配方法、公式法练习题
- 格式:doc
- 大小:132.50 KB
- 文档页数:4
一元二次方程配方法和公式法例题一元二次方程,这个名字听起来是不是有点儿高深?别怕,今天咱们就来聊聊这个数学小怪兽,配方法和公式法,两种解法,各有千秋,绝对让你听得懂,学得会。
想象一下,站在数学的海洋里,偶尔翻出一条大鱼,心里那个兴奋劲儿,就跟发现新大陆似的。
说到一元二次方程,大家最熟悉的形态就是ax² + bx + c = 0。
这里的 a、b、c 就是数字,没什么神秘的。
这就像做饭,加点儿调料,看看能做出什么好吃的。
先聊聊配方法,这个名字听起来是不是有点儿像在给方程调音?它就是让方程更好看,让我们一眼就能看出答案。
想象一下,你把一个长方形的饼干变成正方形,这样切的时候多方便。
配方法的核心在于把一个看起来复杂的方程,变得简单,化繁为简。
我们先把ax² + bx + c = 0 里的 a 提出来,变成a(x² + (b/a)x) + c = 0。
是不是有点小变化?我们要做的就是让括号里的部分形成一个完全平方的形式。
你知道吗?就像魔术一样,把一个东西变成另一个东西,真是妙不可言。
然后,我们需要找到合适的数字,让它们的平方和看起来特别和谐。
哎呀,这就好比找到了最配的调味料,咕噜咕噜,混合之后就成了美味的菜。
把这个数字加到方程里,可别忘了加和减一起做,保证整体的平衡。
然后,我们就能把这个方程写成a(x + m)²= k 的样子。
这样一来,方程就变得明朗许多,下一步的解法就如同水到渠成,轻松愉快。
再说说公式法,顾名思义,这是一种绝对“高效”的解法,就像是走捷径一样。
我们可以直接使用经典的求根公式:x = (b ± √(b² 4ac)) / (2a)。
一听这个公式,是不是感觉有点复杂?其实只要把相应的数字代进去,照着做就行。
看似繁琐的步骤,实际上就像开车一样,先把钥匙插上,再启动车子,一切都是那么顺理成章。
用公式法的时候,要注意判别式b² 4ac 的值。
- 1 -解一元二次方程练习题(配方法)步骤:(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空:①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2+ x+ =(x+ )2;④ x 2-9x+ =(x - )22.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b的形式为_______,•所以方程的根为_________. 5.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=28.用配方法解方程x 2+4x=10的根为( ) A .2B .-2C .D .9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程: (1)3x 2-5x=2.(2)x 2+8x=9(3)x 2+12x-15=0 (4)41x 2-x-4=0(5)6x 2-7x+1=0 (6)4x 2-3x=5211.用配方法求解下列问题(1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。
九年级(上册)数学配方法及公式法姓名:◆回顾归纳1.通过配方,把方程的一边化为______,另一边化为_____,然后利用开平方法解方程,这种方法叫配方法,如ax2+bx+c=0(a≠0),配方得a(x+_____)2=244b aca-.2.一元二次方程ax2+bx+c=0(a≠0),运用公式法求解的方法叫做公式法,•求根公式x=_______.◆课堂测控测试点1 配方法1.(1)x2-2x+_____=(x-1)2; (2)x2+32x+916=(x+_______)2.2.(1)x2+4x+_____=(x+_____)2;(2)y2-_______+9=(y-_____)2.3.若x2+6x+m2是一个完全平方式,则m的值为( )A.3 B.9 C.±3 D.±94.已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2•可以配方成下列的() A.(x-p)2=5 B.(x-p)2=9 C.(x-p+2)2=9 D.(x-p+2)2=55.用配方法解下列方程:(1)x2+6x+7=0;(2)2x2-4x=-5;(3)3x2+2x-3=0; (4)12x2-3x+3=0.6.阅读下列解题过程,并解答后面的问题.用配方法解方程2x2-5x-8=0.解:2x2-5x-8=0.∴x2-5x-8=0.①∴x2-5x+(-52)2=8+(-52)2.②∴(x-52)2=574.③∴x1,x2④(1)指出每一步的解题根据:①______;②______;③_______;④_______.(2)上述解题过程有无错误,如有错在第______步,原因是_________.(3)写出正确的解答过程.测试点2 公式法7.方程(x+2)(x+3)=20的解是______.8.方程3x2+2x+4=0中,b2-4ac=_______,则该一元二次方程_______实数根.9.方程x2+4x=2的正根为()A.2..-2.-10.用求根公式解下列方程.(1)3x2-x-2=0; (2)12x2+18=-12x;(3)(x+2)(x-2);(4)3x2+2x=2.11.用公式法解方程12x2+12x+18=0.解:4x2+4x+1=0 ①∵a=4,b=4,c=1,②∴b2-4ac=42-4×4×1=0.③∴=12.④∴x1=x2=-12.(1)以上①步______,②步______,③步_______,④步_______.(2)体验以上解题过程,用公式法解方程:13x2+13x-16=0.◆课后测控1.若关于x的方程2x2+3ax-2a=0有一根为x=2,则关于y的方程y2+a=7的解是______.2.设x,x是方程x2-4x-2=0的两根,那么x=______,x=_____.3.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是______.4.将二次三项式2x2-3x-5进行配方,其结果为______.5.若方程ax2+bx+c=0的一个根为-1,则a-b+c=_____;若一根为0,则c=______.6.若│x2-x-2│+│2x2-3x-2│=0,则x=_______.7.一元二次方程x2-2x=0的解是( )A.0 B.0或2 C.2 D.此方程无实数根11.用适当的方法解下列方程.(1)4x2-7x+2=0; (2)x2-x-1=0;(3)x2-7x+6=0;(4)3(x+1)2-5(x+1)=2.参考答案回顾归纳1.完全平方式 非负数 2ba2(b -4ac ≥0)课堂测控1.(1)1 (2)34 2.(1)4 2 (2)6y 3 3.C 4.B5.(1)x 1=-x 2=-3(2)无解(3)x 1=13-,x 2=13-(4)x 1x 2=36.(1)①把二次项系数化为1 ②移项,•方程的两边加上一次项系数一半的平方③方程左边化为完全平方式 ④直接用开平方法解方程(2)① 常数项和一次项系数未同时除以2(3)正确解答:x 2-52x -4=0,∴x 2-52x+(-54)2=4+(-54)2,∴(x -54)2=8916,∴x 1=54,x 2=54-.7.x 1=-7,x 2=28.-44 没有 9.D10.(1)x 1=1,x 2=-23 (2)x 1=x 2=-12(3)x 1x 2(4)x 1=13-+,x 2=13-11.(1)①把系数化为整数 ②确定二次项系数,一次项系数,常数项 •③求出b 2-4ac 的值 ④求出方程的根(2)2x 2+2x -1=0,∵a=2,b=2,c=-1,∴b 2-4ac=4-4×2×(-1)=12.∴==.∴x 1,x 2 课后测控1.y=±32.x=4422±==2) 3.±4(点拨:令2a+2b=x ,则(x+1)(x -1)=63,∴x=±8,∴a+b=±4)4.2[(x -34)2-4916] (点拨:2x 2-3x -5=2(x 2-32x -52) =2[x 2-32x+(-34)2-52-916]=2[(x -34)2-4916]) 5.0 0 6.2(点拨:要使等式成立,则必有x 2-x -2=0,且2x 2-3x -2=0,∴x=2)7.B8.A (点拨:x 2+y 2+2x -4y+7=(x+1)2+(y -2)2+2,∵(x+1)2≥0,(y -2)2≥0,∴x 2+y 2+2x -4y+7≥2)9.B (点拨:x 2-16x+60=0的两根为x 1=10,x 2=6,根据三角形三边关系,则10和6都可为第三边长,∴当第三边长为10,则此三角形为直角三角形,则S=24,当第三边长为6时,10.C (点拨:∵x*(x+1)=5,∴x+(x+1)2=5,即x 2+3x -4=0,∴x 1=1,x 2=-4)11.(1)这里a=4,b=-7,c=2.∴△=49-4×4×2=17,∴=.∴x 1=78,x 2=78.(2)x =,x 2 (3)(x -1)(x -6)=0,∴x -1=0或x -6=0.∴x 1=1,x 2=6.(4)令x+1=y ,则原方程变为3y 2-5y -2=0,∴y 1=-13,y 2=2. 当y 1=-13,x 1=-43;y 2=2时,x 2=1. 12.∵(x+1)△x=10,∴(x+1)2+(x+1)x+x 2=10,整理得x 2+x -3=0.解得x 12 13.∵△=4-2(2-m )=4m -4〉0,∴m>1.将m=2代入方程得x 2+2x=0,∴x 2+2x+1=1,即(x+1)2=1,∴1+x=±1,∴x 1=0,x 2=-2.14.设平均每箱应降价x 元,根据题意得(4-x )·(20+0.4x ×8)=120. 整理得x 2-3x+2=0,即(x -2)(x -1)=0.∴x=2,x=1.因为要扩大销售量,减少库存,所以应取x=2,将x=1舍去,∴每箱牛奶应降价2元. 拓展创新设道路宽为x 米,列方程为20×32-(20+32)x+x 2=540,∴x 1=2,x 2=50(舍去),•∴道路宽为2米.。
1若x 2 4x p (x q)2,那么p 、q 的值分别是()A 、p=4, q=2B 、p=4, q=-2C 、p=-4 , q=2D 、p=-4 , q=-22若x 2+6x+m 2是一个完全平方式,则 m 的值是() A . 3 B . -3 C .土 3 D .以上都不对3 .用配方法将二次三项式a 2-4a+5变形,结果是()A . (a-2) 2+1B . (a+2) 2-1C . (a+2) 2+1D . (a-2) 2-1 4 .把方程x 2+3=4x 配方,得()A . (x-2) 2=7B . (x+2) 2=21C . (x-2) 2=1D . (x+2) 2=2 5 .用配方法解方程x 2+4x=10的根为()A . 2 ±、、10B . -2 土、、14C . -2+、一币D . 2- .10 6 .不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数D .可能为负数7. ____________________________________________________________ 将方程x 2 x <3 3 2j3x 化为标准形式是 _____________________________________________________ ,其中a =—,b= ______ ,c= ______ .&关于x 的方程x 2+ mx — 8=0的一个根是2,则m= __________ ,另一根是 _______ .用配方法解一元二次方程2 2 2x 4x 50 2x 3x 1 0 3x 2x 7 0用公式解法解下列方程。
1、x 2 2x 8 02、4y 1 3y 23、3y 2 1 2.3y224x 8x 10 2 2x 2mx n 02 2x 2mx m 0 m 023x 9x 23用配方法求解下列问题(2 )求-3X 2+5X +1的最大值。
锲而不舍,胆大心细让我们陪伴着你的成长!一元二次方程的根一元二次方程的解也叫做一元二次方程的根因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解. 例1下面哪些数是方程 2χ210χ • 12 =O 的根?—4、一 3、一 2、一 1、0、1、2、3、4分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.复习a b 2 =a 2 2ab b 22 2 2(a - b) = a - 2ab b像这种求出一元二次方程的根的方法叫做配方法。
2⑵ X 12X T5= 0根据公式完成下面的练习:解: 解:由已知,得: X 32=22方程两边同时除以3,得X直接开平方,得:X - 2即 X 3 = 2 , X 3 = - 2所以,方程的两根X 1 = -3 ∙・、2 , X 2 = -3 - I 2 2所以,2配方,得X49 36Q 2方程的两根×1=-- 6 6=2 , X 2(1) X 28X = 9让我们陪伴着你的成长!2(4) 3X 8x - 3 = 02(5)2X -9X 8=02⑹ X 2 -8X锲而不舍,胆大心细 让我们陪伴着你的成长!锲而不舍,胆大心细 练一练 一、选择题1•方程x x -1 =2的两根为().方程ax X -b ]亠∣b -X = 0的根是(若X 2 —4x + P =(x +q 2 ,那么p 、q 的值分别是(、填空题2 21 •如果X -81 =O ,那么X -81 =0的两个根分别是2. 已知方程5x +mx-6=0的一个根是X =3 ,贝U m 的值为 _______________________ .3. __________________________________________________ 方程(x+1 丫 + J2x (x+1)=θ ,那么方程的根 X i = ; X 2= ____________________________________________________ .24 •若8x -16 =0 ,则X 的值是 __________________ .5•如果方程2(x-3f =72,那么,这个一元二次方程的两根是 _________________________ .6.如果a 、b 为实数,满足∙√'3a+4+b 2 T2b+36 = 0 ,那么ab 的值是 ________________________ .三、综合提高题如果关于X 的一元二次方程 ax 2 bx ∙c = 0a=0中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.A . X 1 = 0, X 2 = 1B . X 1 =0,X 2C . X 1 = 1, X 2 = 2D . X 1 = -1, X 2 = 2A . x^b, X ? =aB . X 1 =b, X 2C . X 1 =a,X 2D . x 1 = a 2,x 2 =b 2已知X- -1是方程2axf a Cb b b ^0=().A . p=4,q=2B . p= 4,q ι-2C . P = -4, q = 2D . P = -4, q = -2A . 3B .- -3C . ± 3D .无实数根 26.用配方法解方程X2 一―X +1 =0正确的解法是( ).3f 1Y8 1 2^2A .X — — I = -,X = 二— +BI 3丿 93 3x-1t-8 ,原方程无解 .3 9C .x1√5+ 2 - 3 -x2√5 - 2D . Ffr ι,χ^f,χ2xI= ______ ,x2= ________25 .方程3x ∙ 9 =0的根为().让我们陪伴着你的成长!一元二次方程公式法一元二次方程ax2∙ bx ∙ c = O a = O 的根由方程的系数 a 、b 、C 而定,因此:★ (1)解一元二次方程时,可以先将方程化为一般形式ax 2 ∙ bx ∙ c = O a = O ,当b 2 - 4ac _ O 时,?将■ 2一 b 十b — 4aca 、b 、C 代入式子X就得到方程的根。
解一元二次方程练习题(配方法、公式法)_____。
4.解方程2x2+3x-2=0,其中b-4ac=_______,x1_______,x2_______。
二、应用题1.一个长方形的长比宽多5cm,面积为66cm2,求长和宽分别是多少厘米?2.一个圆形的半径比另一个圆形的半径多3cm,面积比另一个圆形的面积多18π cm2,求小圆半径和大圆半径分别是多少厘米?3.一个矩形的长比宽多3cm,如果把长增加5cm,宽减少2cm,面积增加20cm2,求原来矩形的长和宽分别是多少厘米?4.一个三角形的一条边比另外两条边长6cm和8cm,面积为60cm2,求这个三角形的周长和另外两条边的长分别是多少厘米?5.一个正方形的面积比另一个正方形的面积小9cm2,如果把小正方形的边长增加2cm,大正方形的边长减少1cm,面积相等,求小正方形的边长和大正方形的边长分别是多少厘米?1.已知一个矩形的长比宽多2cm,其面积为8cm²,则此矩形的周长为多少。
解析:设矩形的宽为x,则长为x+2,由题意可得。
x+2)x=8化简得:x²+2x-8=0解得:x=2或x=-4由于宽不能为负数,所以矩形的宽为2cm,长为4cm,周长为12cm。
2.用公式法解方程4y=12y+3,得到y的值。
解析:移项得:8y=-3,两边同时除以8,可得y=-3/8.3.不解方程,判断方程:①x+3x+7=0;②x+4=0;③x+x-1=0中,有实数根的方程有哪些。
解析。
①x+3x+7=0,化简得4x=-7,无实数解。
②x+4=0,解得x=-4,有实数解。
③x+x-1=0,化简得2x-1=0,解得x=1/2,有实数解。
所以有实数解的方程是②和③。
4.当x=43/8时,代数式(4x-172)/(2x-86)的值与-2互为相反数。
解析:将x=43/8代入代数式可得。
4×43/8-172)/(2×43/8-86)=-2化简得:-2=-2,等式成立。
一元二次方程解法
---配方法和公式法
【知识要点】
1.一般的一元二次方程,可用配方法求解.其步骤是:
①化二次项系数为1,并把常数项移项到方程的另一侧,即把方程化为
q px x 2的形式;②方程两边都加上
22p ,把方程化为44222q p p x ;③当042q p 时,利用开平方法求解.
2.一元二次方程002a c bx ax 的求根公式是:042422ac b a ac
b b x .
3.解一元二次方程,直接开平方法是一种特殊方法,配方法与求根公式法是一般方法,对于任何一元二次方程都可使用。
解题的关键是要根据方程系数的特点及方程的不同形式,选择适当的方法,使解法简捷.
【典型例题】
例1.用配方法解下列方程:
(1)0542x x (2)0
1322x x (3)07232x x (4)0
1842x x (5)0222n mx x。
2.2-2.4 用配方法、公式法、因式分解法求一元二次方程分层练习考查题型二配方法解一元二次方程考查题型三配方法的应用考查题型四公式法解一元二次方程1.解方程:22520x x -+=.2.用公式法解方程: (1)228=0x x --;(2)23280x x --=;(3)2410x x -+=;(4)22310x x -+=.考查题型五 根据判别式判断一元二次方程根的情况1.下列一元二次方程无实数根的是( )A .220x x +-=B .220x x -=C .2x x 50++=D .2210x x -+=2.一元二次方程210x x +-=的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .只有一个实数根3.对于任意实数k ,关于x 的方程222(5)24500x k x k k -++++=的根的情况为( )A .有两个相等的实数根B .无实数根C .有两个不相等的实数根D .无法判定4.已知,,a b c 分别是ABC 的边长,则一元二次方程2()20a b x cx a b ++++=的根的情况是()A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法判断考查题型六 根据一元二次方程根的情况求参数 1.已知关于x 的一元二次方程2(2)10x m x m -+++=.(1)如果该方程有两个相等的实数根,求m 的值;(2)如果该方程有一个根小于0,求m 的取值范围.2.已知关于x 的一元二次方程x 2﹣(m ﹣2)x +2m ﹣8=0.(1)求证:方程总有两个实数根.(2)若方程有一个根是负整数,求正整数m 的值.3.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.考查题型七 因式分解法分解因式你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程. 2.解方程:(7)8(7)x x x -=-.1.阅读下列材料:已知实数m ,n 满足()()2222212180m n m n +++-=,试求222m n +的值. 解:设222m n t +=,则原方程变为()1)0(18t t +-=,整理得2180t -=,即281t =,∴9t =±. ∵2220m n +≥,∴2229m n +=.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.根据以上阅读材料内容,解决下列问题,并写出解答过程.(1)已知实数x ,y 满足()()222222322327x y x y +++-=,求22x y +的值. (2)若四个连续正整数的积为120,求这四个连续正整数.2.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+=22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=,4,4n m ∴==.根据你的观察,探究下面的问题:(1)已知2222210x xy y y ++++=,求x y -的值.。
1、若22
4()x x p x q -+=+,那么p 、q 的值分别是( )
A 、p=4,q=2
B 、p=4,q=-2
C 、p=-4,q=2
D 、p=-4,q=-2 2若x 2+6x+m 2是一个完全平方式,则m 的值是( )
A .3
B .-3
C .±3
D .以上都不对
3.用配方法将二次三项式a 2-4a+5变形,结果是( )
A .(a-2)2+1
B .(a+2)2-1
C .(a+2)2+1
D .(a-2)2-1
4.把方程x 2+3=4x 配方,得( )
A .(x-2)2=7
B .(x+2)2=21
C .(x-2)2=1
D .(x+2)2=2
5.用配方法解方程x 2+4x=10的根为( )
A .2.-2..6.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )
A .总不小于2
B .总不小于7
C .可为任何实数
D .可能为负数
7.将方程x x x 32332-=++化为标准形式是______________________,其中a =____
__,b =______,c =______.
8.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______.
用配方法解一元二次方程
0542=--x x 01322=-+x x 07232=-+x x
01842=+--x x 0222=-+n mx x ()00222>=--m m mx x
用公式解法解下列方程。
1、0822=--x x
2、22
314y y -
= 3、y y 32132=+
4、01522=+-x x
5、1842-=--x x
6、02322=--x x
1代数式2221
x x x ---的值为0,求x 的值.
2解下列方程:
(1)x 2+6x+5=0; (2)2x 2+6x-2=0; (3)(1+x )2
+2(1+x )-4=0.
x x 5322=- 01072=+-x x ()()623=+-x x
012=--x x 02932=+-x x ()()213=-+y y
3用配方法求解下列问题
(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台
电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电
脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
1、配方法解方程2x 2-43
x-2=0应把它先变形为( ) A 、(x-13)2=89 B 、(x-23)2=0 C 、(x-13)2=89 D 、(x-13)2=109
2、用配方法解方程x 2-23
x+1=0正确的解法是( )
A 、(x-13)2=89,x=13±3
B 、(x-13)2=-89
,原方程无解
C 、(x-
23)2=59,x 1=23x 2 D 、(x-23)2=1,x 1=53,x 2=-13 1.一般地,对于一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac ≥0时,它的根是_____,
当b-4ac<0时,方程_________.
2.若方程3x 2+bx+1=0无解,则b 应满足的条件是________.
3.关于x 的一元二次方程x 2+2x+c=0的两根为________.(c ≤1)
4.用公式法解方程x 2=-8x-15,其中b 2-4ac=_______,x 1=_____,x 2=________.
5.已知一个矩形的长比宽多2cm ,其面积为8cm 2,则此长方形的周长为________.
6.无论x 、y 取任何实数,多项式22
2416x y x y +--+的值总是_______数.
7.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________.
8.(1)x 2-8x+______=(x-______)2;(2)9x 2+12x+_____=(3x+_____)2
9.若22(3)49x m x +-+是完全平方式,则m 的值等于________. 用配方法解下列一元二次方程。
1、.0662=--y y
2、x x 4232=-
3、9642=-x x
4、0542=--x x
5、01322=-+x x
6、07232=-+x x
7、01842=+--x x 8、0222=-+n mx x 9、()00222>=--m m mx x
一、 用公式解法解下列方程。
1、0822=--x x 2、22
314y y -= 3、y y 32132=+
4、01522=+-x x
5、1842-=--x x
6、02322=--x x
(1)x 2+4x+1=0;(2)2x 2-4x-1=0;
(3)9y 2-18y-4=0;(4)x 2x.。