九年级数学最大值、最小值问题(2019年9月整理)
- 格式:ppt
- 大小:379.50 KB
- 文档页数:10
九年级数学竞赛题:代数最值数学问题中常见的一类问题是:求某个变量的最大值或最小值.在生产实践中,我们经常面对带有“最”字的问题,如投入最少、利益最高、时间最短、效益最大、耗材最少等.我们把这类问题称为“最值问题”.最值问题也是数学竞赛中的热点问题,它内容丰富,涉及面广,解法灵活,解最值问题的常见方法有:1.利用配方法求最值;2.运用不等式或不等分析法求最值;3.建立二次方程,在方程有解的条件下,利用判别式求最值;4.构造二次函数模型求最值;5.构造图形求最值.例1 某乒乓球训练馆准备购买n 副某种品牌的乒乓球拍,每副球拍配k (k ≥3)个乒乓球.已知A 、B 两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A 超市所有商品均打九折(接原价的90%付费)销售,而B 超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A 超市还是B 超市买更合算?(2)当k =12时,请设计最省钱的购买方案.例2 光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A 、B 两地区收割小麦,其中30台派往A 地区,20台派往B 地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A 地区x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y 元,求y 与x 间的函数关系式,并写出x 的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来; 、(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.例3已知实数a 、b 、c 满足.4,2==++abc c b a(1) 求a 、b 、c 中最大者的最小值;(2) 求||||||c b a ++的最小值.例4 某商场将进价为30元的书包以40元售出,平均每月售出600个.调查表明:这种书包的售价每上涨1元,其销售量就将减少10个. ’(1)为了实现平均每月10000元的销售利润,这种书包的售价应定为多少元?(2)10000元的利润是否为最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元?(3)请分析并回答售价在什么范围内商家就可获得利润.例5如图1,已知直线x y 21-=与抛物线6412+-=x y 交于A 、B 两点. (1)求A 、B 两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A 、B 两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A 、B 构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.1.甲、乙两人进行羽毛球比赛,甲发出一枚十分关键的球,出手点为P ,羽毛球飞行的水平距离s (米)与其距地面高度h (米)之间的关系式为23321212++-=s s h .如图,已知球网AB 距原点5米.乙(用线段CD 表示)扣球的最大高度为94米,设乙的起跳点C 的横坐标为m ,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失误,则m 的取值范围是__________.2.已知x ,y ,z 为实数,若zx yz xy x z z y y x ++=+=+=+则,2,2,1222222的最小值为__________.3.某饮料厂为了开发新产品,用A 、B 两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是试验的相关数据:(1)假设甲种饮料需配制x 千克,请你写出满足题意的不等式组,并求出其解集;(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y 元,请写出y 与x 的函数表达式.并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?4.某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y (万件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 关于x 的函数关系式;(2)试写出该公司销售该种产品的年获利z (万元)关于销售单价x (元)的函数关系式(年获利一年销售额一年销售产品总进价一年总开支).当销售单价x 为何值时,年获利最大?并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?5.某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润y A (万元)与投资金额x (万元)之间存在正比例函数关系:y A =kx ,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B 种产品,则所获利润y B (万元)与投资金额x (万元)之间存在二次函数关系:y B =ax 2+bx ,并且当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A 、B 两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.6.已知实数a 、b 、c 满足6,0222=++=++c b a c b a ,则a 的最大值为_____________.7.若正数x 、y 、z 满足))((,4)(z y y x yz x xyz ++=+则的最小可能值为____________.8.函数4)4(1)(22+-++=x x x f 的最小值是____________.9.a 、b 是正数,并且抛物线b ax x y 22++=和a bx x y ++=22都与x 轴有公共点,则22b a +的最小值是____________.10.销售某种商品,如果单价上涨m %,则售出的数量就将减少150m ,为了使该商品的销售总金额最大,那么m 的值应该确定为____________.11.已知x 、y 、z 为实数,且3,5=++=++zx yz xy z y x ,试求x 的最大值与最小值.12.有一种产品的质量可分成6种不同的档次.若工时不变,每天可生产最低档次的产品40件;如果每提高一个档次,每件利润可增加1元,但每天要少生产2件产品.(1)若最低档次的产品每件利润16元时,生产哪一种档次的产品的利润最大?(2)若最低档次的产品每件利润22元时,生产哪一种档次的产品的利润最大?(3)由于市场价格浮动,生产最低档次产品每件利润可以从8元到24元不等,那么,生产哪种档次的产品所得利润最大?13.如图,在直角坐标系中,以点A (3,0),以23为半径的圆与x 轴相交于点B 、C ,与y 轴相交于点D 、E .(1)若抛物线c bx x y ++=231经过C 、D 两点,求抛物线的解析式,并判断点B 是否在该抛物线上;(2)在(1)中的抛物线的对称轴上求一点P ,使得△PBD 的周长最小;(3)设Q 为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M ,使得四边形BCQM 是平行四边形?若存在,求出点M 的坐标;若不存在,说明理由.。
)若商场平均
子可以使橙子的总产量在20
某类产品按质量共分为生产最低档次产品每件利润为
奶,
x
万元用于修建一条公路,两年修成,通车前该特产只能在当年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投
代入解析式可得出此抛物
,正
,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。
1m水面的宽度是多少?(结
现测得,当水面宽时,涵洞顶点与水面
?
.4m.请判断这辆汽车能否
在水池中央垂直于水面处安装一个柱子OA 水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在
处出手时离地面20/9 m,与篮筐中心
4m(B处),设篮球运行的路线
已知乙跳起后摸到的最大高度为 3.19m,他如何做才能盖
有一辆载有长方体体状集装箱的货车要想通过洞拱横截面为抛物线的隧道,如图1,已知沿
2.4m;集装箱顶部离地面
所示,现测得,当水面宽AB=1.6m
ED是多少?是否会超过。