上海高一数学第一章集合与命题复习
- 格式:doc
- 大小:164.00 KB
- 文档页数:4
课题:集合的概念教学目标:集合、子集的概念,能利用集合中元素的性质解决问题,掌握集合问题的常规处理方法.教学重点:集合中元素的3个性质,集合的 3 种表示方法,集合语言、集合思想的运用.知识点归纳:1.集合①定义:某些指定的对象集在一起就成为一个集合,每个对象叫做集合的元素。
②表示:列举法:将集合中的元素一一列举出来,用大括号括起来,如 {a,b,c} 描述法:将集合中的元素的共同属性表示出来,形式为: P={x ∣P(x)}.如: { x yx 1}, { y yx 1}, { ( x, y) yx1}图示法:用文氏图表示题中不同的集合。
③分类:有限集、无限集、空集。
④性质确定性: a A或 a A 必居其一,互异性:不写 {1 ,1,2,3} 而是 {1 ,2,3} ,集合中元素互不相同,无序性: {1 ,2,3}={3 ,2,1}2.常用数集复数集 C 实数集 R 整数集 Z 自然数集 N 正整数集N(或 N+)有理数集 Q3.元素与集合的关系:a A或a A4.集合与集合的关系:①子集:若对任意x A 都有 x B [或对任意 x B 都有 x A] 则 A 是 B 的子集。
记作:A B②真子集:若 A B ,且存在x0B, 但 x0 A ,则A是B的真子集。
记作:A B③AB且BAAB④空集:不含任何元素的集合,用表示对任何集合 A 有A,若 A 则A5.子集的个数2n个,若 A { a1, a2 , a n } ,则A的子集个数、真子集的个数、非空真子集的个数分别为2n1个和 2n2 个。
主要方法:1.解决集合问题,首先要弄清楚集合中的元素是什么;2.弄清集合中元素的本质属性,能化简的要化简;3.抓住集合中元素的3 个性质,对互异性要注意检验;4.正确进行“集合语言”和普通“数学语言”的相互转化。
例题精选:例 1.( 1)用适当符号填空: 0{0 , 1} ;{ a, b}{ b, a} ;0;{3+17 }{ x|x>6+3 } (2)用列举法表示 { y|y=x2-1,|x|≤ 2, x Z}=.(3)M={ x|x2+2x- a=0,x∈R} ≠,则实数a的取值范围是(4)已知集合 A={ x|x2-px+15=0}, B={ x|x2-5x+ q=0} ,如果 A∩ B={3} ,那么 p+q=. (5)已知集合 A={ x|-1≤x≤2} , B={ x|x< a},如果 A∩ B=A,那么 a 的取值范围是 .(6)已知集合 A={ x|x≤2} ,B={ x|x> a},如果 A∪B=R,那么 a 的取值范围是 .(7)已知 P={0 ,1} ,M={x ∣x P} ,则 PM(8)设集合M { x x k 1, k Z}, N { x x k1, k Z},则M N2 4 4 2例 2、设集合 A 1,a,b , B a, a2 , ab ,且 A B ,求实数a, b的值。
上海高一数学知识点归纳第一章 集合与命题1.1集合与元素 (1)集合的概念常把能够确切指定的一些对象看作一个整体,这个整体就叫做集合. (2)集合中的元素集合中的各个对象叫做这个集合的元素,集合中的元素具有确定性、互异性和无序性. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). (6)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.重要结论:已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它21n-个非空子集,它有22n-非空真子集.1.3集合的基本运算 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A∅=∅ (3)A B A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)AA ∅= (3)AB A ⊇ AB B ⊇BA补集A C U{|,}x x U x A ∈∉且()()()B C A C B A C U U U ⋃=⋂ ()()()B C A C B A C U U U ⋂=⋃1.4命题的形式及等价关系(1)命题用语言、符号或式子表达的,可以判断真假的陈述句.“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.(2)逆命题对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。
期末复习一、集合与命题1.区分集合中元素的形式:{}|()x y f x ={}|()y y f x ={}(,)|()x y y f x =L 函数的定义域函数的值域函数图象上的点集L2.研究集合必须注意集合元素的特征,即集合元素的三性:确定性、互异性、无序性. 3.集合的性质:① 任何一个集合P 都是它本身的子集,记为P P ⊆. ② 空集是任何集合P 的子集,记为P ⊆∅. ③ 空集是任何非空集合P 的真子集,记为P ∅Ü.注意:若条件为B A ⊆,在讨论的时候不要遗忘了∅=A 的情况.集合的运算:④()()C B A C B A I I I I =、()()C B A C B A Y Y Y Y =; ()()()U UU A B A B =I U 痧?、()()()U UU A B A B =U I 痧?.⑤U UU A B A A B B A B B A A B =⇔=⇔⊆⇔⊆⇔=∅I U I 痧?.⑥对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数 依次为:n2、12-n 、12-n 、22-n.4.命题是表达判断的语句.判断正确的叫做真命题;判断错误的叫做假命题. ① 命题的四种形式及其内在联系: 原命题:如果α,那么β;逆命题:如果β,那么α; 否命题:如果α,那么β; 逆否命题:如果β,那么α;② 等价命题:对于甲、乙两个命题,如果从命题甲可以推出命题乙,同时从命题乙也可以推出命题甲,既“甲⇔乙”,那么这样的两个命题叫做等价命题.③ 互为逆否命题一定是等价命题,但等价命题不一定是互为逆否命题. ④ 当某个命题直接考虑有困难时,可通过它的逆否命题来考虑. 5.常见结论的否定形式:原结论 是 都是 一定 p 或q p 且q 大于 小于否定形式 不是 不都是 不一定p 且q p 或q不大于 不小于原结论 至少一个 至多一个 至少n 个 至多n 个 对所有x 都成立 对任何x 不成立否定形式一个也没有至少两个至多1-n 个至少1+n 个存在某x 不成立存在某x 成立原命题逆命题否命题逆否命题互为 逆否互 逆互 逆互 否互 否知识梳理6在判断“充要条件”的过程中,应注意步骤性:首先必须区分谁是条件、谁是结论,然后由推导关系判断结果. 二、不等式 1.基本性质:(注意:不等式的运算强调加法运算与乘法运算) ① b a >且c b >⇒c a >;② 推论:ⅰ.a b a c b c >⇔±>±; ⅱ. b a >且d c >⇒d bc a +>+;③ 0000ac bcc a b ac bc c ac bc c >>⎧⎪>⇒===⎨⎪<<⎩;④ 推论:ⅰ.0,0a b c d ac bd >>>>⇒>; ⅱ.b a >且a 、b 同号11a b⇒<; ⅱ.b a >>0110a b ⇒>>; ⅲ.0,0,a b a b ααα>>>⇒>>; ⑤ 0>>b a ,0>m ⇒ ma mb a b ++<;⑥ ⎪⎩⎪⎨⎧<=>-000b a ⇔⎪⎩⎪⎨⎧<=>b b b a ;2.解不等式:(解集必须写成集合或区间的形式)① 一元二次或一元高次不等式以及分式不等式的解题步骤:ⅰ.分解因式⇒找到零点; ⅱ.画数轴⇒标根⇒画波浪线; ⅲ.根据不等号,确定解集; 注意点:ⅰ.分解因式所得到的每一个因式必须为x 的一次式; ⅱ.每个因式中x 的系数必须为正. ②绝对值不等式−−−→关键去绝对值:ⅰ.x a x a a >⇔><-或 )0(>a ; ⅱ.x a a x a <⇔-<<)0(>a ;ⅲ.22a b a b >⇔>; ⅳ.()()()()()(0)f x g x g x fx g x >>⇔<-或()()x g x f >;ⅴ.()()()()()f x g x g x f x g x <⇔-<<;③ 解含参数的不等式时,定义域是前提,函数增减性为基础,分类讨论是关键. 而分类讨论的关键在于“分界值”的确定以及注意解完之后要总结:综上所述L ④ 对于不等式恒成立问题,常用“函数思想....”、“分离变量思想......”以及“图象思想....”.3.基本不等式:①,a b ∈R ,则222a b ab +≥,当且仅当b a =时,等号成立.,a b +∈R ,则a b +≥b a =时,等号成立.综上,若,a b ∈R ,则ab b a b a 22)(222≥+≥+,当且仅当b a =时,等号成立. *②若,a b +∈R2112a b a b+≥≥+,当且仅当b a =时,等号成立.*③120,1,1120,1,x x x xx x x x x x⎧≥>==⎪⎪+⎨⎪≤-<==-⎪⎩当且仅当即时等号成立当且仅当即时等号成立,,.4.不等式的证明:① 比较法:作差 → 因式分解或配方 → 与“0”比较大小 →L ② 综合法:由因导果.③ 分析法:执果索因;基本步骤:要证L 即证L 即证L . ④ 反证法:正难则反.⑤ 最值法:()max x f a >,则)(x f a >恒成立; ()min x f a <,则)(x f a <恒成立. 三、函数1.函数的要素:定义域、值域、对应法则 ① 定义域:ⅰ.给出函数解析式,求函数的定义域(即求使函数解析式有意义的x 的范围) (1)0)()]([0≠⇒=x f x f y ;(2)()()0()P x y Q x Q x =⇒≠;(3)0)()(2≥⇒=x P x P y n . ⅱ.使实际问题有意义的自变量的范围. ⅲ.求复合函数的定义域:若()x f 的定义域为[]b a ,,则()[]x g f 的定义域由不等式()b x g a ≤≤解出; 若()[]x g f 的定义域为[]b a ,,则()x f 的定义域相当于[]b a x ,∈时()x g 的值域.② 值域:函数的值域(或最值)有哪几种常用解题方法?ⅰ.二次函数型或可化为二次函数型;ⅱ.单调性;ⅲ.基本不等式;ⅳ.换元法;ⅴ.数形结合;2.函数的基本性质: ① 奇偶性:ⅰ.定义判断奇偶性的步骤:(1)定义域D 是否关于原点对称;(2)对于任意D x ∈,判断)(x f -与)(x f 的关系: 若)()(x f x f =-,也即0)()(=--x f x f (),y f x x D ⇔=∈为偶函数; 若)()(x f x f -=-,也即0)()(=+-x f x f (),y f x x D ⇔=∈为奇函数.ⅱ.图象判断奇偶性:函数图象关于原点对称⇔奇函数; 函数图象关于y 轴对称⇔偶函数; ⅲ.判断函数的奇偶性时,注意到定义域关于原点对称了吗?ⅳ.如果奇函数)(x f y =在0=x 处有定义,则0)0(=f .ⅴ.一个函数既是奇函数又是偶函数,则该函数必为:()0,f x x D =∈(其中定义域D 关于原点对称) ⅵ.如果两个函数都是非零函数(定义域相交非空),则有:奇+奇⇒奇;奇+偶⇒非奇非偶;偶+偶⇒偶;奇×奇⇒偶;奇×偶⇒奇;偶×偶⇒偶. ② 单调性:设任意D x x ∈21,,且21x x <,则12()()f x f x =⇔无单调性12()()f x f x >⇔减函数1212()()0f x f x x x -⇔<-;12()()f x f x >⇔增函数1212()()0f x f x x x -⇔>-; 在比较)(1x f 与)(2x f 大小时,常用“作差法”,比较12()()f x f x -与0的大小. ⅰ.奇函数的图象在y 轴两侧的单调性一致;偶函数的图象在y 轴两侧的单调性相反. ⅱ.互为反函数的单调性一致.ⅲ.增函数+增函数⇒增函数;减函数+减函数⇒减函数. ⅳ.复合函数单调性由“同增异减”判定. ⅵ.注意函数“单调性”、“奇偶性”的逆用(即如何体现函数的“奇偶性”、“单调性”) 四、幂函数 ①定义:一般地,形如()ay xx R =∈的函数称为幂函数。
word第一章集合与命题一.集合:1. 概念及符号的使用.:集合、元素,属于,自然数集,整数集,有理数集,实数集,有限集、无限集;空集,列举法、描述法、子集,包含(包含于),图示法,文氏图,真子集,真包含(真包含于),、交集,并集,全集,补集。
2. ∈⊆,的比较:元素与集合间关系用,∈∉;集合与集合间关系用⊆⊇,类; 3. 交集,并集,补集的比较4. 关于子集的等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C 5. 集合的运算性质: ① A B =B A ,A B =B A② ()AB C =()A B C , ()A B C =()A B C ③ ()U C A B =U U C A C B , ()U U U C A B C A C B =④AA A =A A A =A ∅=∅A A ∅=6.有限集的元素个数有限集A 的元素的个数记为card( A),规定 card(φ) =0. 基本公式:(1)设有限集合A, card(A)=n,则(ⅰ)A 的子集个数为n2;(ⅱ)A 的真子集个数为12-n;(ⅲ)A 的非空子集个数为12-n;(ⅳ)A 的非空真子集个数为22-n.(2)设有限集合A 、B 、C ,card(B)=m, card(A)=n ,m<n,则(ⅰ) 若A C B ⊆⊆,则C 的个数为mn -2;word(ⅱ) 若A C B ⊂⊆,则C 的个数为12--m n ;⑶容斥原理:card(A ∪B)= card(A)+card(B)- card(A ∩B).二.四种命题形式及关系1. 概念:2.命题,真(假)命题 逆命题,否命题,逆否命题 等价命题2.一般地,四种命题的真假性有且仅有下面四种情况:3.常用词语的否定:三.充要条件1.若α⇒β,则称α是β的充分条件,也即β是α的必要条件; 若α⇔β,则称α是β的充要条件;原命题 若p 则q 否命题若p 则q逆命题 若q 则p逆否命题若q 则p互逆 为 ? ? 互 否 逆 ? 互 逆 为 互 否互 逆 否互 否在讨论p 是q 的什么条件时,就是指以下四种之一: ①若p ⇒q ,但q ≠> p ,则p 是q 的充分但不必要条件; ②若q ⇒p ,但p ≠> q ,则p 是q 的必要但不充分条件; ③若p ⇒q ,且q ⇒p ,则p 是q 的充要条件;④若p ≠> q ,且q ≠> p ,则p 是q 的既不充分也不必要条; ★要点:看清题目问的是:谁是谁的什么条件2.子集与推出关系 : 设A,B 是非空集合,A={}|x x α具有性质,B={}|y y β具有性质,则A ⊆B 与α⇒β等价。
沪教版(上海) 高一第一学期新高考辅导与训练第1章集合和命题 1.5 命题的形式及等价关系(1)一、解答题(★) 1. 下列语句是否为命题?如果是,判断它的真假.(1)这道数学题有趣吗?(2)0不可能不是自然数;(3);(4);(5)91不是素数;(6)上海的空气质量越来越好.(★★) 2. 判断下列命题是真命题还是假命题,并说明理由.(1)任何一个集合必有两个子集;(2),,都是自然数,如果是的倍数,那么,中至少有一个是的倍数;(3)如果,BÜ C,那么.(★) 3. 在下列各题中,用符号“ ”把,连起来.(1)实数满足,或;(2),且;(3),;(4)是偶数,是偶数(其中,都是整数).(★★) 4. 已知与均为正有理数,且与均为无理数.证明:也是无理数.(★) 5. 判断下列命题的真假并说明理由.(1)某个整数不是偶数,则这个数不能被4整除;(2)若,且,则,且;(3)合数一定是偶数;(4)若,则;(5)两个三角形两边一对角对应相等,则这两个三角形全等;(6)若实系数一元二次方程满足,那么这个方程有两个不相等的实根;(7)若集合,,满足,则;(8)已知集合,,,如果,那么.(★) 6. 已知下列几个命题的推出关系为:,,,,.现有下列命题:① ;② 且;③ 且;④ 且.试判断哪些命题是正确的.(★) 7. 设是方程的根,求证:不是实数.二、单选题(★) 8. 下列语句中不是命题的是()A.B.是无限循环小数C.D.12是4的倍数(★) 9. 已知下列语句:①对角互补的四边形外接于一个圆;②今天会下雨吗;③你会讲日语吗;④ 是有理数,则,都是有理数;⑤ 或.其中不是命题的是()A.①②B.②③C.②④D.③⑤(★★★) 10. 下面命题中,真命题的个数是()① ,若,则;② ,若,则,都为0;③两个有理数的和是有理数;④ 或,则.A.1B.2C.3D.4(★) 11. 命题与命题,它们的推出关系是()A.B.C.D.以上都不正确(★★) 12. 下列命题是真命题的为()A.若,则B.若,则C.若,则D.若,则三、填空题(★★) 13. 用符号“ ”“ ”“ ”表示下列事件的推出关系:(1),,________ ;(2),,________ ;(3)设抛物线方程为,抛物线的图象与轴有两个交点,,________ ;(4),,________ .(★) 14. 下列命题中,真命题是________.①对角线互相平分的四边形是平行四边形;②对角线相等的四边形是矩形;③对角线互相平分且垂直的四边形是菱形;④对角线互相垂直且相等的四边形是正方形。
2019年沪教版高一第一学期第一章集合与命题单元练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若:||2,:p x q x a 剟,且p 是q 的充分不必要条件,则a 的取值范围是( ) A.{|2}a a … B.{|2}a a … C.{|2}a a -…D.{|2}a a -…2.已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为A .9B .8C .5D .43.设全集为R ,集合{}02A x x =<<,{}1B x x =≥,则()A B =R ðA.{}01x x <≤B.{}01x x <<C.{}12x x ≤<D.{}02x x <<4.设R x ∈,则“11||22x -<”是“31x <”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件5.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,76.已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}7.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,58. 设x ∈R ,则“38x >”是“2x >” 的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件二、填空题9.用列举法表示集合10|,1M m Z m Z m ⎧⎫=∈∈⎨⎬+⎩⎭=________. 10.已知集合{|34},{|211}A x x B x m x m =-≤≤=-<<+,且B A ⊆,则实数m 的取值范围是______.11.已知集合{}1,3,A m =-,{}3,5B =,若B A ⊆,则实数m 的值为__________. 12.已知集合**{|8}A a a N a N =∈-∈且,则A 的子集有__________个.三、解答题13.(天津市和平区2017-2018学年高二上学期期末考)已知命题P : 22114x y m m +=--表示双曲线,命题q : 22124x ym m+=-- 表示椭圆.(1)若命题P 与命题q 都为真命题,则P 是q 的什么条件?(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中的哪一个)(2)若P q ∧ 为假命题,且P q ∨ 为真命题,求实数m 的取值范围. 14.若集合{}5|3A x x =-≤≤和{}232|B x m x m =-+≤≤. (1)当3m =-时,求集合AB ;(2)当B A ⊆时,求实数m 的取值集合.参考答案1.A 【解析】 【分析】先化简命题p ,再根据p 是q 的充分不必要条件得到a 的取值范围. 【详解】由题得:22p x -≤≤,:q x a £ 因为p 是q 的充分不必要条件,所以p 对应的集合是q 对应的集合的真子集, 所以2a ≥. 故选:A 【点睛】本题主要考查根据充分不必要条件求参数的范围,意在考查学生对这些知识的理解掌握水平. 2.A 【解析】分析:根据枚举法,确定圆及其内部整点个数. 详解:2223,3,,1,0,1x y x x x +≤∴≤∈∴=-Z ,当1x =-时,1,0,1y =-; 当0x =时,1,0,1y =-; 当1x =-时,1,0,1y =-; 所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别. 3.B 【解析】分析:由题意首先求得R C B ,然后进行交集运算即可求得最终结果. 详解:由题意可得:{}|1R C B x x =<,结合交集的定义可得:(){}01R A C B x ⋂=<<. 本题选择B 选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力. 4.A 【解析】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系. 详解:绝对值不等式1122x -<⇔111222x -<-<⇔01x <<,由31x <⇔1x <.据此可知1122x -<是31x <的充分而不必要条件. 本题选择A 选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力. 5.C 【解析】分析:根据集合{}{}1,3,5,7,2,3,4,5A B ==可直接求解{3,5}AB =.详解:{}{}1,3,5,7,2,3,4,5A B ==,{}3,5A B ∴⋂=,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn 图法解决,若是“连续型”集合则可借助不等式进行运算. 6.C 【解析】 【分析】由题意先解出集合A,进而得到结果。
复习训练题组一、集合与不等式部分1、定义集合运算:{|(),,}A B z z xy x y x A y B ⊗==+∈∈.已知集合{1,2},{2,3}A B ==,则集合A B ⊗的所有元素之和为________.2、“1>x 且1>y ”是“2>+y x ,且1>⋅y x ”的 条件.3、不等式1425≤--x x的解集为4、不等式22x x x x-->的解集为_______ _ 5、不等式组23216210x x x x -⎧≤⎪-⎨⎪-->⎩的解集为6、已知不等式220ax x c ++>的解集为{|13}x x -<<,则a c ⋅= __.7、若关于x 的一元二次不等式()2140x k x +-+≤在实数范围内恒不成立,则实数k的取值范围是__________.8、若x ,a ,b R ∈,下列4个命题:①x x 232>+; ②322355b a b a b a +>+; ③()1222-+≥+b a b a ;④2≥+baa b 。
其中真命题的序号是 .9、已知2x >,则32x x +-的最小值为________ 10、已知01x <<,则(1)x x -的最大值是_______. 11、集合{,,}a b c 的子集有( )个A .4B .6C .7D .812、“不等式013≥-+x x 成立”是“不等式(3)(1)0x x +-≥成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件13、“062≠--x x ”是“3≠x ”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件14、已知实数a b 、,且a b >,则下列结论中一定成立的是( )A .22a b > B .1ab < C .22a b > D .11a b< 15、设01a b <<<,且1a b +=,则下列四个数中最大的为( )A .bB .22a b +C .2abD .a二、函数部分一)函数基本概念1、下列各组函数是同一函数的是( ) ①32)(x x f -=与x x x g 2)(-=;②x x f =)(与()2)(x x g =③0)(x x f =与01)(xx g = ④12)(2--=x x x f 与12)(2--=t t t gA .①②B .①③C .③④D .①④2、函数1()2f x x x=-+的定义域是 . 3、若函数)(x f y =的定义域是[]2,2-,则)(x f 的定义域是_____________ 4、函数34)(2++=ax ax x f 的定义域为R ,求实数a 的取值范围____ .5、设函数()f x =121(0)2(0)x x x x ⎧+>⎪⎨≤⎪⎩,则[](2)f f -= ________.6、若函数()123log (6),(0),2,(0),x x x f x x ++≥⎧⎪=⎨⎪<⎩则()()2f f = . 7、已知()2-=x x x f ,()2-=x x g ,则()()=⋅x g x f.8、已知函数()()()()22,02xx f x x g x x x x+=>-=>+,若()()()F x f x g x =⋅,则()F x 的值域是 .9、函数12+--=x x y 的值域是__________10、国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分14%的纳税;超过4000元的按全部稿酬的11%纳税。
高一数学知识点归纳第一章 集合与命题1.1集合与元素 (1)集合的概念常把能够确切指定的一些对象看作一个整体,这个整体就叫做集合. (2)集合中的元素集合中的各个对象叫做这个集合的元素,集合中的元素具有确定性、互异性和无序性. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). (6)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.重要结论:已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它21n-个非空子集,它有22n-非空真子集.1.3集合的基本运算 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A∅=∅ (3)A B A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)AA ∅= (3)AB A ⊇ AB B ⊇BA补集A C U{|,}x x U x A ∈∉且()()()B C A C B A C U U U ⋃=⋂ ()()()B C A C B A C U U U ⋂=⋃1.4命题的形式及等价关系(1)命题用语言、符号或式子表达的,可以判断真假的述句.“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.(2)逆命题对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。
第一章集合与命题Sets and Propositions我们知道,事物既有个性,也有共性.我们研究一个具体问题时,常把讨论对象限制在一定的整体范围内,便于讨论其共同性质;而对整体来说,每个对象又有着其各自的特点.这就是集合与其元素之间的基本关系.集合概念及其基本理论,称为集合论,是近、现代数学的基本语言和重要基础.一方面,许多重要的数学分支都建立在集合理论的基础上;另一方面,集合论及其思想,在越来越广泛的领域中得到应用.数学中的命题比比皆是,而连接相关命题之间的链条就是逻辑推理.逻辑是研究思维形式及其规律的一门基础学科.学习数学,需要全面地理解概念,正确地进行表述、推理和判断,这就离不开对逻辑知识的掌握和运用.更广泛地说,在日常生活、学习、工作中,基本的逻辑知识也是认识问题、研究问题不可缺少的工具,是人们文化素质的组成部分.在高中数学里,集合的初步知识与命题等相关知识,与其他内容有着密切联系,它是学习、掌握和使用数学语言的基础,基于上述原因,我们把“集合与命题”安排在高中数学的起始章.一、集合(Sets)1.1集合及其表示法(Sets and Their Expressions)在现实生活和数学中,我们经常要把一些确定的对象作为一个整体来考察研究.例如:(1)某校高一(1)班的全体学生;(2)中国运动员在历届夏、冬季奥运会上取得的所有金牌;(3)1~100之间的所有质数;(4)不等式2x-3>0的解的全体;(5)所有的平行四边形;(6)平面上到两个定点的距离相等的点的全体.我们把能够确切指定的不同对象组成的整体叫做集合(set),简称集.集合中的各个对象叫做这个集合的元素(element).对于一个给定的集合,集合中的元素是确定的,也是各不相同的,而且各元素地位相等,与顺序无关.我们把含有有限个元素的集合称为有限集(finite set),含有无限个元素的集合称为无限集(infinite set).为了研究的需要,我们把不含任何元素的集合叫做空集(empty set),记作∅.例如,方程x2+1=0的实数解组成的集合就是空集.集合通常用大写的英文字母表示,如A、B、C、……,元素通常用小写的英文字母表示,如a、b、c、…….如果a是集合A的元素,就记作a∈A,读作“a属于(belong to)A”;如果a不是集合A的元素,就记作a∉A,读作“a不属于(not belong to)A”.数的集合简称数集,常用的数集我们一般用特定的字母表示:全体自然数组成的集合,即自然数集(natural numbers set),记作N;不包括零的自然数组成的集合,即正整数集,记作N*;全体整数组成的集合,即整数集(set of integer),记作Z;全体有理数组成的集合,即有理数集(rational numbers set),记作Q;全体实数组成的集合,即实数集(set of real numbers ),记作R .我们还把正整数集、负整数集、正有理数集、负有理数集、正实数集、负实数集分别表示为Z +、Z -、Q +、Q -、R +、R -.集合的表示方法通常有两种,即列举法和描述法:把集合中的元素一一列举出来,写在大括号内表示集合的方法称为列举法.如:{1,3,5,7,9},{x 2,3x -2,x +7y 3,x 2-4y 2}.在大括号内,先写出此集合中元素的一般形式,再划一条竖线,在竖线后面写上集合中的元素的公共属性,即A ={x | x 满足性质P },这种表示集合的方法称为描述法.如:不等式2x -3>0的解集可表示为{x | x -3>2},函数y =x +1图像上的点组成的集合可表示为{(x , y ) | y =x +1}.例1. 用适当的方法表示下列集合:(1)30的所有正因数组成的集合A ;(2)被5除余3的自然数全体组成的集合B ;(3) 二次函数y =x 2+2x -3图像上的所有点组成的集合C .解:(1)用列举法表示:A ={1,2,3,5,6,10,15,30};(2)用描述法表示:B ={x | x=5n +3, n ∈N};(3)用描述法表示:C ={(x , y ) | y =x 2+2x -3}.例2. A 是由一切能表示成两个整数的平方之差的全体整数组成的集合,试证明:(1)任意奇数都是A 的元素;(2)偶数4k -2(k ∈Z)不属于A .证明:设A ={x | x =a 2-b 2,a 、b ∈Z},(1) 设任意奇数x=2k+1,k ∈Z ,则x =k 2+2k+1-k 2=(k +1)2-k 2∈A ;(2) 反证:假设任意偶数x=4k -2,k ∈Z 属于A ,则设x =a 2-b 2,a 、b ∈Z ,于是有2(2k -1)=(a +b )(a -b ),…①在上述①式中,等号右边的a +b 与a -b 同奇同偶,则x 或为奇数,或为4的整数倍;而等号左边是2与一个奇数的积,则x 不能被4整除,由此产生矛盾.所以,原假设不成立,即“偶数4k -2(k ∈Z)不属于A ”得证.例3. 若集合{}2210,R A x ax x x =--=∈中至多有一个元素,求实数a 的取值范围. 解:当0a =时,方程只有一个根12-,则0a =符合题意; 当0a ≠时,则关于x 的方程2210ax x --=是一元二次方程,由于集合A 中至多有一个元素,则一元二次方程2210ax x --=有两个相等的实数根或没有实数根,所以∆=440a +≤,解得1a ≤-.综上所得,实数a 的取值范围是{}01a a a =≤-或. 课堂活动·大家谈1、 集合中的元素有什么特性?集合的表示法中是如何体现这些性质的?2、 用列举法和描述法表示集合有什么区别?各有什么优势与不足?3、 通过实例分别选择自然语言、集合语言(列举法或描述法)表述不同的具体问题,感受集合语言的意义和作用,体验用集合思想去观察和思考问题的乐趣.课堂活动·自己想1、 区分∅,{∅},{0},0等符号的含义;2、集合{1,2}与集合{(1,2)}有什么区别?3、能否将“身材高大的人”组成一个集合?课外活动·自己学集合论简介集合论是德国著名数学家康托尔(George Cantor,1845-1918)于19世纪末创立的.十七世纪数学中出现了一门新的分支——微积分.在之后的一至二百年中,这一崭新学科获得了飞速发展并结出了丰硕的成果.其推进速度之快使人来不及检查和巩固它的理论基础.十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念,他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.集合论提出伊始,曾遭到许多数学家的激烈反对,康托尔本人一度成为这一激烈论争的牺牲品.在猛烈的攻击下与过度的用脑思考中,他得了精神分裂症,几次陷于精神崩溃.然而集合论前后经历二十余年,最终获得了世界公认.到二十世纪初集合论已得到数学家们的赞同.数学家们为一切数学成果都可建立在集合论基础上的前景而陶醉了.他们乐观地认为从算术公理系统出发,借助集合论的概念,便可以建造起整个数学的大厦.在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.今天,我们可以说绝对的严格已经达到了.”然而这种自得的情绪并没能持续多久.不久,集合论是有漏洞的消息迅速传遍了数学界,这就是1902年罗素得出的罗素悖论.罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R.现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不应属于自身,即R不属于R;另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R.这样,不论何种情况都存在着矛盾.这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地.绝对严密的数学陷入了自相矛盾之中,这就是数学史上的第三次数学危机.危机产生后,众多数学家投入到解决危机的工作中去.1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF公理系统.原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现,这就是集合论发展的第二个阶段:公理化集合论.与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论,公理化集合论是对朴素集合论的严格处理,它保留了朴素集合论的有价值的成果并消除了其可能存在的悖论,因而较圆满地解决了第三次数学危机.公理化集合论的建立,标志着著名数学家希耳伯特所表述的一种激情的胜利,他大声疾呼:没有人能把我们从康托尔为我们创造的乐园中赶出去.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等,而这一切都是与康托尔的开拓性工作分不开的.当现在回头去看康托尔的贡献时,我们仍然可以引用当时一些著名数学家对他的集合论的评价作为我们的总结.德国伟大的数学家希尔伯特(David Hilbert,1862-1943)称康托尔的集合论是“数学精神最令人惊羡的花朵,人类理智活动最漂亮的成果”.英国数学家和哲学家罗素(Bertrand Russell,1872-1970)把康托尔的工作描述为“可能是这个时代所能夸耀的最伟大的工作”.前苏联著名的数学家科尔莫戈洛夫(Andrey Nikolaevich Kolmogorov,1903-1987)说,“康托尔的不朽功绩,在于他敢向无穷大冒险迈进.”还有如:它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献之一等等.课外活动·自己找借助图书馆或电脑网络系统查阅有关集合论创始人康托尔的生平简介等资料,了解其创立集合论的艰辛历程,进一步体验和学习数学家追求真理的不懈精神.习题练习·自己练1. 用描述法表示下列集合:(1){1,4,7,10,13}; (2){-2,-4,-6,-8,-10};(3) { 1,5,25,125,625 }; (4) { 0,±21,±52,±103,±174,……}. 2. 用列举法表示下列集合:(1){x | x 是15的正约数}; (2){(x ,y ) | x ∈{1,2},y ∈{1,2}}; (3)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧=+-=+22),(22y x y x y x ; (4) {(x ,y ) | y =x 2-1,|x |≤2,x ∈Z}. 3. 关于x 的方程ax +b =0,当a ,b 满足条件_______时,解集是有限集;当a ,b 满足条件_________时,解集是无限集.4. 已知集合{2a ,a 2-2a }为数集,求a 的取值范围.5. 把可以表示成两个整数的平方之和的全体整数记作集合M ,试证明集合M 的任意两个元素的乘积仍属于M .6. 已知全集M ={},求集合M . 7. 已知集合(){}0121|2=+--=x x m x A 中至多含有一个元素,求实数m 的取值范围. 8. 设A ={x | x 2+(b +2)x +b +1=0,b ∈R},求A 中所有元素之和.9. 设A={x | x=m 2 –n 2,m 、n ∈ Z},问8、9、10与集合A 有什么关系?并证明你的结论.10. 设集合S ={a 0,a 1,a 2,a 3},在S 上定义运算为:a i ⊕a j = a k ,其中k 为i+j 被4除的余数,i 、j=0,1,2,3,则求满足关系式(x ⊕x )⊕a 2= a 0的x ( x ∈S )的个数.11. 设集合A ={-3,-1,2,7},集合B ={x | f (x ) >0},在下列条件下,是否存在函数f (x ),使得集合A 中恰有一个元素不是B 的元素?(1) f (x )为一次函数;(2) f (x )为二次函数.12. 已知实数集A 满足:若x ∈A ,则A xx ∈-+11. (1) 求证:当2∈A 时,A 中还有3个元素;(2) 试找寻一个实数a ,使得a ∈A ,并由此求出相应的集合A ;(3) 由上述研究过程,你能得出什么结论?1.2集合之间的关系 (Relations of Sets )考察下列集合:A={1,2},B={1,2,3,4},C={ x ︱x 2-3x+2=0},D={ x ︱x 是四边形},E={ x ︱x 是多边形}.容易发现,集合A 中的任何一个元素都是集合B 的元素,集合D 中的任何一个元素都是集合E 的元素,而集合B 中的元素3和4不是集合A 的元素,集合C 中的元素与集合A 的元素完全相同.一般地,对于两个集合A 与B ,如果集合A 中任何一个元素都是集合B 的元素,我们就说集合A 是集合B 的子集(subset ),记作B A ⊆或A B ⊇,读作“A 包含于(be contained in )B ”或“B 包含(contain)A ”.我们规定,空集包含于任何一个集合,即空集是任何集合的子集.对于两个集合A 与B ,如果有B A ⊆,且A B ⊇,我们集合A 与集合B 相等,记作A=B ,读作“集合A 等于集合B ”.如对于集合A={x ︱x=2k+1,k ∈Z }与B={x ︱x=2k -1,k ∈Z },则有A=B .对于两个集合A 与B ,如果B A ⊆,并且B 中至少有一个元素不属于A ,那么称集合A 是集合B 的真子集(proper subset ),记作A B 或B A 读作“A 真包含于B ”或“B 真包含A ”.用平面区域来表示集合之间关系的方法叫做集合的图示法,如右图所示,表示B A ⊆(A B )所用的图叫做文氏图(Venn diagram ).例1. 写出集合{a ,b ,c }的所有子集和真子集.解:集合的所有子集为∅,{a },{b },{c },{a ,b },{b ,c },{a ,c },{a ,b ,c },除了{a ,b ,c },其余七个子集均为集合{a ,b ,c }的真子集.例2. 设集合A ={a ,a 2,ab },B={1,a ,b },A=B ,求实数a ,b 的值.解:由于A=B ,则(1)若a 2=b ,ab=1,则a 3=1,即a=b=1,与集合中元素的互异性矛盾;(2)若a 2=1,ab=b ,则由集合中元素的互异性可得a=-1,b=0.例3. 已知{}Z n Z m n m x x S ∈∈+==,,3614,{}Z k k x x T ∈==,2,求证S=T .解:(1)任意x ∈S ,则存在m ,n ∈Z ,使得x=14m+36n=2(7m+18n ),令7m+18n=k ,由于m ,n ∈Z ,所以k=7m+18n ∈Z ,则x=2k ,k ∈Z ,即x ∈T ,因此S ⊆T ;(2)反之,任意x ∈T ,则存在k ∈Z ,使得x=2k ,要使得x=2k=14m+36n ,m ,n ∈Z ,则k=7m+18n=7×(-5k )+18×(2k ),可见当m=-5k ,n=2k (k ∈Z)时,x=14m+36n ,m ,n ∈Z ,即x ∈S ,因此T ⊆S . 所以,综合(1)和(2)知,S=T 得证. 课堂活动·大家谈1、 讨论符号“∈”与“⊆”的意义、区别及作用;2、 集合之间的关系与实数中的大小关系、相等关系有相似之处吗?类比实数中有关不等式的性质,研究集合的有关包含和真包含关系的性质.3、 考察数集N ,Z ,Q ,R 之间的包含关系,了解和感受数域的扩张过程.课堂活动·自己想1、 如果B A ⊆,那么集合A 与B 的关系有几种可能?2、 如何理解空集是任何集合的子集?进一步体会∅与{∅}、{0}之间的关系.3、 判断下列写法是否正确?为什么?①∅A ;②A A .课外活动·自己做试探究含n 个元素的有限集合的子集的个数.课外活动·自己学悖论悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”.这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比.悖论是自相矛盾的命题.即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出这个命题成立 如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的.古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力.解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念.悖论有三种主要形式:1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬).2.一种论断看起来 好像肯定是对的,但实际上却错了(似是而非的理论).3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾.事实上,悖论古已有之.一般认为,最早的悖论是古希腊的“说谎者悖论”,见于《新约全书·提多书》,属于语义学悖论.另一类悖论涉及数学中的集合论,被称为“数学悖论”或“集合论悖论”.在康托尔创立集合论不久,他自己就发现了问题,这就是1899年的“康托尔悖论”,亦称“最大基数悖论”.与此同时,还发现了其他集合论悖论,其中最著名的当属“罗素悖论”.1902年,英国数学家罗素提出了这样一个理论:以M 表示是其自身成员的集合的集合,N 表示不是其自身成员的集合的集合.然后问N 是否为它自身的成员?如果N 是它自身的成员,则N 属于M 而不属于N ,也就是说N 不是它自身的成员;另一方面,如果N 不是它自身的成员,则N 属于N 而不属于M ,也就是说N 是它自身的成员.无论出现哪一种情况都将导出矛盾的结论.1919年罗素给出了上述悖论的通俗形式,即“理发师悖论”:一天,萨维尔村理发师挂出一块招牌:“村里所有不自己理发的男人都由我给他们理发,我也只给这些人理发.”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言.因为,如果他给自己理发,那么他就属于自己给自己理发的那类人.但是,招牌上说明他不给这类人理发,因此他不能自己理.如果由另外一个人给他理发,他就是不给自己理发的人,而招牌上明明说他要给所有不自己理发的男人理发,因此,他应该自己理.由此可见,不管怎样的推论,理发师所说的话总是自相矛盾的.课外活动·自己找借助图书馆或电脑网络系统查阅资料,了解集合论的有关著名悖论和英国哲学家、数学家罗素.习题练习·自己练1. 设集合{}{}31,,32,M x x m m Z N y y n n Z ==+∈==+∈,若,,x M y N ∈∈则x y 与集合M 、N 的关系是( )A .x y M ∈B .x y M ∉C .x y N ∈D .x y N ∉2. 设集合,,,22k M x x k Z N t t n t n n Z ππππ⎧⎫⎧⎫==∈===+∈⎨⎬⎨⎬⎩⎭⎩⎭或,则集合M 、N 的有怎样的关系?为什么?3. 已知{}{}A C B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆.4. 已知集合⎭⎬⎫⎩⎨⎧=1,,m n m M ,{}0,,2n m m N +=,若M=N ,求m 2008+n 2009. 5. 已知集合A={0,1},B={x | x ∈A ,x ∈N ﹡} ,C={x | x ⊆ A } 则A 、B 、C 之间有怎样的关系?6. 已知集合A=},,53|{Z b a b a x x ∈+=,B=},,107|{Z n m n m y y ∈+=,判断A 与B 的关系并说明理由.7. 已知集合A={}Z b a b a x x ∈+=,,812|,B={}Z d c d c x x ∈+=,,1620|,求证A=B .8. 已知集合A={x |-2k+6< x <k 2-3},B={x |-k < x < k },若AB ,求实数k 的取值范围. 9. 设含有10个元素的集合的全部子集数为S ,其中有3个元素组成的子集数为T ,则求ST的值.10. 已知集合A={ m | m=n 2+1,n ∈N *},B={y |y=x 2-2x +2,x ∈N *},研究A 与B 的关系,并给予证明.11. 已知A={ x | 22≤≤-x },①若集合B={ x | a x ≤ },满足A ⊆B ,求a 范围;②若集合C={x | 152+≤≤-a x a },满足A ⊆C ,求a 的取值范围;③若把②中条件“A ⊆C ”改为“C ⊆A ”,求a 的取值范围.12. 设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j ≠,{123}i j k ∈、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),求k 的最大值.1.3集合之间的运算 (Operation of Sets )1. 交集考察集合A={ x | x 是我校在校女生},B={ x | x 我校高一学生}与C={ x | x 是我校高一女生}之间的关系,易知集合C 是由所有既属于集合A 又属于集合B 的元素组成的.一般地,由集合A 和集合B 的所有公共元素组成的集合,叫做A 与B 的交集(intersection).记作A ∩B ,读作“A 交B ”,即A ∩B={x |x ∈A 且x ∈B 用文氏图可以直观地表示A ∩B 的一般情况.由交集运算的定义,容易得到以下一些基本性质:(1)A ∩B= B ∩A ; (2)A ∩A=A ; (3)A ∩∅=∅;(4)A ∩B ⊆A ,A ∩B ⊆B ;(5)若A ∩B=A ,则有A ⊆B ;反之若A ⊆B ,则A ∩B=A .例1. 设集合A={(x ,y )|3x -y=7},集合B={(x ,y )|2x+y=3},求A ∩B .解:A ∩B =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧=+=-32,73),(y x y x y x =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧-==1,2),(y x y x ={(2,-1)}.2. 并集一般地,由所有属于集合A 或者属于集合B 的元素组成的集合,叫做A 与B 的并集(union).记作A ∪B ,读作“A 并B ”,即A ∪B={x |x ∈A 或x ∈B }.用文氏图可以直观地表示A ∪B 的一般情况.由并集运算的定义,容易得到以下一些基本性质:(1)A ∪B= B ∪A ; (2)A ∪A=A ; (3)A ∪∅= A ;(4)A ⊆A ∪B ,B ⊆A ∪B ;(5)若A ∪B=B ,则有A ⊆B ;反之若A ⊆B ,则A ∪B=B .例2.设A={x |-1<x <2},B={x |1<x <3},求A ∩B ,A ∪B .解:A ∩B={x |1<x <2},A ∪B={x |-1<x <3}.例3.已知关于x 的方程3x 2+px -7=0的解集为A ,方程3x 2-7x +q =0的解集为B , 若A ∩B =⎭⎬⎫⎩⎨⎧-31,求A ∪B . 解: ∵A ∩B =⎭⎬⎫⎩⎨⎧-31,∴-31∈A 且-31∈B . ∴3(-31)2+p (-31)-7=0且3(-31)2-7(-31)+q =0, ∴p =-20,q =-38. 由3x 2-20x -7=0得A ={-31,7},由3x 2-7x -38=0得B ={-31,38}. ∴A ∪B ={-31,38,7}.3. 补集在给定的问题中,若研究的所有集合都是某一给定集合的子集,那么称这个给定的集合为全集(universe).若A 是全集U 的子集,由U 中不属于A 的元素组成的集合,叫做集合A 在全集U 中的补集(complementary set),记作A C U ,读作“A 补”,即{}A x U x x A C U ∉∈=,. 用文氏图可以直观地表示A C U 的一般情况.由并集运算的定义,容易得到以下一些基本性质:(1)=A C A U ∅; (2)U A C A U = ; (3)A A C C U U =)(.例4. 已知全集I={-4,-3,-2,-1,0,1,2,3,4},A={-3,a 2,a +1}, B={a -3,2a -1,a 2+1},其中a ∈R ,若A ∩B ={-3},求C I (A ∪B ).解:由a -3=-3或2a -1=-3,可求得A={-3,0,1},B={-4,-3,2},则A ∪B={-4,-3,0,1,2},C I (A ∪B )={-2,-1,3,4}.例5. 设U ={x | x <10,x ∈N *},A ∩B={3},(C u A )∩B={4,6,8},A ∩(C u B )={1,5}, 求C u(A ∪B ),A ,B .解: A ∪B 中的元素可分为三类:一类属于A 不属于B ;一类属于B 不属于A ;一类既属于A 又属于B .由(C u A )∩B ={4,6,8},即4,6,8属于B 不属于A ;由(C u B )∩A ={1,5},即1,5属于A 不属于B ;由A ∩B ={3},即3既属于A 又属于B ;又U ={x | x <10,x ∈N *}={1,2,3,4,5,6,7,8,9}, 若2属于A 不属于B ,则与(C u B )∩A ={1,5}矛盾,若2属于B 不属于A ,则与(C u A )∩B ={4,6,8}矛盾,而2∉ A ∩B ,∴2既不属于A 也不属于B ,同理7,9既不属于A 也不属于B .综上,C u (A ∪B )={2,7,9},A={1,3,5},B={3,4,6,8}.课堂活动·大家谈1. 关于集合的交、并、补的三种运算的性质是如何证明的?2. 设全集U={a ,b ,c ,d ,e },A={a ,c ,d },B={b ,d ,e },通过计算A C U ,B C U ,)(B A C U ,)(B A C U ,B C A C U U 和B C A C U U ,在发现这些集合之间的关系后给予证明,并将结论推广到一般情形.课堂活动·自己想1. 思考性质“=A C A U ∅”的意义及作用,并进一步深刻理解引入空集概念的意义和作用.2. 思考集合A ,B ,A ∩B 和A ∪B 中元素的个数有何关系?课外活动·自己学容斥原理及其应用在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理.对于有限集合P ,我们用n (P )表示P 中的元素个数.容斥原理(1)如果被计数的事物有A 、B 两类,那么,A 类或B 类元素个数= A 类元素个数+B 类元素个数-既是A 类又是B 类的元素个数.即 )()()()(B A n B n A n B A n ⋂-+=⋃. 容斥原理(2)如果被计数的事物有A 、B 、C 三类,那么,A 类或B 类或C 类元素个数= A 类元素个数+ B 类元素个数+C 类元素个数-既是A 类又是B 类的元素个数-既是A 类又是C 类的元素个数-既是B 类又是C 类的元素个数+既是A 类又是B 类而且是C 类的元素个数.即 )()()()()()()()(C B A n A C n C B n B A n C n B n A n C B A n +---++=.例6 对某学校的100名学生进行调查,了解他们喜欢看球赛、看电影和听音乐的情况.其中58人喜欢看球赛,38人喜欢看电影,52人喜欢听音乐,既喜欢看球赛又喜欢看电影的有18人,既喜欢听音乐又喜欢看电影的有16人,三种都喜欢的有12人,问有多少人只喜欢听音乐?解:设A ={x | x 为喜欢看球赛的人},B ={x | x 为喜欢看电影的人},C ={x | x 为喜欢听音乐的人},则A ∩B ={x | x 为既喜欢看球赛的人又喜欢看电影的人},B ∩C ={x | x 为既喜欢听音乐又喜欢看电影的人},A ∩B ∩C ={x | x 为三种都喜欢的人},A ∪B ∪C ={x | x 为看球赛和电影、听音乐至少喜欢一种}.则)(A n =58,)(B n =38,)(C n =52,)(B A n =18,)(C B n =16,)(C B A n =12,)(C B A n =100,由)()()()()()()()(C B A n A C n C B n B A n C n B n A n C B A n +---++=得)()()()()()()()(C B A n C B n B A n C B A n C n B n A n A C n +---++= =148-(100+18+16-12)=26,所以,只喜欢听音乐的人共有n (C )-n (B ∩C )-n (C ∩A )+n (A ∩B ∩C )=52-16-26+12=22. 课外活动·自己找借助图书馆或电脑网络系统查阅英国数学家德·摩根的简介及德·摩根定理.习题练习·自己练1. 分别用集合符号表示下图的阴影部分:(1) (2)(3) (4)2. 设A={x | x >-2}, B={x |x <3}, 求A ∩B , A ∪B .3. 已知A={2,-1,x 2-x +1},B={2y ,-4,x +4},C={-1,7}, 且A ∩B=C ,求A ∪B .4. 若A 、B 、C 为三个集合,C B B A =,则一定有( )(A)C A ⊆ (B)A C ⊆ (C)C A ≠ (D)=A ∅5. 已知集合A={x ︱x ≤ 2},B ={x ︱x > a },在下列条件下分别求实数a 的取值范围:(1) A ∩B =∅;(2) A ∪B =R ;(3) 1∈A ∩B .6. 设(){}N a a a A x x x f ∈≤≤=+-=,101|,36122,B A C =,{}A a a f b b B ∈==),(|,求:(1)集合C ;(2)C 的所有子集中的各个元素和的总和.7. 全集I={ x | x 为三角形},A={ x | x 为锐角三角形},B={ x | x 为钝角三角形},C={ x | x为直角三角形},D={ x | x 为斜角三角形},求()()D C C B A C I I .8. 设全集为U=Z ,{}Z k k x x M ∈==,2|,{}Z k k x x P ∈==,3|,求()P C M U .9. 已知全集I=}32,3,2{2-+a a ,若}2,{b A =,}5{=A C I ,求实数b a ,.10. 已知全集U={}20|≤X x x 是质数且,A ,B 是U 的子集,且同时满足(){}5,3=B C A U ,(){}197,=B A C U ,()(){}17 2,=B C A C U U ,求A 和B .11. 设全集(){}R y x y x U ∈=,|,,集合()⎭⎬⎫⎩⎨⎧∈=--=R x x y y x A ,123|,, ①若(){}R y x x y y x B ∈+=,,1|,=,B A U 求C;②若(){}R y x x y y x B ∈+≠=,,1|,,求()B A C U .12. 某公司有120人,其中乘轨道交通上班的84人,乘汽车上班的32人,两种都乘的18人,求:(1)只乘轨道交通上班的人数;(2)不乘轨道交通上班的人数;(3)乘坐交通工具的人数;(4)不乘交通工具而步行的人数;(5)只乘一种交通工具的人数.二、四种命题的形式(Four Forms of Propositions )1.4命题的形式及等价关系(The Forms of Propositions and Equivalent Relationship )1. 命题与推出关系在初中,我们已经知道,判断真假的语句叫做命题(proposition).命题通常用陈述句表述.正确的命题叫做真命题,错误的命题叫做假命题.一般地,命题是由题设(条件)和结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果…,那么…”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.有些命题,没有写成“如果…,那么…”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果…,那么…”的形式. 命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.例1. 判断下列语句是否为命题?如果是命题,判断它们是真命题还是假命题?为什么?(1) 你是高一学生吗?(2) 过直线AB 外一点作该直线的平行线.(3) 个位数是5的自然数能被5整除.(4) 互为余角的两个角不相等.(5)竟然得到5>9的结果!(6)如果两个三角形的三个角分别对应相等,那么这两个三角形相似.解:(1)、(2)、(5)不是命题,(3)、(4)、(6)是命题,其中(4)是假命题.(1)语句“你是高一学生吗?”是疑问句,不是判断语句,所以它不是命题.(2)语句“过直线AB外一点作该直线的平行线.”是祈使句,不是判断语句,所以它也不是命题.(3)此命题为真命题.这是因为个位数是0的自然数总可以表示为10k(k∈N)的形式,而10k=5·2k,所以10k能被5整除.(4)取一个角为45°,另一个角也为45°,它们互为余角,但是它们是相等的.所以“互为余角的两个角不相等.”是假命题.(5)语句“竟然推出6>8的结果!”是感叹句,不是判断语句,所以它不是命题.(6)此命题为真命题.它是三角形相似的判定定理,在初中数学中已经给出证明.由例1的(4)可以看到,要确定一个命题是假命题,只要举出一个满足命题的条件,而不满足其结论的例子即可,这在数学中称为“举反例”.要确定一个命题是真命题,就必须作出证明,证明若满足命题的条件就一定能推出命题的结论.一般地,如果事件α成立可以推出事件β也成立,那么就说由α可以推出β,并用记号α⇒β表示,读作“α推出β”.换言之,α⇒β表示以α为条件,β为结论的命题是真命题.如果事件α成立,而事件β不能成立,那么就说事件α不能推出事件β成立,可记作αβ.换言之,α表示以α为条件,β为结论的命题是一个假命题.如果α⇒β,并且β⇒α,那么记作α⇔β,叫做α与β等价.显然,推出关系满足传递性:α⇒β,β⇒γ,那么α⇒γ.2.四种命题形式一个命题由条件和结论两部分组成,如果把原命题的条件和结论互换,所得的命题是原命题的逆命题( inverse proposition),显然它们互为逆命题.例如,命题(1)“对顶角相等”和命题(2)“相等的角是对顶角”互为逆命题.如果一个命题的条件和结论分别是另一个命题的条件的否定与结论的否定,则称这两个命题为互否命题,其中一个命题是另一个命题的否命题( negative proposition).像命题(3)“不是对顶角的角不相等”与命题(1)是互否命题.如果将一个命题的结论的否定作为条件,而将此命题的条件的否定作为结论所得到的命题叫做原命题的逆否命题( inverse negative proposition).如命题(4)“不相等的角不是对顶角”与命题(1)是互为逆否命题.若α为原命题条件,β为原命题结论,则其四种命题的形式及关系为:原命题:若α,则β;逆命题:若β,则α;否命题:若α,则β;逆否命题:若β,则α.例2. 写出命题:“若x + y = 5,则x = 3且y = 2”的逆命题、否命题和逆否命题,并判断它们的真假.解:原命题:若x + y = 5,则x = 3且y = 2.。
第一章 集合与命题
一.集合:
1. 概念及符号的使用.:集合、元素,属于,自然数集,整数集,有理数集,实数集,
有限集、无限集;空集,列举法、描述法、子集,包含(包含于),图示法,文氏图,真子集,真包含(真包含于),、交集,并集,全集,补集。
2. ∈⊆,的比较 :元素与集合间关系用,∈∉;集合与集合间关系用⊆⊇,类;
4. 关于子集的等价关系:U A B A B A A B B A
B U ⊆⇔=⇔=⇔=
C 5. 集合的运算性质:
① A B =B A ,A B =B A
② ()A
B C =()A B C , ()A B C =()A B C ③ ()U C A
B =U U
C A C B , ()U U U C A B C A C B =
④ A A A = A A A = A ∅=∅ A A ∅=
6.有限集的元素个数 有限集A 的元素的个数记为card( A),规定 card(φ) =0. 基本公式:
(1)设有限集合A, card(A)=n,则
(ⅰ)A 的子集个数为n
2;
(ⅱ)A 的真子集个数为12-n
;
(ⅲ)A 的非空子集个数为12-n ;(ⅳ)A 的非空真子集个数为22-n
.
(2)设有限集合A 、B 、C ,card(B)=m, card(A)=n , m<n,则
(ⅰ) 若A C B ⊆⊆,则C 的个数为m
n -2;
(ⅱ) 若A C B ⊂⊆,则C 的个数为12--m
n ;
⑶ 容斥原理:card(A ∪B)= card(A)+card(B)- card(A ∩B).
二.四种命题形式及关系
1. 概念: 2. 命题,真(假)命题 逆命题,否命题,逆否命题
等价命题 原命题
若p 则q 否命题
若p 则q
逆命题
若q 则p
逆否命题
若q 则p
互逆 为
? 互
否 逆 互 逆 为 互 否
互 逆 否
互 否
2.一般地,四种命题的真假性有且仅有下面四种情况:
原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假
假
假
假
3.常用词语的否定:
正面词语 否定 正面词语 否定 等于 不等于
任意的 某个 小于 不小于(大于或等于) 所有的 某些 大于 不大于(小于或等于) 至多有一个 至少有两个 是 不是
至少有一个 一个也没有 都是
不都是(至少有一个不是)
三.充要条件
1.若α⇒β,则称α是β的充分条件,也即β是α的必要条件; 若α⇔β,则称α是β的充要条件;
在讨论p 是q 的什么条件时,就是指以下四种之一:
①若p ⇒q ,但q ≠> p ,则p 是q 的充分但不必要条件; ②若q ⇒p ,但p ≠> q ,则p 是q 的必要但不充分条件; ③若p ⇒q ,且q ⇒p ,则p 是q 的充要条件;
④若p ≠> q ,且q ≠> p ,则p 是q 的既不充分也不必要条; ★要点:看清题目问的是:谁是谁的什么条件
2.子集与推出关系 : 设A,B 是非空集合,
A={}|x x α具有性质, B={}
|y y β具有性质,则A ⊆B 与α⇒β等价。
四.例题
例1 .下列关系式:(1){}a a ⊂;(2)
{}a φ⊂;(3) {}{},a a b ∈;(4) {}{}a a ⊆;(5){},a b φ∈;
(6) {},,a a b c ∈,(7){}0φ∈,⑻ 0∈∅;中正确的是_________________ 例 2 .关于数集: ⑴ Z Z Z +
-=,⑵R C Q Q R =, ⑶N Z *+=, ⑷Z Q ++⊆,
⑸{}()0R C Q
Q +
-=, ⑹ N
Z
Q R ;其中正确的是_________________
例3.对集合.A B ,定义{}
x x A x B A B -=∈∉且,若{}1,3,5,7,9M =,{}3,4,5,6N =, 则集合M N -子集的个数是____.
例4.设集合{}|12A x x =-≤<,
{}a x x B <=|,
① 若φ≠B A ,则a 的取值范围是____ ② 若A B φ=,则a 的取值范围是____
③ 若A
B A =,则a 的取值范围是____
例5.一同学解某不等式组得到≤≥⎧⎪⎨⎪⎩x-1或x>4
x 3或x<-2x>-5
,则该不等式的解集是____
例6.⑴ 写出命题“若 xy= 0 则 x = 0或 y = 0”的逆命题、否命题、逆否命题 ⑵ 对实数2
2
a b a b 0+=.,若,则a=b=0,写出该命题的逆否命题. 例7.若a 2能被2整除,a 是整数,求证:a 也能被2整除 例8.⑴.2a =a是0≥a的( )条件.
A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要 ⑵.已知p 是r 的充分不必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必
要条件,下列命题 ①s 是q 的充要条件. ②p 是q 的充分而不必要条件. ③r 是q 的必要而不充分条件. ④p s 是的必要而不充分条件.⑤r 是s 的必要而不充分条件.中正确的是( ).
例9.设5αβαβ≤≤≤∈:1x<, :2m+1x m+4,m R,是的必要条件,求m 的取值范围. 例10.小故事:
三个古希腊哲学家,由于争论和天气炎热感到疲倦了,于是在花园里的一棵大树下躺下来休息一会,结果都睡着了.这时一个爱开玩笑的人用炭涂黑了他们的前额.三个人醒来以后,彼此看了看,都笑了起来.但这并没引起他们之中任何一个人的担心,因为每个人都以为是其他两人在互相取笑.这时其中有一个突然不笑了,因为他发觉自己的前额也给涂黑了.那么他是怎样觉察到的呢? 练习.
1.已知{}
22|≥∈=x R x M ,π=a ,则下列四个式子 ①M a ∈; ② {}
a M ;③ M a ⊂; ④ {}a π=M ,其中正确的是
(A)①② (B)①④ (C) ②③ (D)①②④ ( )
2.如果集合{
}8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U
)B 等于
(A){}5 (B) {}8,7,6,5,4,3,1 (C) {}8,2 (D) {}7,3,1 ( )
3.如果集合⎭⎬⎫⎩⎨⎧∈+=
=Z k k x x M ,412|,⎭
⎬⎫
⎩⎨⎧∈+==Z k k y y N ,214|,那么 ( ) (A)φ=N M (B)N M = (C)M
N (D) M
N
4.下列命题中假命题...
是 ( ) (A)“正三角形边长与高的比是2︰3”的逆否命题 (B)“若x,y 不全为0,则02
2
≠+y x ”的否命题 (C)“p 或q 是假命题”是“非p 为真命题”的充分条件
(D)若C A B A =,则C B =
5命题: 若{}
(x,y)x y 10, 0x 2B =-+=≤≤<1 则 -1<x<1;的逆否命题是( )
(A)若≥2
x1,则≥≤x1或x-1 (B) 若 -1<x<1 则 2x <1 (C)若x<-1或x>1,则2x >1 (D)若≥≤x1或x-1,则≥2x1
6.若集合{}22|≤≤-∈=x Z x A ,{}
2000|2
+==x y y B ,则用列举法表示集合
=B
7.若集合{
}x A ,3,1=,{}2
,1x B =,且{}x B A ,3,1= ,则=x
8.两个三角形面积相等且两边对应相等,是两个三角形全等的 条件 9.若0)2)(1(=+-y x ,则1=x 或2-=y 的否命题是
10.使方程x -ax+2a+1=02
的两根都大于1的充要条件是
2
1
∆≥≥≥⎧⎪⎨⎪⎩0
x+x12xx12,是否正确?
如不正确,写出你的答案.
11.已知集合{
}
2
(x,y)x mx y 20,x A R =+-+=∈,{}
(x,y)x y 10, 0x 2B =-+=≤≤
若A
B =∅,求实数m的取值范围.
12.一次联欢晚会中,某班选出最聪明的三位同学做智力游戏,游戏是这样的:拿出五顶帽
子(三顶蓝的,两顶红的),三位同学看过后,用布条蒙上他们的眼睛,给他们每人戴上一顶帽子(两顶蓝的,一顶红的),剩下的两顶帽子藏起来,然后解开蒙住眼睛的布条,每个人都能看到别人戴的帽子,但是看不到自己的,然后让他们判断自己戴的帽子的颜色.刚开始,三人都不说话,过了一会,一个同学说出了自己所戴帽子的颜色.很快另两个同学也说出了自己所戴帽子的颜色,他们是怎么判断的呢?。