传感器的分类及定义
- 格式:pptx
- 大小:96.62 KB
- 文档页数:45
传感器的基本知识导语:传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。
传感器的基本知识一、传感器的定义国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
二、传感器的分类目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器;2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器;3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和”0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。
三、传感器的静态特性传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。
因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。
表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。
四、传感器的动态特性所谓动态特性,是指传感器在输入变化时,它的输出的特性。
在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。
这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。
*常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。
五、传感器的线性度通常情况下,传感器的实际静态特性输出是条曲线而非直线。
传感器的分类_传感器的原理与分类_传感器的定义和分类传感器的分类方法很多.主要有如下几种:(1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。
这种分类有利于选择传感器、应用传感器(2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。
这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。
(3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。
这种分类法可分出很多种类。
(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。
其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。
传感器数字化是今后的发展趋势。
(5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。
若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。
(6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。
主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。
微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。
主要功能常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉声敏传感器——听觉气敏传感器——嗅觉化学传感器——味觉压敏、温敏、传感器(图1)流体传感器——触觉敏感元件的分类:物理类,基于力、热、光、电、磁和声等物理效应。
化学类,基于化学反应的原理。
生物类,基于酶、抗体、和激素等分子识别功能。
通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。
第一章传感器概述1.1 传感器的组成与分类1.1.1 传感器的定义✧传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
通常由敏感元件和转换元件组成。
敏感元件指传感器中能直接感受被测量的部分,转换元件指传感器中能将敏感元件输出转换为适于传输和测量的电信号部分。
✧传感器输出信号有很多形式,如电压、电流、频率、脉冲等,输出信号的形式由传感器的原理确定。
1.1.2 传感器的组成✧一般讲传感器由敏感元件和转换元件组成。
但由于传感器输出信号一般都很微弱,需要有信号调节与转换电路将其放大或转换为容易传输、处理、记录和显示的形式。
因此调节信号与转换电路及所需电源都应作为传感器组成的一部分。
如图1-1所示。
传感器组成方块图✧常见的调节信号与转换电路有放大器、电桥、振荡器、电荷放大器等,他们分别与相应的传感器相配合。
1.1.3 传感器的分类✧表1-1 按输入量分类、按工作原理分类、按物理现象分类、按能量关系分类和按输出信号分类。
1.2 传感器在科技发展中的重要性1.2.1 传感器的作用与地位将计算机比喻人的大脑,传感器比喻为人的感觉器官。
功能正常完美的感觉器官,迅速准确地采集与转换获得的外界信息,使大脑发挥应有的作用。
自动化程度越高,对传感器的依赖性就越大。
1.2.2 传感器技术是信息技术的基础与支柱现代信息技术的基础是信息采集、信息传输与信息处理,它们就是传感器技术、通信技术和计算机技术。
传感器在信息采集系统中处于前端,它的性能将影响整个系统的工作状态和质量。
1.2.3 科学技术的发展与传感器有密切关系传感器的重要性还体现在已经广泛应用于各个学科领域。
如工业自动化、农业现代化、军事工程、航天技术、机器人技术、资源探测、海洋开发、环境监测、安全保卫、医疗诊断、家用电器等领域。
1.3 传感器技术的发展动向✧传感器技术共性是利用物理定律和物质的物理、化学和生物特性,将非电量转换成电量。
✧传感器技术的主要发展方向一是开展基础研究,发现新现象,开发传感器的新材料和新工艺;二是实现传感器的集成化与智能化。
传感器的分类_传感器的原理与分类_传感器的定义和分类传感器的分类方法很多.主要有如下几种:(1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。
这种分类有利于选择传感器、应用传感器(2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。
这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。
(3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。
这种分类法可分出很多种类。
(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。
其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。
传感器数字化是今后的发展趋势。
(5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。
若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。
(6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。
主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。
微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。
主要功能常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉声敏传感器——听觉气敏传感器——嗅觉化学传感器——味觉压敏、温敏、传感器(图1)流体传感器——触觉敏感元件的分类:物理类,基于力、热、光、电、磁和声等物理效应。
化学类,基于化学反应的原理。
生物类,基于酶、抗体、和激素等分子识别功能。
通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。
第三章常用的传感器§3.1传感器的分类一、传感器的定义通俗的讲,传感器就是将被测信息转换成某种信号的器件。
也就是将被测物理量转换成于之相对应的、容易检测、传输或处理的信号的装置,称之为传感器。
传感器通常直接作用于被测量。
传感器是对信号进行感受与传送的装置,它是测试装置的输入环节,因此传感器的性能直接影响着整个测试装置的工作可靠性。
近来,随着测量、控制及信息技术的发展,传感器作为这个领域内的一个重要构成因素,被视为90年代的重要技术之一受到了普遍的重视。
深入研究传感器的原理和应用,研制新型传感器,对于社会生产、科学技术和日常生活中的自动测量和自动控制的发展,以及在科学技术领域里实现现代化都有重要意义。
二、传感器的组成传感器一般由敏感元件、传感元件和测量电路三个主要部分组成,有时还加上辅助电源。
通常可用图表示如下:图4-1 传感器的组成由于其用途的不同或是结构原理的不同,其繁简程度相差很大。
因此,传感器的组成将依不同情况而有差异。
敏感元件——传感器的核心,它直接感受被测量(一般为非电量)并转换成信号形成,即输出与被测量成确定关系的其它量的元件,如膜片、热电偶,波纹管等。
传感元件——又称变换器,是传感器的重要组成部分。
传感元件可以直接感受被测量(一般为非电量)而输出与被测量成确定关系的电量。
如热电偶和热敏电阻等。
传感元件也可以不只感受被测量,而只是感受与被测两或确定关系的其它非电量;如应变式压力传感器的电阻片,并不直接感受压力,只是感受与被测压力成确定关系的应变,然后输出电量,在多数情况下,使用的就是这种传感元件。
测量电路——能把传感元件输出的电信号转换为便于显示、记录、控制和处理的有用电信号的电路。
测量电路视传感元件的类型而定。
三、传感器的分类在生产和科研中应用的传感器种类很多,一种被测量有时可以用集中传感器来测量,用一种传感器往往可以测量多种物理量。
为了对传感器有一个概括的认识,对传感器进行研究是很必要的。
传感器种类大全传感器是一种能够感知和检测某种特定物理量并将其转化为可识别信号的装置。
根据其感知的物理量不同,传感器可以分为多种不同类型。
下面我们将介绍一些常见的传感器种类,以便大家对传感器有更深入的了解。
1. 光学传感器。
光学传感器是一种利用光学原理来检测物体位置、颜色、亮度等特征的传感器。
常见的光学传感器包括光电开关、光电传感器、光电编码器等。
光学传感器在工业自动化、电子产品、医疗设备等领域有着广泛的应用。
2. 声学传感器。
声学传感器是一种利用声波进行检测和测量的传感器。
例如,超声波传感器可以用来测距、探测障碍物等,应用于汽车倒车雷达、物体测距等领域。
声学传感器在环境监测、医学影像、通信等领域也有着重要的应用。
3. 温度传感器。
温度传感器是一种用来测量温度的传感器。
常见的温度传感器包括热电偶、热敏电阻、红外线温度传感器等。
温度传感器在工业生产、家用电器、医疗设备等领域都有着广泛的应用。
4. 湿度传感器。
湿度传感器是一种用来测量空气湿度的传感器。
它可以帮助人们了解周围环境的湿度情况,从而采取相应的措施。
湿度传感器在气象观测、农业生产、仓储管理等领域都有着重要的应用。
5. 气体传感器。
气体传感器是一种用来检测和测量气体浓度的传感器。
例如,二氧化碳传感器可以用来监测室内空气质量,可燃气体传感器可以用来检测可燃气体泄漏等。
气体传感器在环境监测、工业安全、家用安全等领域都有着广泛的应用。
6. 压力传感器。
压力传感器是一种用来测量压力的传感器。
它可以将受力物体的压力转化为电信号输出,常用于工业自动化、汽车制造、航空航天等领域。
7. 加速度传感器。
加速度传感器是一种用来测量物体加速度的传感器。
它可以帮助人们了解物体的运动状态,常用于智能手机、运动追踪、车辆安全等领域。
8. 位移传感器。
位移传感器是一种用来测量物体位移的传感器。
它可以帮助人们了解物体的位置变化,常用于机械加工、机器人控制、航空航天等领域。
以上就是一些常见的传感器种类,每种传感器都有着特定的应用领域和工作原理。
传感器的基本原理及其应用一、传感器的定义和分类1.1 传感器的定义传感器是一种能够将感知到的物理量转变为可测量或可使用的电信号的装置。
传感器可以用于测量温度、湿度、压力、光照强度、位移等各种物理量。
1.2 传感器的分类根据测量的物理量不同,传感器可以分为以下几类:•温度传感器•湿度传感器•压力传感器•光照传感器•位移传感器二、传感器的基本原理2.1 温度传感器的原理温度传感器是用于测量物体的温度的传感器。
常见的温度传感器有热电偶和热敏电阻。
热电偶是利用热电效应测量温度的,热敏电阻则是通过电阻值的变化来测量温度的。
2.2 湿度传感器的原理湿度传感器是用于测量物体的湿度的传感器。
常见的湿度传感器有湿度电容式传感器和湿敏电阻传感器。
湿度电容式传感器通过测量电容的变化来测量湿度,湿敏电阻传感器则是通过电阻值的变化来测量湿度的。
2.3 压力传感器的原理压力传感器是用于测量物体的压力的传感器。
常见的压力传感器有压阻式传感器和压电式传感器。
压阻式传感器是通过电阻值的变化来测量压力的,压电式传感器则是利用压电效应来测量压力的。
2.4 光照传感器的原理光照传感器是用于测量光照强度的传感器。
常见的光照传感器有光敏电阻和光电二极管传感器。
光敏电阻是通过电阻值的变化来测量光照强度的,光电二极管传感器则是利用光电效应来测量光照强度的。
2.5 位移传感器的原理位移传感器是用于测量物体的位移或位置的传感器。
常见的位移传感器有电感式位移传感器和光电式位移传感器。
电感式位移传感器是通过感应电磁场的变化来测量位移的,光电式位移传感器则是利用光电效应来测量位移的。
三、传感器的应用3.1 温度传感器的应用•家用电器中的恒温控制•工业生产过程中的温度监测和控制3.2 湿度传感器的应用•温室内的湿度检测和控制•空调设备中的湿度调节3.3 压力传感器的应用•工业生产中的压力监测和控制•汽车维修中对轮胎气压的检测3.4 光照传感器的应用•照明系统中的光照调节•环境监测中的光照强度检测3.5 位移传感器的应用•机械加工中的位置测量•自动化生产线中的物体定位和跟踪以上只是传感器应用的一部分,实际上,传感器在各个领域都有广泛的应用,如医疗设备、航空航天、能源管理等。
传感器得分类_传感器得原理与分类_传感器得定义与分类传感器得分类方法很多.主要有如下几种:(1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等.这种分类有利于选择传感器、应用传感器(2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。
这种分类有利于研究、设计传感器,有利于对传感器得工作原理进行阐述。
(3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。
这种分类法可分出很多种类。
(4)按照传感器输出量得性质分为摸拟传感器、数字传感器.其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等.传感器数字化就是今后得发展趋势。
(5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用与家电用传感器等。
若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。
(6)根据使用目得得不同,又可分为计测用、监视用,位查用、诊断用,控制用与分析用传感器等.主要特点传感器得特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业得改造与更新换代,而且还可能建立新型工业,从而成为21世纪新得经济增长点。
微型化就是建立在微电子机械系统(MEMS)技术基础上得,已成功应用在硅器件上做成硅压力传感器。
主要功能常将传感器得功能与人类5大感觉器官相比拟:光敏传感器—-视觉声敏传感器——听觉ﻫ气敏传感器-—嗅觉ﻫ化学传感器——味觉ﻫ压敏、温敏、传感器(图1)流体传感器——触觉ﻫ敏感元件得分类:ﻫ物理类,基于力、热、光、电、磁与声等物理效应。
ﻫ化学类,基于化学反应得原理。
生物类,基于酶、抗体、与激素等分子识别功能。
通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件与味敏元件等十大类(还有人曾将敏感元件分46类)。
传感器知识点一、什么是传感器?传感器是一种可以将环境中的物理量或化学量转换为电信号的装置。
它通过感受、测量和探测环境中的各种物理量,如温度、湿度、压力、流量等,并将其转化为可供电子设备处理的电信号。
二、传感器的分类1. 根据测量的物理量分类:- 温度传感器:用于测量环境或物体的温度。
- 压力传感器:用于测量气体或液体的压力。
- 湿度传感器:用于测量空气中的湿度水分含量。
- 光照传感器:用于检测环境中的光照强度。
- 加速度传感器:用于测量物体的加速度。
- 位置传感器:用于测量物体在空间中的位置。
2. 根据测量原理分类:- 电阻型传感器:利用物体电阻值与物理量之间的关系进行测量。
- 电容型传感器:利用物体电容值与物理量之间的关系进行测量。
- 压阻型传感器:利用物体阻值与物理量之间的关系进行测量。
- 磁阻型传感器:利用物体磁阻值与物理量之间的关系进行测量。
- 光电传感器:利用物体与光之间的相互作用进行测量。
三、传感器的应用1. 工业自动化领域:- 温度传感器被广泛用于测量工业过程中的温度,以控制物体的加热或冷却过程。
- 压力传感器用于测量管道中的液体或气体压力,以确保工业过程的正常运行。
- 光照传感器可用于在工业生产线上检测产品的正确定位和识别。
2. 环境监测领域:- PM2.5传感器用于测量空气中的颗粒物含量,以实时监测空气质量。
- 湿度传感器可用于测量土壤湿度,以帮助农民进行精确灌溉。
3. 医疗设备领域:- 心率传感器用于监测患者的心率情况。
- 血糖传感器可用于测量患者的血糖水平。
4. 智能家居领域:- 温度传感器和湿度传感器用于控制智能家居设备,如空调、加湿器等。
- 光照传感器可用于智能家居自动调节照明亮度。
四、未来发展趋势随着物联网技术的发展,传感器在各个领域的应用将越来越广泛。
传感器将更小、更智能化,能够实现更多的功能。
同时,传感器的精度和稳定性也将不断提高,使得测量结果更加准确可靠。
总结:传感器是现代科技发展中不可或缺的重要组成部分。
我国国家标准(GB7665-2005)对的定义是:“能感受被测量并按照一定的规律转换成可用输出信号的器件或装置”。
传感器作为信息获取的重要手段,与通信技术和计算机技术共同构成信息技术的三大支柱。
常见七大传感器全解下面主要为大家介绍下面七大传感器。
传感器一:物理传感器物理传感器物理传感器是检测物理量的传感器。
它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。
其输出的信号和输入的信号有确定的关系。
《主要的物理传感器》光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。
《物理传感器的分类方法》按照其用途分类压力敏力敏传感器、位置传感器、液面传感器、能耗传感器、加速度传感器、射线辐射传感器、热敏传感器、24GHz雷达传感器。
按照其原理分类振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器、生物传感器等。
按照其输出信号分类模拟传感器——将被测量的非电学量转换成模拟电信号。
数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。
开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
按照其材料分类在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。
它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。
从所应用的材料观点出发可将传感器分成下列几类:(1)按照其所用材料的类别分:金属聚合物、陶瓷混合物(2)按材料的物理性质分:导体绝缘体、半导体磁性材料(3)按材料的晶体结构分:单晶、多晶非晶材料与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向:(1)在已知的材料中探索新的现象、效应和反应,然后使它们能在中得到实际使用。
(2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。
(3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。
传感器一.传感器的定义传感器是一种能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。
其包含以下几个方面的含义:1.传感器是测量装置,能完成检测任务2.它的输入量是某一被测量,可能是物理量,也可能是化学量、生物量等3.输出量是某种物理量,这种量要便于传输、转换、处理、显示等等,这种量可以是气、光、电量,但主要是电量。
4.输入输出有对应关系,且应有一定的精确度。
二.传感器的组成传感器一般由敏感元件、转换元件、转换电路三部分组成:1.敏感元件(Sensitive element):直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。
2.转换元件(Transduction element):以敏感元件的输出为输入,把输入转换成电路参数。
3.转换电路(Transduction circuit):上述电路参数接入转换电路,便可转换成电量输出。
实际上,有些传感器很简单,仅由一个敏感元件(兼作转换元件)组成,它感受被测量时直接输出电量。
如热电偶。
有些传感器由敏感元件和转换元件组成,没有转换电路。
有些传感器,转换元件不止一个,要经过若干次转换。
三.传感器的分类一、根据输入物理量可分为:位移传感器、压力传感器、速度传感器、温度传感器及气敏传感器等。
二、根据工作原理可分为:电阻式、电感式、电容式及电势式等。
三、根据输出信号的性质可分为:模拟式传感器和数字式传感器。
即模拟式传感器输出模拟信号,数字式传感器输出数字信号.四、根据能量转换原理可分为:有源传感器和无源传感器。
有源传感器将非电量转换为电能量,如电动势、电荷式传感器等;无源程序传感器不起能量转换作用,只是将被测非电量转换为电参数的量,如电阻式、电感式及电容光焕发式传感器等。
传感器分类表。
传感器的种类及选用原则一、传感器的种类国家标准GB/T 7665-2005对传感器的定义为“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。
”它是一种检测装置,能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的输出,满足信息的传输、存储、显示、记录和控制要求。
常用传感器的分类有以下4种:1.按传感器的物理量分类按传感器的物理量可分为位移、力、速度、温度、流量和气体成分等传感器。
2.按传感器工作原理分类按传感器工作原理可分为电阻、电容、电感、电压、霍尔、光电、光栅和热电偶等传感器。
3.按传感器输出信号的性质分类按传感器输出信号的性质可分为:输出为开关量(“1”和“0”)的开关型传感器;输出为模拟量的模拟型传感器;输出为脉冲或代码的数字型传感器。
4.按其用途分类1)压力检测。
压力传感器、触力传感器、微压传感器、压差传感器等。
2)温度检测。
热电阻温度传感器、热电偶温度传感器等。
3)液位检测。
光电式液位传感器、机械浮子液位传感器、伸缩液位传感器等。
4)电流检测。
电磁式电流传感器、霍尔磁平衡式电流传感器等。
5)速度检测。
脉冲编码速度传感器、永磁发电速度传感器等。
6)位置检测。
电位计位置传感器、编码器位置传感器等。
二、传感器选用的一般原则现代传感器在原理和结构上千差万别,如何根据具体的测量对象、测量目的以及测量环境合理地选用传感器。
1.根据测量对象与测量环境确定传感器类型即使是测量同一物理量,也有多种原理的传感器可供选用。
哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件加以考虑。
2.灵敏度的选择通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。
因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。
但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声就容易混入,也会被传感器放大,影响测量精度。
因此,要求传感器本身应具有较高的信噪比,尽量减少从外界引入干扰信号。
传感器的定义和分类一、传感器的定义信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。
微处理器现在已经在测量和控制系统中得到了广泛的应用。
随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。
传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明显。
最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。
国际电工委员会(IEC:International Electrotechnical Committee) 的定义为:"传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。
按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的传感器”。
传感器是传感器系统的一个组成部分,它是被测量信号输入的第一道关口。
图1-1传感器系统的框图传感器系统的原则框图示于图1-1 ,进入传感器的信号幅度是很小的,而且混杂有干扰信号和噪声。
为了方便随后的处理过程,首先要将信号整形成具有最佳特性的波形,有时还需要将信号线性化,该工作是由放大器、滤波器以及其他一些模拟电路完成的。
在某些情况下,这些电路的一部分是和传感器部件直接相邻的。
成形后的信号随后转换成数字信号,并输入到微处理器。
德国和俄罗斯学者认为传感器应是由二部分组成的,即直接感知被测量信号的敏感元件部分和初始处理信号的电路部分。
按这种理解,传感器还包含了信号成形器的电路部分。
传感器系统的性能主要取决于传感器,传感器把某种形式的能量转换成另一种形式的能量。
有两类传感器:有源的和无源的。
有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源(参阅图1-2(a))。
图1-2有源(a)和无源(b)传感器的信号流程无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能(参阅图1-2(b))。