模态与瞬态动力学分析
- 格式:ppt
- 大小:2.90 MB
- 文档页数:46
第16章瞬态动力学分析第1节基本知识瞬态动力学分析,亦称时间历程分析,是确定随时间变化载荷作用下结构响应的技术。
它的输入数据是作为时间函数的载荷,可以是静载荷、瞬态载荷和简谐载荷的随意组合作用。
输出数据是随时间变化的位移及其它导出量,如:应力、应变、力等。
用于瞬态动力分析的运动方程为:M KJ+ C KJ+ K K}= F (t)}其中:式中[M]为质量矩阵;[C]为阻尼矩阵;[K]为刚度矩阵。
所以在瞬态动力分析中密度或质点质量、弹性模量及泊松比、阻尼等因素均应考虑,在ANSYS分析过程中密度或质量、弹性模量是必须输入的,忽略阻尼时可以选忽略选项。
瞬态动力学分析可以应用于承受各种冲击载荷的结构,如:炮塔、汽车车门等,应用于承受各种随时间变化载荷的结构,如:混凝土泵车臂架、起重机吊臂、桥梁等,应用于承受撞击和颠簸的办公设备,如:移动电话、笔记本电脑等,同时ANSYS在瞬态动力学分析中可以使用线性和非线性单元(仅在完全瞬态动力学中使用)。
材料性质可以是线性或非线性、各向同性或正交各项异性、温度恒定的或温度相关的。
分析结果写入jobname.RST 文件中。
可以用POST1和POST26观察分析结果。
ANSYS在进行瞬态动力学分析中可以采用三种方法,即Full(完全)法、Reduced (缩减)法和Mode Superposition (模态叠加)法。
ANSYS提供了各种分析类型和分析选项,使用不同方法ANSYS软件会自动配置相应选择项目,常用的分析类型和分析选项如表16-1所示。
在瞬态分析中,时间总是计算的跟踪参数,在整个时间历程中,同样载荷也是时间的函 数,有两种变化方式:Ramped :如图16-1(a )所示,载荷按照线性渐变方式变化。
Stepped :如图16-1(b )所示,载荷按照解体突变方式变化。
表16-2常用的分析类型和分析选项 Full (完全)法采用完整的系统矩阵计算瞬态响应。
功能最强大,允许包括非线性的类型。
hypermesh-nastran接口应用实例视频教程模态分析与瞬态动力学分析提供专业水平的有限元咨询和培训服务email:Simxpert@提供专业水平的有限元咨询和培训服务email:Simxpert@ 1.问题描述问题1:计算其振动模态,为下一步计算瞬态做准备. 问题2:在悬臂梁端部施加两个动态载荷。
第一个是垂直方向的按照给定的曲线变化的动态载荷。
第二个是扭矩,其变化规律为幅值A=200,角频率w=80的简谐波.对于如图所示的板(悬臂梁):提供专业水平的有限元咨询和培训服务email:Simxpert@ 2.模态分析1.板的尺寸为250x25x8.(Unit: mm)2.材料属性:弹性模量E=2.0e4MPa,泊松比系数v=0.28,密度d=7.8e -8.3.集中质量:质量大小m=1.0e -4,转动惯量Ixx =0.4,其余为0.实体单元表层蒙了一层壳单元,其厚度为1.0e -4mm. 约束条件:一端固定,一端自由.已知条件:提供专业水平的有限元咨询和培训服务email:Simxpert@ 分析流程1.分析流程中有很多截图,截图仅仅用于说明分析过程,图片中的部分数据和视频中的内容不一致,一切以视频中的数据为准.重要提醒:提供专业水平的有限元咨询和培训服务email:Simxpert@ 2.1.定义材料定义各向同性材料.(操作步骤见视频)提供专业水平的有限元咨询和培训服务email:Simxpert@ 2.2创建实体单元1. 创建component ,然后先创建面单元,20x4.2. 创建实体单元属性prop_solid .3.创建component 来保存实体单元.4.拉伸面单元得到实体单元,删除面单元.因为本模型比较简单,不必使用CAD 软件创建几何模型然后倒入,这里在hm 中创建面单元,然后拉伸得到实体单元。
提供专业水平的有限元咨询和培训服务email:Simxpert@1.创建壳单元属性prop_shell .2. 创建component 来保存壳单元.3.使用Find face 来生成表层的壳单元.4.创建一个set,把壳单元保存到set中备用.2.3.创建表面的蒙皮壳单元提供专业水平的有限元咨询和培训服务email:Simxpert@ 2.4.创建RBar 单元1.创建component 保存RBar 单元.2.通过spotweld菜单创建RBar 单元.提供专业水平的有限元咨询和培训服务email:Simxpert@ 2.5.创建集中质量单元CONM21.创建component 用于保存质量单元.2.生成质量单元.3.修改质量单元的Card Image ,编辑其转动惯量值.提供专业水平的有限元咨询和培训服务email:Simxpert@ 2.6.施加约束1.创建load collector 用于保存约束.2.把板的一端完全约束.提供专业水平的有限元咨询和培训服务email:Simxpert@ 2.7.设置模态分析1.创建load collector 用于保存模态分析.2.编辑其Card image ,设置模态分析参数.提供专业水平的有限元咨询和培训服务email:Simxpert@ 2.8.创建load case.1.创建load case ,在其中指定约束,模态分析.2.设置结果文件的格式,指定输出内容,指定输出对象.提供专业水平的有限元咨询和培训服务email:Simxpert@ 2.9.设置求解控制参数1.在control card 中设置求解控制参数.提供专业水平的有限元咨询和培训服务email:Simxpert@ 2.10.求解计算1.导出.bdf 文件.2.把.bdf文件提交给nastran 进行计算.提供专业水平的有限元咨询和培训服务email:Simxpert@ 2.11.查看计算结果.1.把nastran 计算得到的.pch 结果文件翻译成hypermesh 自己的格式.2.在hypermesh 的post 面板中的deformed 菜单中查看固有频率值以及对应的模态图.3.在.f06文件中查看固有频率值.提供专业水平的有限元咨询和培训服务email:Simxpert@ 模态分析完毕!提供专业水平的有限元咨询和培训服务email:Simxpert@ 3.瞬态分析1.瞬态分析有直接法和模态叠加法,一般都是采用模态叠加法,也就是在模态分析的基础上再进行瞬态分析。
探讨ANSYS教程:模态叠加法瞬态动力学分析模态叠加法通过对振型(由模态分析得到)乘以因子并求和来计算谐响应。
模态叠加法的分析过程由五个基本步骤组成:1.建模2.获取模态分析解3.获取模态叠加法谐响应分析解4.扩展模态叠加解5.观察结果在用运模态叠加法瞬态动力学分析方法时应注意:(1)获取模态分析解的方法在本章模态分析中有详细描述,但如下几点应该注意:模态提取方法应该用子空间法,分块1.anCZOS法,缩减法,或PowerDynamics法中的一种(另外两种方法,即非对称法和阻尼法在模态叠加法中不能采用。
),另外,只有当没有初始的静态解时,才可以使用PowerDynamics法;务必提取出对动力学响应有奉献的的所有模态;对RedUCed模态提取法,要在那些将施加简谐载荷的方位指定主自由度;如果在瞬态动力学分析中需要单元载荷,则必须在模态分析中施加。
这些载荷在模态分析求解时会被忽略,但程序将计算出相应的载荷向量并将其写入振型文件(Jobname.MODE)o这样在瞬态动力学分析时就可以使用这些载荷向量了。
(2)在获取模态叠加法瞬态分析解这一步中,程序将根据模态分析所得到的振型来计算瞬态响应。
注意振型文件(Jobname.MODE)必须存在,且数据库中必须包含和模态分析求解过程所有模型一样的模型。
操作过程和在完全法中描述的基本一样,差异如下:模态叠加法[HROPT];指定要用于求解的模态数[HROPT]。
此数将决定谐响应分析解的精度;可以选择在各频率处,输出一个概括了各阶模态对总响应的奉献的表格[HROUT];只可施加力,加速度,和模态分析中生成的载荷向量。
可用1.VSCA1.E命令来施加在模态分析中生成的载荷向量。
(3)无论采用的模态提取法是那种,模态叠加法谐响应分析的解都被保存到缩减位移文件Jobname.RFRQ中。
因此,如果对应力结果感兴趣,就需要对解开展扩展。
扩展模态的步骤和在缩减法中描述的一样。
第章瞬态动力学分析瞬态动力学分析(也称时间历程分析)是用于确定承受任意的随时间变化载荷的结构的动力学响应的一种方法。
本章将通过实例讲述瞬态动力学分析的基本步骤和具体方法。
瞬态动力学概论弹簧阻尼系统的自由振动分析任务驱动&项目案例A NSYS 17.0中文版有限元分析从入门到精通Note10.1 瞬态动力学概论可以用瞬态动力学分析确定结构在静载荷、瞬态载荷和简谐载荷的随意组合作用下随时间变化的位移、应变、应力及力。
载荷和时间的相关性使得惯性力和阻尼作用比较显著。
如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。
瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和人力。
可以先做一些预备工作以理解问题的物理意义,从而节省大量资源,例如,可以做以下预备工作。
首先分析一个比较简单的模型,由梁、质量体、弹簧组成的模型可以以最小的代价对问题提供有效、深入的理解,简单模型或许正是确定结构所有的动力学响应所需要的。
如果分析中包含非线性,可以首先通过进行静力学分析尝试了解非线性特性如何影响结构的响应。
有时在动力学分析中没必要包括非线性。
了解问题的动力学特性。
通过做模态分析计算结构的固有频率和振型,便可了解当这些模态被激活时结构如何响应。
固有频率同样也对计算出正确的积分时间步长有用。
对于非线性问题,应考虑将模型的线性部分子结构化以降低分析代价。
子结构在帮助文件中的ANSYS Advanced Analysis Techniques Guide里有详细的描述。
进行瞬态动力学分析可以采用3种方法,即Full Method(完全法)、Mode Superposition Method (模态叠加法)和Reduced Method(减缩法)。
下面来比较一下各种方法的优缺点。
10.1.1 Full Method(完全法)Full Method采用完整的系统矩阵计算瞬态响应(没有矩阵减缩)。
结构动力分析研究结构在动荷载作用的响应(如位移、应力、加速度等的时间历程),以确定结构的承载能力和动力特性等。
ANSYS动力分析方法有以下几种,现分别做简要介绍。
1.模态分析用模态分析可以确定设计中的结构或机器部件的振动特性(固有频率和振型)。
它也可以作为其他更详细的动力学分析的起点,例如瞬态动力学分析、谐响应分析、谱分析。
用模态分析可以确定一个结构的固有频率和振型。
固有频率和振型是承受动态荷载结构设计中的重要参数。
如果要进行谱分析或模态叠加法谐响应分析或瞬态动力学分析,固有频率和振型也是必要的。
ANSYS的模态分析是一线性分析,任何非线性特性(如塑性和接触单元)即使定义了也将忽略。
可进行有预应力模态分析、大变形静力分析后有预应力模态分析、循环对称结构的模态分析、有预应力的循环对称结构的模态分析、无阻尼和有阻尼结构的模态分析。
模态分析中模态的提取方法有七种,即分块兰索斯法、子空间迭代法、缩减法或凝聚法、PowerDynamics法、非对称法、阻尼法、QR阻尼法,缺省时采用分块兰索斯法。
2.谐响应分析任何持续的周期荷载将在结构中产生持续的周期响应(谐响应)。
谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共振、疲劳及其他受迫振动引起的有害效果。
谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的荷载时的稳态响应的一种技术。
分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲线。
从这些曲线上可以找到“峰值”响应,并进一步观察频率对应的应力。
这种分析技术只计算结构的稳态受迫振动。
发生在激励开始时的瞬态振动不在谐响应分析中考虑。
谐响应分析是一种线性分析。
任何非线性特性,如塑性和接触(间隙)单元,即使被定义了也将被忽略,但在分析中可以包含非对称系统矩阵,如分析流体—结构相互作用问题。
谐响应分析同样也可以分析有预应力结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。
第三章瞬态动力学分析§3.1瞬态动力学分析的定义瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。
可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。
载荷和时间的相关性使得惯性力和阻尼作用比较重要。
如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。
瞬态动力学的基本运动方程是:其中:[M]=质量矩阵[C]=阻尼矩阵[K]=刚度矩阵{}=节点加速度向量{}=节点速度向量{u}=节点位移向量在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和阻尼力([C]{})的静力学平衡方程。
ANSYS程序使用Newmark时间积分方法§3.2学习瞬态动力学的预备工作瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。
可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。
例如,可以做以下预备工作:1.首先分析一个较简单模型。
创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。
2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。
在某些场合,动力学分析中是没必要包括非线性特性的。
3.掌握结构动力学特性。
通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。
同时,固有频率对计算正确的积分时间步长十分有用。
4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。
<<高级技术分指南>>中将讲述子结构。
§3.3三种求解方法瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。
ANSYS/Profeional产品中只允许用模态叠加法。
ANSYS三种动力学分析方法的一般步骤
完全法瞬态动力分析(在ANSYS/Multiphsics、ANSYS/Mechauioal及ANSYS/Structural中可用)由以下步骤组成:
1.建造模型
2.建立初始条件
3.设置求解控制
4.设置其他求解选项
5.施加载荷
6.存储当前载荷步的载荷设置
7.重复步骤3-6定义其他每个载荷步
8.备份数据库
9.开始瞬态分析
10.退出求解器
11.观察结果
模态叠加法通过乘以放大系数后的振型(从模态分析得到)叠加求和来计算结构的动力学响应。
这种方法在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Structural及ANSYS/Professional中是可用的。
使用这种方法的过程由五个主要步骤组成:
1.建造模型;
2.获取模态解;
3.获取模态叠加法瞬态分析解;
4.扩展模态叠加解;
5.观察结果。
缩减(Reduced)法是用缩减矩阵来计算动力学响应,在ANSYS/Multiphysics,ANSYS/Mechanical及ANSYS/Structural中均可采用。
如果在分析中不准备包含非线性特性(除了简单的节点对节点接触),就可以考虑使用这种方法。
缩减法瞬态动力学分析的过程由五个主要步骤组成:
1.建造模型;
2.获取缩减解;
3.观察缩减法求解结果;
4.扩展解(扩展处理);
5.观察已扩展解的结果。
在这些步骤中,第一步和完全法中的相同,不过不允许有非线性特性(简单的节点对节点接触除外,它是被指定为间隙条件而非单元类型)。
其它步骤的细节在下面解释。
hypermesh——nastran——模态分析。
模态分析关键步骤:1. 创建一个load collector, card image选择EIGRL(LANCZOS方法)。
然后editV1 –V2为频率范围,ND为阶数及方程组解的个数。
两者随意选择一个。
2. 创建loadstep,type为normal modes, method选中刚才创建的load collector。
3. 在control cards的sol选择nomal modes,, 如果想生成op2文件,把post也选上值为-1.4. 导出成bdf文件,启动nastran进行分析。
瞬态动力学分析如果激励是力比较好作,如果是强迫位移,老版本的需要用大质量或大刚度法把位移转换成力的载荷。
nastran 2001版以后可以直接加位移,关键步骤如下:1. 定义随时间历程曲线,创建load collectors,card image为Tabled12. 创建瞬态相应的时间步长和时间,load collectors, card image为Tstep3. 创建一个load collectors,card image为DAREA(如果是强迫位移不能用DAREA)4. 创建一个load collectors,card image为Tload1, excited选择DAREA,TID选择TSTEP,注意TYPE的选择。
5. 创建一个subcase,类型选择直接瞬态分析,DLOAD和TSTEP选择刚才创建的两个相对应的load collectors6. 导出成bdf文件,提交nastran进行分析。
如果是强迫位移,还要多两个卡,就是SPCD, LSEQ详细步骤跟以上差不多,只要把各个卡片弄懂了就很容易了。
瞬态动⼒学分析05§3.5.3.2获取模态叠加法瞬态分析解获取模态叠加法瞬态动⼒学分析解的步骤如下:1.进⼊SOLUTION。
命令:/SOLUGUI:Main Menu>Solution2.定义分析类型和分析选项。
除以下差别外,该步骤完全法中分析选项的基本相同:·不能使⽤求解控制对话框定义模态叠加法瞬态分析类型和分析设置。
不能使⽤求解控制对话框定义模态叠加法瞬态分析的分析类型和分析设置,⽽应当利⽤标准序列的ANSYS求解命令和对应菜单进⾏设置。
·不能使⽤重启动[ANTYPE]。
·选择模态叠加法[TRNOPT]。
·⼀旦指定模态叠加法瞬态分析,对应的求解菜单就会出现。
求解菜单可能处于压缩或展开状态,完全取决于上次ANSYS求解的菜单状态。
压缩菜单包仅仅含模态叠加法瞬态分析的有效选项和/或建议选项。
如果处于压缩菜单状态,希望访问其他求解选项,就选择求解器中的“Unabridged Menu(展开)”菜单。
详细内容,参见《 ANSYS基本分析指南》的使⽤展开菜单。
·指定准备⽤于求解的模态数[TRNOPT]。
这个数⽬决定了瞬态分析解的精度。
⾄少应当包含预计将对动⼒学响应有影响的所有模态。
例如,如果希望激活较⾼阶频率,指定的模态数应当包括较⾼阶模态。
缺省情形下采⽤在模态分析中计算出的所有模态。
·如果不需要使⽤刚体(零频率)模态,使⽤TRNOPT命令的MINMODE强制跳过它们。
·不可⽤⾮线性选项[NLGEOM,SSTIF,NROPT]。
3.如果有间隙条件,就定义间隙。
间隙条件只可以指定在两个主节点之间或主节点与基础之间。
在使⽤⾮缩减法时,⼀主⾃由度就是⼀个⾮约束的激活⾃由度。
关于间隙条件在缩减法中有详细介绍。
命令:GPGUI:Main Menu>Solution>Dynamic Gap Cond>Define4.在模型上施加载荷。