∴CD =BD―BC =10×tan 18―0.5…………………………4分 在△ABD 中,∠CDE =90―∠BAD =72∵CE ⊥ED ∴sin ∠CDE =CDCE…………………………………6分∴CE =sin ∠CDE×CD =sin72 ×(10×tan 18―0.5)≈2.6(m )………9分 答:CE 为2.6m ……………………………………10分第22题答案.解:(1)分别过A D 、作AF BC ⊥、DG BC ⊥,垂足分别为F G 、,如图(1)所示, 在Rt ABF △中,10AB =米,60B ∠=°. ∴sin AFB AB∠=,即sin 6010AF =°,10AF ∴== ………………………………………………… 2分∴DG =分所以11522DCE S CE DG =⨯⨯=⨯⨯=△∴需要填方100=(立方米). ……………………………6分(2)在Rt DGC △中,DC =,所以GC 15==,………………………………7分所以15520.GE GC CE =+=+=∴背水面DE 的坡度i =204DG GE ==………………………………10分答:(1)需要土石方DE 的坡度i =10分第23题答案.解:设该轿车的速度为每小时x 千米∵AB AO BO =-,45BPO ∠= ∴0.1BO PO ==千米 ···································· 2分又tan590.1 1.6643AO OP =⨯=⨯ ············································································ 5分 ∴0.1 1.66430.10.10.66430.06643AB AO BO =-=⨯-=⨯= ····························· 6分 即0.066AB ≈千米 ····································································································· 7分而3秒=12001小时 ∴0.06643120079.716x =⨯≈千米∕时······································································ 9分∵79.716<80 ∴该轿车没有超速. ··········································································· 10分第24题答案.解:过点A 作直线BC 的垂线,垂足为点D .则90CDA ∠=°,60CAD ∠=°,30BAD ∠=°,CD =240米.1分在Rt ACD △中,tan CDCAD AD∠=,tan 60CD AD ∴===°3分在Rt ABD △中,tan BDBAD AD∠=,tan30803BD AD ∴===·°. 5分∴BC CD BD =-=240-80=160.答:这栋大楼的高为160米.6分(注:只要正确求出BC 的值,没答不扣分)第25题答案.解:(1)在Rt △ABC 中,∠ABC=45°∴AC=BC=AB ·sin45°=22224=⨯……………2分 在Rt △ADC 中,∠ADC=30°∴AD=24212230sin =÷=oAC ……………………2分 ∴AD-AB=66.1424≈-∴改善后滑滑板会加长约1.66米. ……………4分(2)这样改造能行,理由如下: ……………………5分 ∵989.462332230tan ≈=÷==oAC CD ……………6分 ∴07.22262≈-=-=BC CD BD …………………7分 ∴6-2.07≈3.93> 3ABCD11/11 ∴这样改造能行. …………………………………8分第26题答案.解:过D 作DE AB ⊥于E ,则DE BC ∥设AB h =米,在Rt ABC △中,60tan 30BC h h =︒=︒·cot (2分) 在Rt AED △中,tan 45tan 45AE DE BC =︒=︒=又12AB AE BE CD -===12h ∴=(2分)18186 1.73h ∴====+=+⨯ 1810.3828.4=+≈(米)(2分) 答:山高AB 是28.4米(1分)。
中考总复习:锐角三角函数综合复习—巩固练习(提高)【巩固练习】一、选择题1. 在△ABC中,∠C=90°,cosA=,则tan A等于( )A.B.C.D.2.在Rt△ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA=.则下列关系式中不成立的是( )A.tanA•cotA=1 B.sinA=tanA•cosA C.cosA=cotA•sinA D.tan2A+cot2A=1第2题第3题3.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于( )A.B.C.D.4.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( )A.B.C.D.5.如图所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-x+,则cosα等于( )A.B.C.D.第5题第6题6.如图所示,在数轴上点A所表示的数x的范围是( )A. B.C. D.;二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为.9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90°时,求的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.已知:正方形ABCD的边长为2,点P是直线CD上一点,若DP=1,则tan∠BPC的值是 .三、解答题13.如图所示,某拦河坝截面的原设计方案为AH∥BC,坡角∠ABC=74°,坝顶到坝脚的距离AB=6m 为了提高拦河坝的安全性,现将坡角改为55°,由此,点A需向右平移至点D,请你计算AD的长.(精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)【答案与解析】一、选择题1.【答案】D;【解析】在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A=.故选D.2.【答案】D;【解析】根据锐角三角函数的定义,得A、tanA•cotA==1,关系式成立;B、sinA=,tanA•cosA=,关系式成立;C、cosA=,cotA•sinA=,关系式成立;D、tan2A+cot2A=()2+()2≠1,关系式不成立.故选D.3.【答案】B;【解析】连接BD.∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC=故选B.4.【答案】C;【解析】设CE=x,则AE=8-x.由折叠性质知AE=BE=8-x.在Rt△CBE中,由勾股定理得BE2=CE2+BC2,即(8-x)2=x2+62,解得,∴tan∠CBE.5.【答案】A;【解析】∵y=-x+,∴当x=0时,y=,当y=0时,x=1,∴A(1,0),B,∴OB=,OA=1,∴AB==,∴cos∠OBA=.∴OP⊥AB,∴∠α+∠OAB=90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=.故选A.6.【答案】D;【解析】由数轴上A点的位置可知,<A<2.A、由sin30°<x<sin60°可知,×<x<,即<x<,故本选项错误;B、由cos30°<x<cos45°可知,<x<×,即<x<,故本选项错误;C、由tan30°<x<tan45°可知,×<x<1,即<x<1,故本选项错误;D、由cot45°<x<cot30°可知,×1<x<,即<x<,故本选项正确.故选D.二、填空题7.【答案】30°;【解析】x1·x2=2sinθ,x1+x2=-3,则(x1-x2)2=(x1+x2)2-4x1x2=9-8sinθ=()2,∴sinθ=,∴θ=30°.8.【答案】;【解析】∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF==.9.【答案】;【解析】连接AO并延长交圆于E,连CE.∴∠ACE=90°(直径所对的圆周角是直角);在直角三角形ACE中,AC=4,AE=6,∴sin∠E=;又∵∠B=∠E(同弧所对的的圆周角相等),∴sinB=.10.【答案】1;【解析】由sin2α+cos2α=1,可得1-sin2α=cos2α∵sin2α+cos2α=1,∴cos2α=1-sin2α.∴.∵0°<α<90°,∴cosα>0.∴原式==1.11.【答案】;【解析】连接EC.根据圆周角定理∠ECO=∠OBE.在Rt△EOC中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.12.【答案】2或;【解析】此题有两种可能:(1)当点P在线段CD上时,∵BC=2,DP=1,CP=1,∠C=90°,∴tan∠BPC==2;(2)当点P在CD延长线上时,∵DP=1,DC=2,∴PC=3,又∵BC=2,∠C=90°,∴tan∠BPC=.故答案为:2或.三、解答题13.【答案与解析】解:如图所示,过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.在Rt△ABE中,,∴AE=ABsin∠ABE=6sin 74°≈5.77(cm);,∴BE=ABcos∠ABE=6cos 74°≈1.65(m).∵AH∥BC,∴DF=AE≈5.77m.在Rt△BDF中,,∴(m).∴AD=EF=BF-BE=4.04-1.65≈2.4(m).14.【答案与解析】解:在Rt△ABD中,∠ABD=90°,∠BAD=18°,∴,BD=tan∠BAD·AB=tan 18°×9,∴CD=tan 18°×9-0.5.在Rt△DCE中,∠DEC=90°,∠CDE=72°,∴,=sin 72°×(tan 18°×9-0.5)≈2.3(m).即该图中CE的长约为2.3m.15.【答案与解析】解:如图所示,由已知可得∠ACB=60°,∠ADB=45°.∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵,∴,即.∵BD=BC+CD,∴.∴CD=AB-AB=180-180×=(180-60)米.答:小岛C、D间的距离为(180-)米.16.【答案与解析】解:(1)BF=CG.证明:在△ABF和△ACG中,∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC,∴△ABF≌△ACG(AAS),∴BF=CG.(2)DE+DF=CG.证明:过点D作DH⊥CG于点H(如图所示).∵DE⊥BA于点E,∠G=90°,DH⊥CG,∴四边形EDHG为矩形,∴DE=HG.DH∥BG.∴∠GBC=∠HDC∴AB=AC.∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS),∴DF=CH.∴GH+CH=DE+DF=CG,即DE+DF=CG.(3)仍然成立.(注:本题还可以利用面积来进行证明,比如(2)中连结AD)。
锐角三角函数综合测试题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.把Rt △ABC 各边的长度都扩大3倍得Rt △A′B′C′,那么锐角A 、A′的余弦值的关系为( )A .cosA=3cosA′ B3cosA=cosA′. C .cosA=cosA′ D .不能确定2.已知α为等边三角形的一个内角,则cos α等于( )A .12BC D3.△ABC 中,,,则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .等边三角形 D .等腰三角形4.(α+20°)=1,则锐角α的度数应是( )A .40°B .30°C .20°D .10°5.如图1,梯子(长度不变)跟地面所成的锐角为∠A ,关于∠A 的三角函数值与梯子的倾斜程度之间,叙述正确的是( )A .sinA 的值越大,梯子越陡B .cosA 的值越大,梯子越陡C .tanA 的值越小,梯子越陡D .陡缓程度与∠A 的函数值无关6.在正方形网格中,∠AOB 如图2放置,则cos ∠AOB 的值为( )A B C .12 D.27.如图3,∠ C=90°,∠ABC=30°,延长CB 至点D ,使AB=BD ,利用此图可求得tan75°等于( )A .B .C D8.如图4,在固定电线杆时,要求拉线AC 与地面成75°角,已知拉线AC 的长为8米,则电线杆上固定点C 距地面( )A .8•sin75°米B .8sin75米C .8•tan75°米D .8tan 75米9.如图5,在一次台球比赛中,某运动员必须推动桌面上位于E 点的白球,撞向桌边上的F 点,反弹后撞中对边G 点的红球,已知AD=350cm ,AF=250cm ,∠AFE=20°,则DG 等于( )A .100sin20°B .100cos20°C .100tan70°D .100tan20°★10.如图6,学校的保管室里,有一架5m 长的梯子斜靠在墙上,此时梯子与地面所成角为45°,如果梯子底端O 固定不动,顶端靠到对面墙上,此时梯子与地面所成的角为60°,则此保管室的宽度AB 为( )A .B .52C .52D .52附备用试题2个 直接给出答案在Rt △ABC 中,∠C=90°,cosA=15,则tanA 等于( )答案:AA .BCD .24 在Rt △ABC 中,∠C=90°,tanA=125,周长为45,CD 是斜边AB 上的高,则CD 的长是( ) A .5613 B .12613 C .7613 D .1712答案:B二、填空题(每小题3分,共24分)11.如图7,将三角板的直角顶点放置在直线AB 上的点O 处,使斜边CD ∥AB ,则∠ 的余弦值为______.12.已知Rt △ABC 的两直角边长分别为3和4,则较小锐角的正切值是______. 13.某人沿坡度为0.75的斜坡前进50m ,则他所在的位置比原来的位置升高______m.14.如图8,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 约为______m (结果精确到0.1m ,).15.如图9,乐乐在学校某建筑物的C点处测得旗杆顶部A点的仰角为30°,旗杆底部B点的俯角为45°.若旗杆底部B点到建筑物的水平距离BE=9米,旗杆台阶高1米,则旗杆顶点A离地面的高度为米(结果保留根号).16.等腰三角形的周长为1,则底角等于______度.17.如图10,机器人从A点沿西南方向行了B点,观察到原点O在它的南偏东60°的方向上,则点A的坐标为______.★18.某市在“旧城改造”中,计划在市内一块如图11所示的三角形空地上种植某种草皮以美化环境,已知这种草皮售价为a元/平方米,则购买这种草皮至少需要______元.附备用试题2个直接给出答案如图,小明从A地沿北偏东30°方向走到B地,再从B地向正南方向走200m到C地,此时小明离A地m.(答案:100)某中学修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的45°改为30°,已知原来设计的楼梯长为4.5m,在楼梯高度不变的情况下,调整后的楼梯多占地面______m.(答案:三、解答题(共66分)19.(6-cos45°20.(7分)如图12,矩形ABCD是供一辆机动车停放的车位示意图.请你参考图中数据,计算车位所占街道的宽度EF.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果精确到0.1m)21.(9分)如图13,四边形ABCD为正方形,E为BC上一点,将正方形折叠,使点A与点E重合,折痕为MN,若tan∠AEN=13,DC+CE=10.(1)求△ANE的面积;(2)求sin∠ENB的值.22.(8分) 一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,如图14所示.这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?23.(8分)如图15,在Rt△ABC中,∠C=90°,BC、AC、AB三边的长分别为a、b、c,则sinA=ac,cosA=bc,tanA=ab.试探求sinA、cosA、tanA之间存在的一般关系,并说明理由.24.(9分) 如图16,由山脚下的一点A测得山顶D的仰角是45°,从A沿倾斜角为30°的山坡前进1500米到B,再次测得山顶D的仰角为60°,求山高CD.25. (9分)如图17,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,看旗杆顶部M的仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,看旗杆顶部M的仰角为30°.两人相距28米且位于旗杆两侧(点B,N,D在同一条直线上).请求出旗杆MN的高度. 1.4 1.7,结果保留整数)★26. (10分) 如图18,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠BPC为30°,窗户的一部分在教室地面所形成的影长PE为3.5米,窗户的高度AF为2.5米.求窗外遮阳蓬外端一点D到窗户上椽的距离AD.(结果精确到0.1米)附备用试题2个 直接给出答案如图,一次函数的图象经过M 点,与x 轴交于A 点,与y 轴交于B 点,根据图中信息求:(1)这个函数的解析式;(2)tan ∠BAO .解:(1)设一次函数的解析式为y=kx+b(k≠0),将点B(0,6),M(-1,4)代入,得604(1)k b k b =+=-+⎧⎨⎩, 解之,得k=2,b=6∴这个函数的解析式为y=2x+6.(2)令y=0,代入y=2x+6,得x= -3∴点A 的坐标(-3,0).∴tan ∠BAO=OB OA =63=2. 某大草原上有一条笔直的公路,在紧靠公路相距40千米的A 、B 两地,分别有甲、乙两个医疗站,如图,在A 地北偏东45°、B 地北偏西60°方向上有一牧民区C .一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I :从A 地开车沿公路到离牧民区C 最近的D 处,再开车穿越草地沿DC 方向到牧民区C .方案II :从A 地开车穿越草地沿AC 方向到牧民区C . 已知汽车在公路上行驶的速度是在草地上行驶速度的3倍.(1)求牧民区到公路的最短距离CD .(2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由.(结果精确到0.1 1.73 1.41)解:(1)设CD 为x 千米,由题意得,∠CBD=30°,∠CAD=45°∴AD=CD=x.在Rt △BCD 中,tan30°=x BD,∴∵AD+DB=AB=40,∴,解得x≈14. 7∴ 牧民区到公路的最短距离CD 为14.7千米.(2)设汽车在草地上行驶的速度为v ,则在公路上行驶的速度为3v ,在Rt △ADC 中,∠CAD=45°,∴方案I 用的时间134333AD CD AD CD CD t v v v v+=+==方案II 用的时间2AC t v ==∴ 2143CD t t v v -=-=4)3CD v∵ 4>0 ,∴ 21t t ->0,∴方案I 用的时间少,方案I 比较合理.供老师选配的题目:1.已知锐角A 满足关系式2sin 2A-7sinA+3=0,则sinA 的值为( )A .12B .3C .12或3D .42.如图1,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,则sin ∠CBD 的值等于( )A .CD 的长B .2CD 的长C .OM 的长D .2OM 的长3.如图2,在高2m ,坡角30°的楼梯表面铺地毯,地毯的长度至少需______m.(精确到0.1m )4.如图3,边长为1的菱形ABCD 中,∠DAB=60°.连结对角线AC ,以AC 为边作第二个菱形ACC 1D 1,使∠D 1AC=60°;连结AC 1,再以AC 1为边作第三个菱形AC 1C 2D 2,使∠D 2AC 1=60°;……,按此规律所作的第n 个菱形的边长为______.5.如图4(1),由直角三角形边角关系,可将三角形面积公式变形,得 ABC S △=12bc·sin ∠A . ① 即三角形的面积等于两边之长与夹角正弦之积的一半.如图4(2),在△ABC 中,CD ⊥AB 于D ,∠ACD=α, ∠DCB=β.∵ ABC ADC BDC S S S =+△△△, 由公式①,得12AC·BC·sin(α+β)= 12AC·CD·sinα+12BC·CD·sinβ, 即 AC·BC·sin(α+β)= AC·CD·sinα+BC·CD·sinβ. ②你能利用直角三角形边角关系,消去②中的AC 、BC 、CD 吗?不能,说明理由;能,写出解决过程.(标★题为拔高题)(参考答案见第××版)锐角三角函数综合测试题参考答案一、选择题1.C2. A3.D4.D5.A6.A7.B 8.A 9.D10.C. 提示:如图1,在Rt △AOC 中,,在Rt △BOC中,BO=OD•cos60°=52,所以AB=AO+BO=52二、填空题11.12 12.3413.30 14.2.3 15. 10+ 16.30 17.(0) 18.150a. 提示:如图2,过点C 作CD ⊥BA 交BA 的延长线于D ,则在Rt △ADC 中,CD=AC•sin30°=15(米),所以△ABC 的面积为12AB•CD=12×20×15=150(米2),故购买这种草皮至少需要150a元.三、解答题19.-cos45°+2=32-1+2=52.20.解:在Rt△∠CDF中,CD=5.4,∠DCF=40°,∴DF=CD•sin40°≈5.4×0.64≈3.46.在Rt△∠ADE中,AD=2.2,∠ADE=∠DCF=40°,∴DE=AD•cos40°≈2.2×0.77≈1.69.∴EF=DF+DE≈5.15≈5.2.即车位所占街道的宽度为5.2m.21.解:(1)由折叠知NA=NE,∴∠AEN=∠EAN,∴tan∠EAB=tan∠AEN=13,∴BEAB=13.设BE=k,则AB=BC=CD=3k,∴CE=BC-BE=2k.∵DC+CE=10,∴3k+2k=10,解得k=2,∴AB=6,BE=2.在Rt△BNE中,∵NE2+BE2=NB2,∴AN2+BE2=NB2,即AN2+22=(6-AN)2,解得AN=83,∴S△ANE=12AN•BE=12×83×2=83.(2)∵NE=AN=83,∴sin∠ENB=BENE=283=34.22.解:如图3,过点C作CE⊥BD,垂足为E,∴CE∥GB∥FA.∴∠BCE=∠GBC=60°,∠ACE=∠FAC=45°.∴∠BCA=∠BCE-∠ACE=60°-45°=15°.又∠BAC=∠FAC-∠FAB=45°-30°=15°,∴∠BCA=∠BAC,∴BC=AB=10.在Rt△BCE中,CE=BC·cos∠BCE=BC·cos60°=10×12=5(海里).∵5海里>4.8海里,∴渔船没有进入养殖场的危险.答:这艘渔船没有进入养殖场的危险.23.解:存在的一般关系有:(1)sin2A+cos2A=1;(2)tanA=sincosAA.证明如下:(1)∵ sinA=ac, cosA=bc, a2+b2=c2,∴ sin2A+cos2A=222222222a b a b cc c c c++===1.(2)∵ sinA=ac, cosA=bc,∴ tanA=ab=acbc=sincosAA.24.解:如图4,过点B作CD、AC的垂线,垂足分别为E、F.∵∠BAC=30°,AB=1500米,∴BF=EC=750米,.设FC=x米∵∠DBE=60°,∴米.又∵∠DAC=45°,∴AC=CD.即,解得x=750.∴CD=(.答:山高CD为(.25. 解:如图5,过点A 作AE ⊥MN 于E ,过点C 作CF ⊥MN 于F , 则EF=AB-CD=1.7-1.5=0.2.在Rt △AEM 中,∠AEM=90°,∠MAE=45°∴AE=ME ,设AE=x ,则MF=x+0.2.在Rt △MFC 中,∠MFC=90°,∠MCF=30°,∴∵BN+ND=BD ,∴,解得x≈10.2.∴MN≈12答:旗杆高约为12米.26.解:如图6,过E 作EG ∥AC 交BP 于G ,∵EF ∥DP ,∴四边形BFEG 是平行四边形.在Rt △PEG 中,PE=3.5,∠P=30°,tan ∠EPG=EG EP , ∴EG=EP•tan ∠EPG=3.5×tan30°≈2.02.又∵四边形BFEG 是平行四边形,∴BF=EG=2.02,∴AB=AF-BF=2.5-2.02=0.48.又∵AD ∥PE ,∴∠BDA=∠P=30°.在Rt △BAD 中,tan30°=AB AD , ∴AD=tan30AB =0.48×(米). ∴所求的距离AD 约为0.8米.供老师选配的题目:1.A2.C3.5.54.1n5. 解:能消去AC 、BC 、CD ,得到si n(α+β)= sinα·cosβ+cosα·sinβ.理由如下:在AC·BC·sin(α+β)= AC·CD·sinα+BC·CD·sinβ两边同除以AC·BC,得sin(α+β)= CDBC·sinα+CDAC·sinβ.∵CDBC=cosβ,CDAC=cosα,∴ sin(α+β)= sinα·cosβ+cosα·sinβ.。
2019 初三数学中考复习锐角三角函数和解直角三角形专题综合训练题1. 在 Rt△ABC 中,∠ C=90°,AB =5,BC=3,则 tanA 的值是 ( A )3434A. 4B.3C.5D.52.在正方形网格中,△ABC 的地点以以下图,则 cosB 的值为 ( B )A.1B.2C.3D.3 22233.如图,在网格中,小正方形的边长均为 1,点 A,B,C 都在格点上,则∠ABC 的正切值是 ( D )2551A.2B.5 C. 5 D.24.以以下图,一个斜坡长 130 m,坡顶离水平川面的距离为50 m,那么这个斜坡与水平川面夹角的正切值等于( C )1312513A. 15B.13C.12D.1245.在 Rt△ABC 中,∠ C=90°, sinA=5,AC=6 cm,则 BC 的长度为 ( C )A .6 cm B. 7 cm C.8 cm D.9 cm6.如图,一艘海轮位于灯塔P 的南偏东 45°方向,距离灯塔 60 n mile 的 A 处,它沿正北方向航行一段时间后,抵达位于灯塔P 的北偏东 30°方向上的 B 处,这时, B 处与灯塔 P 的距离为 ( B )A .60 3 n mile B.60 2 n mileC.30 3 n mile D.30 2 n mile7.如图,小明为了丈量一凉亭的高度AB( 顶端 A 到水平川面 BD 的距离 ),在凉亭的旁边搁置一个与凉亭台阶BC 等高的台阶 DE(DE=BC= 0.5 米, A,B,C 三点共线 ),把一面镜子水平搁置在平台上的点G 处,测得 CG=15 米,此后沿直线 CG 退后到点 E 处,这时恰幸亏镜子里看到凉亭的顶端A,测得 EG=3 米,小明身高 1.6 米,求凉亭的高度AB 约为 ( A )A .8.5 米B.9 米C.9.5 米D.10 米8.如图,小王在长江边某眺望台 D 处,测得江面上的渔船 A 的俯角为 40°,若 DE=3 米, CE=2 米, CE 平行于江面 AB ,迎水坡 BC 的坡度 i=1∶0.75,坡长 BC=10 米,则此时 AB 的长约为 ( A)(参照数据:sin40°≈ 0.64,cos40°≈0.77,tan40°≈ 0.84)A .5.1 米B.6.3 米C.7.1 米D.9.2 米159. 如图, Rt△ABC 中,∠ C=90°, BC=15,tanA=8,则 AB =__17__.1(tanβ-1)2=0,则α+β=__75°10.已知α,β均为锐角,且知足 |sinα-|+2__.11.如图,在半径为 3 的⊙O 中,直径 AB 与弦 CD 订交于点 E,连接 AC,BD ,若 AC=2,则 tanD= __2 2__.12.以以下图,运载火箭从地面 L 处垂直向上发射,当火箭抵达 A 点时,从位于地面 R 处的雷达测得 AR 的距离是 40 km,仰角是 30°,n 秒后,火箭抵达 B 点,此时仰角是 45°,则火箭在这 n 秒中上涨的高度是 __(20 3-20)__km.13.如图,轮船从 B 处以每小时 60 海里的速度向沿南偏东 20°方向匀速航行,在B 处观察灯塔 A 位于南偏东 50°方向上,轮船航行 40 分钟抵达C 处,在 C40 3处观察灯塔 A 位于北偏东 10°方向上,则 C 处与灯塔 A 的距离是 __3__海里.14.如图是耸立在高速公路边水平川面上的交通警告牌,经丈量获得以下数据:AM =4 米, AB =8 米,∠ MAD =45°,∠ MBC =30°,则警告牌的高CD 为__2.9__米. (结果精准到 0.1 米,参照数据:2≈1.41, 3≈1.73)15.如图,海中有一小岛A,它四周 8 海里内有暗礁,渔船追踪鱼群由西向东航行,在 B 点测得小岛 A 在北偏东 60°方向上,航行12 海里抵达 D 点,这时测得小岛 A 在北偏东 30°方向上.假如渔船不改变航线连续向东航行,有没有触礁的危险?解:如图,过 A 作 AC⊥BD 于点 C,则 AC 的长是 A 到 BD 的最短距离,∵∠CAD =30°,∠ CAB =60°,∴∠ BAD =60°- 30°= 30°,∠ ABD =90°-60°=30°,∴∠ ABD =∠BAD ,∴ BD =AD =12 海里.∵∠ CAD =30°,∠ACD =90°,∴CD=21AD =6 海里,由勾股定理得 AC=122-62= 6 3≈ 10.923>8,即渔船连续向正东方向行驶,没有触礁的危险.16.我国踊跃组织抢险队赴地震灾区参加抢险工作,如图,某探测队在地面 A ,B 两处均探测出建筑物下方 C 处有生命迹象.已知探测线与地面的夹角分别是25°和 60°,且 AB =4 米,求该生命迹象所在的地点 C 的深度 (结果精准到1米,参照数据: sin25°≈ 0.4,cos25°≈ 0.9,tan25°≈ 0.5,3≈ 1.7).解:过点 C 作 CD⊥AB ,交 AB 延伸线于 D.设 CD 长为 x 米,在 Rt△ACD 中,AD =CD= 2x 米.tan25°CD3在 Rt△BCD 中, BD=tan60°=3 x 米.3度为 3米.17.如图,某校讲课楼AB 后方有一斜坡,已知斜坡CD 的长为 12 米,坡角α为 60°,依据相关部门的规定,∠α≤ 39°时,才能防范滑坡危险,学校为了除去安全隐患,决定对斜坡 CD 进行改造,在保持坡脚 C 不动的状况下,学校最少要把坡顶D 向后水平挪动多少米才能保证讲课楼的安全? (结果取整数 )(参照数据:sin39°≈0.63,cos39°≈ 0.78,tan39°≈ 0.81, 2≈ 1.41, 3≈ 1.73, 5≈2.24)解:假定点 D 移到 D′的地点时,恰巧∠α=39°,过点 D 作 DE⊥AC 于点 E,过点D′作 D′ E⊥′AC 于点 E′∵.CD=12 米,∠ DCE=60°,∴ DE=CD·sin60°=12×3=613(米),CE=CD·cos60°= 12×= 6(米).∵DE⊥AC , D′E′⊥22AC ,DD ′∥ CE′,∴四边形 DEE′ D是′矩形,∴ DE=D′ E=′6 3米.∵∠ D′CE′=39°,∴CE′=D′E′ 6 3tan39°≈0.81≈ 12.8(米),∴ EE′= CE′- CE= 12.8-6=6.8 ≈米7( ).答:学校最少要把坡顶 D 向后水平挪动 7 米才能保证讲课楼的安全.。
2023年中考九年级数学高频考点专题训练--锐角三角函数一、综合题1.如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交∠O于E,D为BE延长线上一点,且∠DAE=∠FAE.(1)求证:AD为∠O切线;(2)若sin∠BAC=35,求tan∠AFO的值.2.如图,一个正方体木箱沿斜面下滑,正方体木箱的边长BE为2m,斜面AB的坡角为∠BAC,且tan∠BAC= 3 4.(1)当木箱滑到如图所示的位置时,AB=3m,求此时点B离开地面AC的距离;(2)当点E离开地面AC的距离是3.1m时,求AB的长.3.如图,在∠ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).(1)当AE=8时,求EF的长;(2)设AE=x,矩形EFPQ的面积为y.①求y与x的函数关系式;②当x为何值时,y有最大值,最大值是多少?(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与∠ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.4.如图,以∠ABC的一边AB为直径的半圆O与边AC,BC的交点分别为点E,点D,且D是BE⌢的中点.(1)若∠A=80°,求∠DBE的度数.(2)求证:AB=AC.(3)若∠O 的半径为5cm,BC=12cm,求线段BE的长.5.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)如果点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,连接BC,BE,求tan∠CBE的值;(3)点M是抛物线对称轴上一点,且∠DAM和∠BCE相似,求点M坐标.6.如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC∠OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD∠OF于点D.(1)当AC的长度为多少时,∠AMC和∠BOD相似;(2)当点M恰好是线段AB中点时,试判断∠AOB的形状,并说明理由;(3)连结BC.当S∠AMC=S∠BOC时,求AC的长.7.如图1,在∠ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A 重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F,D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;,其他条件不(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD= √6+√22变,求线段AM的长.8.(1)【基础巩固】如图1,在∠ABC中,D,E,F分别为AB,AC,BC上的点,DE∠BC,BF=CF,AF交DE于点G,求证:DG= EG.(2)【尝试应用】如图2,在(1)的条件下,连结CD,CG.若CG∠DE,CD=6,AE=3,求DEBC的值.(3)【拓展提高】如图3,在∠ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∠BD交AD于点G,EF∠EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.9.在锐角∠ABC中,AB=4,BC=5,∠ACB=45°,将∠ABC绕点B按逆时针方向旋转,得到∠DBE.(1)当旋转成如图①,点E在线段CA的延长线上时,则∠CED的度数是度;(2)当旋转成如图②,连接AD、CE,若∠ABD的面积为4,求∠CBE的面积;(3)点M为线段AB的中点,点P是线段AC上一动点,在∠ABC绕点B按逆时针方向旋转过程中,点P的对应点P′,连接MP′,如图③,直接写出线段MP′长度的最大值和最小值.10.如图,在矩形ABCD中,AB=8,BC=6,点E,F分别从点B,D同时出发沿AB延长线和射线DA以相同的速度运动,连结EF,交射线DB于点G.连结CG.(1)当BE=2时,求BD,EG的长.(2)当点F在线段AD上时,记∠DCG为∠1,∠AFE为∠2,那么tan∠1tan∠2的值是否会变化?若不变,求出该比值;若变化,请说明理由.(3)在整个运动过程中,当∠DCG为等腰三角形时,求BE长.11.我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=75°,∠D=85°,则∠C =.(2)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=4,AD=3.求对角线AC的长.(3)已知:如图2,在平面直角坐标系xOy中,四边形ABCD是“等对角四边形”,其中A(﹣2,0)、C(2,0)、B(﹣1,﹣√3),点D在y轴上,抛物线y=ax2+bx+c(a<0)过点A、D,且当﹣2≤x≤2时,函数y=ax2+bx+c取最大值为3,求二次项系数a的值.12.如图,已知BC为∠O的直径,点D为CE⌢的中点,过点D作DG∠CE,交BC的延长线于点A,连接BD,交CE于点F.(1)求证:AD是∠O的切线;(2)若EF=3,CF=5,tan∠GDB=2,求AC的长.13.已知:如图,AB为∠O的直径,C是BA延长线上一点,CP切∠O于P,弦PD∠AB于E,过点B作BQ∠CP于Q,交∠O于H,(1)如图1,求证:PQ=PE;(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3√3,求∠C的度数;(3)如图3,在(2)的条件下,PD=6 √3,连接QC交BC于点M,求QM的长.14.定义:一边上的中线与另一边的夹角为30°的三角形称作美妙三角形。
九年级数学锐角三角函数的专项培优练习题含答案一、锐角三角函数1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.3.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.(1)求证:△MED∽△BCA;(2)求证:△AMD≌△CMD;(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=175S1时,求cos∠ABC的值.【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .【解析】【分析】(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;(3)易证MD=2AB ,由(1)可知:△MED ∽△BCA ,所以2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V ,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,由于1EBDS ME S EB =V ,从而可知52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=72,最后根据锐角三角函数的定义即可求出答案. 【详解】(1)∵MD ∥BC , ∴∠DME=∠CBA , ∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC ,∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,MD MD AMD CMD AM CM =⎧⎪∠=∠⎨⎪=⎩, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,由(1)可知:△MED ∽△BCA , ∴2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V ,∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =12S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,∵1EBDS MES EB=V ,∴1125S MEEB S =,∴52ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,∵12MD ME AB BC ==, ∴BC=10x ,∴cos ∠ABC=105147BC x AB x ==. 【点睛】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.4.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =,∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.5.如图以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点F.(1)求证:DF ⊥AC ;(2)若∠ABC=30°,求tan ∠BCO 的值. 【答案】(1)证明见解析; (2) tan ∠3 【解析】试题分析:(1)连接OD ,根据三角形的中位线定理可求出OD ∥AC ,根据切线的性质可证明DE ⊥OD ,进而得证.(2)过O 作OF ⊥BD ,根据等腰三角形的性质及三角函数的定义用OB 表示出OF 、CF 的长,根据三角函数的定义求解. 试题解析:证明:连接OD∵DE为⊙O的切线, ∴OD⊥DE ∵O为AB中点, D为BC的中点∴OD‖AC∴DE⊥AC(2)过O作OF⊥BD,则BF=FD在Rt△BFO中,∠ABC=30°∴OF=12OB, BF=3OB∵BD=DC, BF=FD,∴FC=3BF=33OB在Rt△OFC中,tan∠BCO=13233OBOFFCOB==.点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识点,有一定的综合性,根据已知得出OF=12OB,BF=3OB,FC=3BF=33OB是解题关键.6.如图,MN为一电视塔,AB是坡角为30°的小山坡(电视塔的底部N与山坡的坡脚A在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A处测得塔顶M的仰角为45°;沿着山坡向上行走40m到达C处,此时测得塔顶M的仰角为30°,请求出电视塔MN的高度.(参考数据:2≈1.41,3≈1.73,结果保留整数)【答案】95m【解析】【分析】过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,求AE=3m,在RT△MFC中,设MN=x m,则AN=xm.FC3xm,可得x+33 ( x-20),解方程可得答案..【详解】解:过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,AC=40m,∠CAE=30°∴CE=FN=20m,AE=3设MN=x m,则AN=xm.FC=3xm,在RT△MFC中MF=MN-FN=MN-CE=x-20FC=NE=NA+AE=x+203∵∠MCF=30°∴FC=3MF,即x+203=3 ( x-20)解得:x=403 31=60+203≈95m答:电视塔MN的高度约为95m.【点睛】本题考核知识点:解直角三角形.解题关键点:熟记解直角三角形相关知识,包括含特殊角的直角三角形性质.7.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)452;(2)详见解析;(3)使得△AA′B′成为等腰三角形的x的值有:0秒、32 秒、95- . 【解析】 【分析】(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′='''''=A B CEA D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可. 【详解】解:(1)∵AB =6cm ,AD =8cm , ∴BD =10cm ,根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm , ∵tan ∠B ′D ′A ′='''''=A B CE A D CD ∴682=CE ∴CE =32cm ,∴S ABCE =S ABD ′﹣S CED ′=8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =32x 2+3x +32, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43(8﹣2x ) ∴()214y 8223x =⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒;②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AN 2+A ′N 2=36, ∴(6﹣245)2+(2x +185)2=36,解得:x=6695-,x=6695--(舍去);③如图2,当AB′=AA′时,A′N=BM=BB′+B′M=2x+185,A′M=NB=245,∵AB2+BB′2=AN2+A′N2∴36+4x2=(6﹣245)2+(2x+185)2解得:x=32.综上所述,使得△AA′B′成为等腰三角形的x的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.8.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF⊥;(2)求证:DH DF=:(3)过点H作HM EF⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。
1. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,
10BC =,AB=8,则tan EFC ∠的值为 ( )
A.
34 B.43
C.
3
5
D.
45
A D E
C
B F
2. 如图5,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 1A 处,已知
3OA =,1AB =,则点1A 的坐标是( )
3. 如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,
D 为AC 上一点,若1
tan 5
DBA ∠= ,则AD 的长为( )
A .2
B .2
C .1
D .22
4. 如图8,Rt ABC ∆中,90C ∠=︒,D 是直角边AC 上的点,且2AD DB a ==,
15A ∠=︒ ,则BC 边的长为 .
5. 如图10,在矩形ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,
若4
tan 3
AEH ∠=
,四边形EFGH 的周长为40,则矩形ABCD 的面积为 ______.
6. 如图12所示,ABC ∆中,AB AC =,BD AC ⊥于D ,6BC =,1
2
DC AD =, 则cos C =____.
7. 等腰三角形腰上的高等于底上的高的一半,则底角的余弦值为______. 8. 等腰三角形的三边的长分别为1、1、3,那么它的底角为
A.15°
B.30°
C.45°
D.60°
图6
图10
图12
图5
9. ABC 中,∠A =60°,AB =6 cm ,AC =4 cm ,则△ABC 的面积是
A.23 cm 2
B.43 cm 2
C.63 cm 2
D.12 cm 2
10. 在菱形ABCD 中,60ABC ∠=︒,AC=4,则BD 的长是 ( ) 83A 、 43B、 23C、 8D、
11,如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30︒方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60︒方向.当轮船到达灯塔
C 的正东方向的
D 处时,求此时轮船与灯塔C 的距离.
(结果保留根号)
12 已知,如图,海岛A 四周20海里范围内是暗礁区.一艘货轮由东向西航行,在B 处测得
岛A 在北偏西︒60,航行24海里后到C 处,测得岛A 在北偏西︒30.请通过计算说明,货轮继续向西航行,有无触礁危险?
13如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD =
3
3
16求 ∠B 的度数及边BC 、AB 的长.
D
A
B
C
图6
A 306000
C
D
B
A
北
60°
30°
14, 在一次数学活动课上,海桂学校初三数学老师带领学生去测万泉河河宽,如图13所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31︒的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45︒的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度. (参考数值:tan31°≈53,sin31°≈2
1) .
15, 在一次公路改造的工作中,工程计划由A 点出发沿正西方向进行,在A 点的南偏西60︒ 方向上有一所学校B ,如图14 ,占地是以 B 为中心方圆100m 的圆形,当工程进行了200m 后到达C 处,此时B 在C 南偏西30︒的方向上,请根据题中所提供的信息计算并分析一下,工程若继续进行下去是否会穿越学校.
16, 如图,已知一次函数b kx y +=的图象经过)1,2(--A ,)3,1(B 两点,并且交x 轴于点C ,交y 轴于点D ,
(1)求该一次函数的解析式; (2)求OCD ∠tan 的值; (3)求证:︒=∠135AOB .
O
y
x
B
A
11
图13
图14
17, 如图8,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点均在格点上, 请按要求完成下列各题: (1) 用签字笔...画AD BC ∥(D 为格点),连接CD ; (2) 线段CD 的长为 ;
(3)
请你在ACD ∆的三个内角中任选一个锐角..
,若你所选的锐角是 ,则它所对应的正弦函数值是 .
(4) 若E 为BC 中点,则tan CAE ∠的值是 .
j C
E
A
B
18, 当060α<<°°时,下列关系式中有且仅有一个正确.
A .(
)2sin 30sin αα+︒=B .(
)2sin 302sin αα+︒=+C .(
)2sin 30cos ααα+︒=+ ⑴ 正确的选项是 ;
⑵ 如图1,ABC △中,1AC =,30B ∠=︒,A α∠=,请利用此图证明⑴中的结论; ⑶ 两块分别含45︒和30︒的直角三角板如图2
方式放置在同一平面内,BD =ADC S △.
图1
α
30°C A
图2
D
C
B
A
19, 已知:抛物线()21y x m x m =-++与x 轴交于点()10A x ,、()20B x ,(A 在B 的左侧),
与y 轴交
于点C .
⑴ 若1m >,ABC △的面积为6,求抛物线的解析式;
⑵ 点D 在x 轴下方,是(1)中的抛物线上的一个动点,且在该抛物线对称轴的左侧,作DE x ∥轴与抛物线交于另一点E ,作DF x ⊥轴于F ,作EG x ⊥轴于点G ,求矩形DEGF 周长的最大值;
⑶ 若0m <,以AB 为一边在x 轴上方做菱形ABMN (NAB ∠为锐角),P 是AB 边的中点,Q 是对角线AM 上一点,若4
cos 5
NAB ∠=,6QB PQ +=,当菱形ABMN 的面积最大时,求点A 的坐标.
20, 在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为()
80
-,和()
06
,.将矩形OABC绕点O顺时针旋转α度,得到四边形OA B C
''',使得边'A'B与y轴交于点D,此时边OA'、B C''分别与BC边所在的直线相交于点P、Q.
⑴如图1,当点D与点B'重合时,求点D的坐标;
⑵在⑴的条件下,求PQ
OD
的值;
⑶如图2,若点D与点B'不重合,则PQ
OD
的值是否发生变化?若不变,试证明你的结
论;若有变
化,请说明理由.。