广东省广州市白云区2018届九年级数学下学期综合测试(一模)试题
- 格式:doc
- 大小:802.50 KB
- 文档页数:13
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =【答案】D【解析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.2.如图,Rt △ABC 中,∠ACB =90°,AB =5,AC =4,CD ⊥AB 于D ,则tan ∠BCD 的值为( )A .45B .54C .43D .34【答案】D【解析】先求得∠A =∠BCD ,然后根据锐角三角函数的概念求解即可.【详解】解:∵∠ACB =90°,AB =5,AC =4,∴BC =3,在Rt △ABC 与Rt △BCD 中,∠A+∠B =90°,∠BCD+∠B =90°.∴∠A =∠BCD .∴tan ∠BCD =tanA =BC AC =34, 故选D .【点睛】本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.3.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )A.B.C.D.【答案】C【解析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.4.在△ABC中,∠C=90°,sinA=45,则tanB等于()A.43B.34C.35D.45【答案】B【解析】法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin1B B+=,∴sinB=35,∵tanB=sincosBB=34故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba故选B5.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.5【答案】D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故选D.6.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.4【答案】B【解析】先由平均数是3可得x 的值,再结合方差公式计算.【详解】∵数据1、2、3、x 、5的平均数是3, ∴12355x ++++=3, 解得:x=4,则数据为1、2、3、4、5, ∴方差为15×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2, 故选B .【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义. 7.如图,点M 是正方形ABCD 边CD 上一点,连接MM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A 213B 313C .23D 13 【答案】B【解析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解.【详解】∵四边形ABCD 为正方形,∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F ,∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°,∴∠ABF =∠EAD ,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,在Rt △BEF 中,222313BE =+=,∴313cos 13BF EBF BE ∠===. 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 8.正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A .(2,0)B .(3,0)C .(2,-1)D .(2,1)【答案】B 【解析】试题分析:正方形ABCD 绕点A 顺时针方向旋转180°后,C 点的对应点与C 一定关于A 对称,A 是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD 绕点A 顺时针方向旋转180°后C 的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B .考点:坐标与图形变化-旋转.9.如图,平行四边形 ABCD 中, E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A.65︒B.55︒C.70︒D.75︒【答案】A【解析】分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B 即可解决问题.详解:∵四边形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选A.点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.10.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.AD AB AB BC=【答案】D【解析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC ABAB AD=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB=ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.二、填空题(本题包括8个小题)11.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.【答案】23-2.【解析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=12AF=1,∴22AF FM3,∵FP=FC=1,∴3,∴点P到边AB距离的最小值是3.故答案为3-1.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.12.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为__________.【答案】65°或25°【解析】首先根据角平分线的定义得出∠EAD=∠EAB,再分情况讨论计算即可.【详解】解:分情况讨论:(1)∵AE平分∠BAD,∴∠EAD=∠EAB,∵AD∥BC,∴∠EAD=∠AEB,∴∠BAD=∠AEB,∵∠ABC=50°,∴∠AEB=12•(180°-50°)=65°.(2)∵AE平分∠BAD,∴∠EAD=∠EAB=12DAB ∠,∵AD∥BC,∴∠AEB=∠DAE=12DAB∠,∠DAB=∠ABC,∵∠ABC=50°,∴∠AEB= 12×50°=25°.故答案为:65°或25°.【点睛】本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.分解因:22424x xy y x y --++=______________________.【答案】 (x-2y)(x-2y+1)【解析】根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】22424x xy y x y --++=x 2-4xy+4y 2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)14.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).【答案】43【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可. 解:如图所示,在RtABC 中,tan ∠ACB=AB BC,∴BC=0tan tan 60AB x ACB =∠, 同理:BD=0tan 30x , ∵两次测量的影长相差8米,∴00tan 30tan 60x x -=8, ∴3故答案为3.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.15.如图,正方形ABCD 的边长是16,点E 在边AB 上,AE=3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .【答案】36或45. 【解析】(3)当B′D=B′C 时,过B′点作GH ∥AD ,则∠B′GE=90°,当B′C=B′D 时,AG=DH=12DC=8,由AE=3,AB=36,得BE=3. 由翻折的性质,得B′E=BE=3,∴EG=AG ﹣AE=8﹣3=5,∴B′G=22'B E EG -=22135-=33,∴B′H=GH ﹣B′G=36﹣33=4,∴DB′=22'B H DH +=2248+=45;(3)当DB′=CD 时,则DB′=36(易知点F 在BC 上且不与点C 、B 重合);(3)当CB′=CD 时,∵EB=EB′,CB=CB′,∴点E 、C 在BB′的垂直平分线上,∴EC 垂直平分BB′,由折叠可知点F 与点C 重合,不符合题意,舍去.综上所述,DB′的长为36或45.故答案为36或45.考点:3.翻折变换(折叠问题);3.分类讨论.16.不等式组5243x x +>⎧⎨-≥⎩的最小整数解是_____. 【答案】-1【解析】分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.详解:5243xx+⎧⎨-≥⎩>①②.∵解不等式①得:x>-3,解不等式②得:x≤1,∴不等式组的解集为-3<x≤1,∴不等式组的最小整数解是-1,故答案为:-1.点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.17.不等式组340 1241 2xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.【答案】1【解析】解:34012412xx+≥⎧⎪⎨-≤⎪⎩①②,解不等式①得:43x≥-,解不等式②得:50x≤,∴不等式组的整数解为﹣1,1,1…51,所以所有整数解的积为1,故答案为1.【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.18.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是.【答案】.【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为.考点:反比例函数图象上点的坐标特征;列表法与树状图法.三、解答题(本题包括8个小题)19.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.【答案】(1)抽样调查;12;3;(2)60;(3)25.【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5÷150360=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品x=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)=1220=35,即恰好抽中一男一女的概率是35.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.20.某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)本次调查的样本为,样本容量为;在频数分布表中,a=,b=,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?【答案】200名初中毕业生的视力情况200 60 0.05【解析】(1)根据视力在4.0≤x<4.3范围内的频数除以频率即可求得样本容量;(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;(3)求出样本中视力正常所占百分比乘以5000即可得解.【详解】(1)根据题意得:20÷0.1=200,即本次调查的样本容量为200,故答案为200;(2)a=200×0.3=60,b=10÷200=0.05,补全频数分布图,如图所示,故答案为60,0.05;(3)根据题意得:5000×706010200++=3500(人),则全区初中毕业生中视力正常的学生有估计有3500人.21.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.求证:EM是⊙O的切线;若∠A=∠E,BC=3,求阴影部分的面积.(结果保留π和根号).【答案】(1)详见解析;(2)133 24π-;【解析】(1)连接OC,根据垂直的定义得到∠AOF=90°,根据三角形的内角和得到∠ACE=90°+∠A,根据等腰三角形的性质得到∠OCE=90°,得到OC ⊥CE ,于是得到结论;(2)根据圆周角定理得到∠ACB=90°,推出∠ACO=∠BCE ,得到△BOC 是等边三角形,根据扇形和三角形的面积公式即可得到结论.【详解】:(1)连接OC ,∵OF ⊥AB ,∴∠AOF=90°,∴∠A+∠AFO+90°=180°,∵∠ACE+∠AFO=180°,∴∠ACE=90°+∠A ,∵OA=OC ,∴∠A=∠ACO ,∴∠ACE=90°+∠ACO=∠ACO+∠OCE ,∴∠OCE=90°,∴OC ⊥CE ,∴EM 是⊙O 的切线;(2)∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠ACO+∠BCO=∠BCE+∠BCO=90°,∴∠ACO=∠BCE ,∵∠A=∠E ,∴∠A=∠ACO=∠BCE=∠E ,∴∠ABC=∠BCO+∠E=2∠A ,∴∠A=30°,∴∠BOC=60°,∴△BOC 是等边三角形,∴,∴阴影部分的面积1122π= 【点睛】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键. 22.小马虎做一道数学题,“已知两个多项式24A x x =-,2234B x x =+-,试求2A B +.”其中多项式A 的二次项系数印刷不清楚.小马虎看答案以后知道2228A B x x +=+-,请你替小马虎求出系数“”;在(1)的基础上,小马虎已经将多项式A 正确求出,老师又给出了一个多项式C ,要求小马虎求出A C -的结果.小马虎在求解时,误把“A C -”看成“A C +”,结果求出的答案为262x x --.请你替小马虎求出“A C -”的正确答案.【答案】(1)-3; (2)“A -C”的正确答案为-7x 2-2x+2.【解析】(1)根据整式加减法则可求出二次项系数;(2)表示出多项式A ,然后根据A C +的结果求出多项式C ,计算A C -即可求出答案.【详解】(1)由题意得2:4A x x =-,2234B x x =+-, ∴A+2B=(4+)2x +2x -8, 2228A B x x +=+-,∴4+=1,=-3,即系数为-3.(2)A+C=262x x --,且A=234x x --,∴C=4222x x --,∴A -C=2722x x --+【点睛】本题主要考查了多项式加减运算,熟练掌握运算法则是解题关键.23.列方程解应用题八年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.【答案】15/km h【解析】试题分析:设骑车学生的速度为xkm /h ,利用时间关系列方程解应用题,一定要检验. 试题解析:解:设骑车学生的速度为xkm /h ,由题意得 1010123x x -= , 解得 x 15=.经检验x 15=是原方程的解.答: 骑车学生的速度为15km/h .24.如图,已知∠ABC=90°,AB=BC .直线l 与以BC 为直径的圆O 相切于点C .点F 是圆O 上异于B 、C 的动点,直线BF 与l 相交于点E ,过点F 作AF 的垂线交直线BC 于点D .如果BE=15,CE=9,求EF 的长;证明:①△CDF ∽△BAF ;②CD=CE ;探求动点F 在什么位置时,相应的点D 位于线段BC 的延长线上,且使3,请说明你的理由.【答案】(1)275(2)证明见解析(3)F在直径BC下方的圆弧上,且23BF BC=【解析】(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得CD CEBA BC=,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC=3CD=3CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且23BF BC=.【详解】(1)解:∵直线l与以BC为直径的圆O相切于点C.∴∠BCE=90°,又∵BC为直径,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴CE EFBE CE=,∵BE=15,CE=9,即:9159EF=,解得:EF=275;(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴CF CDBF BA=,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴CF CEBF BC=,∴CD CEBA BC=,又∵AB=BC,∴CE=CD ;(3)解:∵CE=CD ,∴BC=3CD=3CE ,在Rt △BCE 中,tan ∠CBE=3CE BC =, ∴∠CBE=30°,故CF 为60°,∴F 在直径BC 下方的圆弧上,且23BF BC =.【点睛】考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.25.如图所示,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.求证:△ACE ≌△BCD ;若AD =5,BD =12,求DE 的长.【答案】(1)证明见解析(2)13【解析】(1)先根据同角的余角相等得到∠ACE=∠BCD ,再结合等腰直角三角形的性质即可证得结论; (2)根据全等三角形的性质可得AE=BD ,∠EAC=∠B=45°,即可证得△AED 是直角三角形,再利用勾股定理即可求出DE 的长.【详解】(1)∵△ACB 和△ECD 都是等腰直角三角形∴AC=BC ,EC=DC ,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA ,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE ≌△BCD (SAS );(2)∵△ACB 和△ECD 都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE ≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠EAD=∠EAC+∠BAC=90°,∴△EAD 是直角三角形13DE ∴===【点睛】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等. 26.观察下列等式:第1个等式:a 1=,第2个等式:a 2=-第3个等式:a 3第4个等式:a 4=-2, …按上述规律,回答以下问题:请写出第n 个等式:a n =__________.a 1+a 2+a 3+…+a n =_________.【答案】(1)n a = (21.【解析】(1)根据题意可知,1 1a ==,2a ==32a ==42a ==,…由此得出第n 个等式:a n = (2)将每一个等式化简即可求得答案.【详解】解:(1)∵第1个等式:11a ==,第2个等式:2a ==第3个等式:32a ==-第4个等式:42a==,∴第n个等式:a n=(2)a1+a2+a3+…+a n=()()(+++++n+11.=1.【点睛】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,矩形ABCD中,E为DC的中点,AD:AB=3:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②2BF=PB•EF;③PF•EF=22AD;④EF•EP=4AO•PO.其中正确的是()A.①②③B.①②④C.①③④D.③④【答案】B【解析】由条件设3,AB=2x,就可以表示出CP=33x,BP=233x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设3x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴3,CD=2x∵CP:BP=1:2∴3,23x∵E为DC的中点,∴CE=12CD=x,∴tan∠CEP=PCEC3tan∠EBC=ECBC3∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BPEF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴PF=2PB=43x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·43x·322AD2=2×3x)2=6x2,∴PF·EF≠2AD2,故③错误.在Rt△ECP中,∵∠CEP=30°,∴23x∵tan∠PAB=PBAB =3 3∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=3x,PO=3 x∴4AO·PO=4×3x·3x=4x2又EF·EP=23x·23x=4x2∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.2.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)【答案】A【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.3.如图,已知线段AB,分别以A,B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )A.40°B.50°C.60°D.70°【答案】B【解析】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.4.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.3B.5C.233D.25【答案】D【解析】过B点作BD⊥AC,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=ADAB=2210=25,故选D.5.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO 为α,则树OA的高度为( )A.30tanα米B.30sinα米C.30tanα米D.30cosα米【答案】C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.6.下列计算正确的是()A=B .a a a +=222C .(1)x y x xy +=+D .236()mn mn =【答案】C【解析】解:A 、不是同类二次根式,不能合并,故A 错误; B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y == 【答案】A【解析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 【详解】设索长为x 尺,竿子长为y 尺,根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩.故选A . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( ) A .360元 B .720元C .1080元D .2160元【答案】C【解析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可. 【详解】3m×2m=6m 2,∴长方形广告牌的成本是120÷6=20元/m 2, 将此广告牌的四边都扩大为原来的3倍, 则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m 2, ∴扩大后长方形广告牌的成本是54×20=1080元, 故选C . 【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.9.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边【答案】C【解析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A 、B 、C 到原点的距离的大小,从而得到原点的位置,即可得解. 【详解】∵|a|>|c|>|b|,∴点A 到原点的距离最大,点C 其次,点B 最小, 又∵AB=BC ,∴原点O 的位置是在点B 、C 之间且靠近点B 的地方. 故选:C . 【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.10.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC=90°,CA ⊥x 轴,点C 在函数y=kx(x >0)的图象上,若AB=2,则k 的值为( )A .4B .2C .2D 2【答案】A【解析】作BD ⊥AC 于D ,如图,先利用等腰直角三角形的性质得到22,2,再利用AC ⊥x 轴得到C 2,2),然后根据反比例函数图象上点的坐标特征计算k 的值. 【详解】作BD ⊥AC 于D ,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=kx得k=2×22=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.二、填空题(本题包括8个小题)11.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.【答案】1【解析】根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案为1.12.如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,OE3=OA5,则EFGHABCDSS四边形四边形=_____.【答案】9 25【解析】试题分析:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,∴EFAB=OEOA=35,则EFGHABCDSS四边形四边形=2()OEOA=23()5=925.故答案为925.点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.13.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.【答案】23【解析】试题解析:∵共6个数,小于5的有4个,∴P(小于5)=46=23.故答案为23.14.函数21yx=-中,自变量x的取值范围是_____.【答案】x≠1【解析】根据分母不等于0,可以求出x的范围;【详解】解:(1)x-1≠0,解得:x≠1;故答案是:x≠1,【点睛】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).【答案】甲【解析】根据甲,乙两公司折线统计图中2014年、2018年的销售量,计算即可得到增长量;根据两个统计图中甲,乙两公司销售增长量即可确定答案.【详解】解:从折线统计图中可以看出:甲公司2014年的销售量约为100辆,2018年约为600辆,则从2014~2018年甲公司增长了500辆; 乙公司2014年的销售量为100辆,2018年的销售量为400辆,则从2014~2018年,乙公司中销售量增长了300辆.所以这两家公司中销售量增长较快的是甲公司, 故答案为:甲. 【点睛】本题考查了折线统计图的相关知识,由统计图得到关键信息是解题的关键; 16.如图,直线4y x =+与双曲线ky x=(k≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为_________.【答案】(0,52). 【解析】试题分析:把点A 坐标代入y=x+4得a=3,即A (﹣1,3),把点A 坐标代入双曲线的解析式得3=﹣k ,即k=﹣3,联立两函数解析式得:,解得:,,即点B 坐标为:(﹣3,1),作出点A 关于y 轴的对称点C ,连接BC ,与y 轴的交点即为点P ,使得PA+PB 的值最小,则点C坐标为:(1,3),设直线BC 的解析式为:y=ax+b ,把B 、C 的坐标代入得:,解得:,所以函数解析式为:y=x+52,则与y 轴的交点为:(0,52). 考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.17.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 …n正三角形个数 4 7 10 13 …a n【答案】3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题解析:故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.18.81的算术平方根是_______.【答案】3【解析】根据算术平方根定义,先化简81,再求81的算术平方根.【详解】因为81=9所以81的算术平方根是3故答案为3【点睛】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,-1的特殊性质.三、解答题(本题包括8个小题)19.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方23米处的点C出发,沿斜面坡度1:3i 的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)【答案】33+3.5【解析】延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=23、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠3可得答案.。
2018学年(下)省实教育集团初三一模联考数学第一部分选择题(共30分)一、选择题(共10小题,每小题3分,共30分)1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2C.0D.π2.如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为()A.42°B.50°C.60°D.68°3.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10114.下列计算正确的是()A.a3•a3=2a3 B.a2+a2=a4C.a6÷a2=a3D.(﹣2a2)3=﹣8a65.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°6.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、407.下列命题是假命题的是()A.平行四边形是轴对称图形B.角平分线上的点到角两边的距离相等C.正六边形的内角和是720°D.不在同一直线上的三点确定一个圆8.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°9.如图,二次函数y=x2与反比例函数y=(x>0)的图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1B.C.m2D.m10.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGE B.△B’FG的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB 'F 的面积是一个定值第二部分 非选择题(共120分)二、填空题(共6小题,每小题3分,共18分)11.在函数y =中,自变量x 的取值范围是 . 12.方程组的解是 .13.因式分解:8a 3﹣2ab 2= .14.如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是 .(结果保留π)15.如图,已知点A 、B 分别在反比例函数y =(x >0),y =﹣(x >0)的图象上,且OA ⊥OB ,则的值为____________.16.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC =60°,2AB =BC =1,则下列结论:①∠CAD =30°②BD =③S 平行四边形ABCD =21AB •AC ,④OP =DO ⑤S △APO =,正确的有______________.第14题 第15题 第16题三、解答题(共9题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)计算:+(﹣3)0﹣6cos45°+()﹣1.18.(9分)如图,E ,F 是四边形ABCD 的对角线AC 上两点,AF =CE ,DF =BE ,DF ∥BE .求证:(1)△AFD ≌△CEB ;(2)四边形ABCD 是平行四边形.19.(10分)先化简,再求值:(+)÷.其中x 是方程0232=+-x x 的解.20.(10分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.21.(12分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?22.(12分)如图,△AOB的顶点A、B分别在x轴,y轴上,∠BAO=45°,且△AOB的面积为8.(1)直接写出A、B两点的坐标;(2)过点A、B的抛物线G与x轴的另一个交点为点C.①若△ABC是以BC为腰的等腰三角形,用尺规作图作出点C(保留作图痕迹,不写作法),并求出此时抛物线的解析式;②将抛物线G向下平移4个单位后,恰好与直线AB只有一个交点N,求点N的坐标.23.(12分)矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF ,求∠EFC 的正切值;(3)如图2,将△CEF 沿EF 折叠,点C 恰好落在边OB 上的点G 处,求此时反比例函数的解析式.图1 图224.如图1,已知直线y =kx 与抛物线3222742+-=x y 交于点A (3,6). (1)求直线y =kx 的解析式和线段OA 的长度;(2)点P 为抛物线第一象限内的动点,过点P 作直线PM ,交x 轴于点M (点M 、O 不重合),交直线OA 于点Q ,再过点Q 作直线PM 的垂线,交y 轴于点N .试探究:线段QM 与线段QN 的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B 为抛物线上对称轴右侧的点,点E 在线段OA 上(与点O 、A 不重合),点D (m ,0)是x 轴正半轴上的动点,且满足∠BAE =∠BED =∠AOD .继续探究:m 在什么范围时,符合条件的E 点的个数分别是1个、2个?25.(14分)问题探究:(1)如图①,Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 是AB 边上任意一点,则CD 的最小值为 .(2)如图②,矩形ABCD 中,AB =3,BC =4,点M 、点N 分别在BD 、BC 上,求CM +MN 的最小值. (3)如图③,矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是BC 边上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG 、CG ,四边形AGCD 的面积是否存在最小值,若存在,求这个最小值及此时BF 的长度.若不存在,请说明理由.参考答案:一、选择题:BCCDC DADBD10.【解答】解:A 、连接OA 、OC ,∵点O 是等边三角形ABC 的内心,∴AO 平分∠BAC ,∴点O 到AB 、AC 的距离相等,由折叠得:DO 平分∠BDB ',∴点O 到AB 、DB '的距离相等,∴点O 到DB '、AC 的距离相等,∴FO 平分∠DFG ,∠DFO =∠OFG =(∠F AD +∠ADF ),由折叠得:∠BDE =∠ODF =(∠DAF +∠AFD ),∴∠OFD +∠ODF =(∠F AD +∠ADF +∠DAF +∠AFD )=120°,∴∠DOF =60°,同理可得∠EOG =60°,∴∠FOG =60°=∠DOF =∠EOG ,∴△DOF ≌△GOF ≌△GOE , ∴OD =OG ,OE =OF ,∠OGF =∠ODF =∠ODB ,∠OFG =∠OEG =∠OEB ,∴△OAD ≌△OCG ,△OAF ≌△OCE ,∴AD =CG ,AF =CE ,∴△ADF ≌△CGE ,故选项A 正确;B 、∵△DOF ≌△GOF ≌△GOE ,∴DF =GF =GE ,∴△ADF ≌△B 'GF ≌△CGE ,∴B 'G =AD , ∴△B 'FG 的周长=FG +B 'F +B 'G =FG +AF +CG =AC (定值),故选项B 正确;C 、S 四边形FOEC =S △OCF +S △OCE =S △OCF +S △OAF =S △AOC =(定值),故选项C 正确;D 、S 四边形OGB 'F =S △OFG +S △B 'GF =S △OFD +△ADF =S 四边形OF AD =S △OAD +S △OAF =S △OCG +S △OAF =S △OAC ﹣S △OFG , 过O 作OH ⊥AC 于H ,∴S △OFG =•FG •OH ,由于OH 是定值,FG 变化,故△OFG 的面积变化,从而四边形OGB 'F 的面积也变化,故选项D 不一定正确;故选:D .二、填空题:11.x ≥-2且x ≠0 12. ⎩⎨⎧==13y x 13. 2a(2a+b)(2a-b) 14. 65π 15. 2 16.①②⑤ 17.【解答】解:原式=3+1﹣6×+2 4分 =3+1﹣3+2 8分=3. 9分18.【解答】证明:(1)∵DF ∥BE ,∴∠DF A =∠BEC , 2分在△ADF 和△CBE 中,∴△AFD ≌△CEB (SAS ); 5分(2)∵△AFD ≌△CEB ,∴AD =BC ,∠DAF =∠BCE ,∴AD ∥BC ,∴四边形ABCD 是平行四边形. 4分19.【解答】解:(+)÷ =÷ 3分=(x +2)•= 6分∵x 是方程0232=+-x x 的根,∴x=1或x=2 8分∵x ≠2,∴x=1 ∴当x =1时,原式==. 10分20.【解答】解:(1)本次调查的总人数为12÷30%=40人,∴a =40×5%=2,b =×100=45,c =×100=20,故答案为:2、45、20; 3分(2)扇形统计图中表示C 等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72; 4分(3)画树状图,如图所示:8分共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P (选中的两名同学恰好是甲、乙)==. 10分21.【解答】解:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x +5)元,根据题意得:=1.5×,3分解得:x=25,5分经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.6分(2)设每套悠悠球的售价为y元,根据题意得:500÷25×(1+1.5)y﹣500﹣900≥(500+900)×25%,10分解得:y≥35.答:每套悠悠球的售价至少是35元.12分22.【解答】解:(1)在Rt△AOB中,∵∠BAO=45°,∴AO=BO,∴•OA•OB=8,∴OA=OB=4,∴A(4,0),B(0,4).2分(直接出结果即可)(2)①如图所示:4分当等C在点A的左侧时,易知C(﹣4,0),B(0,4),A(4,0),顶点为B(0,4),时抛物线解析式为y=ax2+4,(4,0)代入得到a=﹣,∴抛物线的解析式为y=﹣x2+4.当C与O重合时,△ABC是等腰三角形,但此时不存在过A,B,C三点的拋物线.综上所述,抛物线的解析式为y=﹣x2+4.7分②抛物线G向下平移4个单位后,经过原点(0,0)和(4,﹣4),设抛物线的解析式为y=mx2+nx,把(4,﹣4)代入得到n=﹣1﹣4m,∴抛物线的解析式为y=mx2+(﹣1﹣4m)x,由,消去y得到mx2﹣4mx﹣4=0,由题意△=0,∴16m2+16m=0,∵m≠0,∴m=﹣1,∴抛物线的解析式为y=﹣x2+3x,10分由,解得,∴N(2,2).12分23.【解答】解:(1)∵OA=3,OB=4,∴B(4,0),C(4,3),∵F是BC的中点,∴F(4,),∵F在反比例y=函数图象上,∴k=4×=6,∴反比例函数的解析式为y=,∵E点的坐标为3,∴E(2,3);3分(2)∵F点的横坐标为4,∴F(4,),∴CF=BC﹣BF=3﹣=∵E的纵坐标为3,∴E(,3),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC==,6分(3)如图,由(2)知,CF=,CE=,,过点E作EH⊥OB于H,∴EH=OA=3,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴=,∴,∴BG=,9分在Rt△FBG中,FG2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函数解析式为y=.12分24.解:(1)把点A(3,6)代入y=kx得;∵6=3k,∴k=2,∴y=2x.OA=.2分(2)是一个定值,理由如下:如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.①当QH与QM重合时,显然QG与QN重合,此时=tan∠AOM=2;②当QH与QM不重合时,∵QN⊥QM,QG⊥QH不妨设点H,G分别在x、y轴的正半轴上,∴∠MQH=∠GQN,又∵∠QHM=∠QGN=90°∴△QHM∽△QGN…,∴=tan∠AOM=2,当点P、Q在抛物线和直线上不同位置时,同理可得=2.7分(3)如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R ∵∠AOD=∠BAE,∴AF=OF,∴OC=AC=OA=∵∠ARO=∠FCO=90°,∠AOR=∠FOC,∴△AOR∽△FOC,∴,∴OF=,∴点F(,0),设点B(x,﹣),过点B作BK⊥AR于点K,则△AKB∽△ARF,∴,即,解得x1=6,x2=3(舍去),∴点B(6,2),∴BK=6﹣3=3,AK=6﹣2=4,∴AB=5;在△ABE与△OED中∵∠BAE=∠BED,∴∠ABE+∠AEB=∠DEO+∠AEB,∴∠ABE=∠DEO,∵∠BAE=∠EOD,∴△ABE∽△OED.设OE=a,则AE=3﹣a(0<a<3),由△ABE∽△OED得,∴=,∴m=a(3﹣a)=﹣a2+a(0<a<3),∴顶点为(,)如答图3,当m=时,OE=a=,此时E点有1个;当0<m<时,任取一个m的值都对应着两个a值,此时E点有2个.∴综上可得:当m=时,E点只有1个;当0<m<时,E点有2个.14分25.解:(1)如图①,过点C作CD⊥AB于D,根据点到直线的距离垂线段最小,此时CD最小,在Rt△ABC中,AC=3,BC=4,根据勾股定理得,AB=5,∵AC×BC=AB×CD,∴CD==,故答案为;2分(2)如图②,作出点C关于BD的对称点E,过点E作EN⊥BC于N,交BD于M,连接CM,此时CM+MN=EN最小;∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=3,根据勾股定理得,BD=5,∵CE⊥BC,∴BD×CF=BC×CD,∴CF==,由对称得,CE=2CF=,在Rt△BCF中,cos∠BCF==,∴sin∠BCF=,在Rt△CEN中,EN=CE sin∠BCE==;即:CM+MN的最小值为;6分(3)如图3,∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =4,∠ABC =∠D =90°,根据勾股定理得,AC =5, ∵AB =3,AE =2,∴点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G 到AC 的距离为h ,∵S 四边形AGCD =S △ACD +S △ACG =AD ×CD +AC ×h =×4×3+×5×h =h +6, ∴要四边形AGCD 的面积最小,即:h 最小,∵点G 是以点E 为圆心,BE =1为半径的圆上在矩形ABCD 内部的一部分点, ∴EG ⊥AC 时,h 最小,由折叠知∠EGF =∠ABC =90°,延长EG 交AC 于H ,则EH ⊥AC ,在Rt △ABC 中,sin ∠BAC ==,在Rt △AEH 中,AE =2,sin ∠BAC ==, ∴EH =AE =,∴h =EH ﹣EG =﹣1=,∴S 四边形AGCD 最小=h +6=×+6=,过点F 作FM ⊥AC 于M ,∵EH ⊥FG ,EH ⊥AC ,∴四边形FGHM 是矩形,∴FM =GH = ∵∠FCM =∠ACB ,∠CMF =CBA =90°,∴△CMF ∽△CBA ,∴,∴,∴CF =1 ∴BF =BC ﹣CF =4﹣1=3. 14分。
2018一模函数压轴题汇编——参考答案【例题分析】例题1、解:(1)由题意解得,∴抛物线解析式为y=x2﹣x﹣,…………………………………………2分∵y=x2﹣x﹣=(x﹣)2﹣,∴顶点坐标(,﹣).…………………………………………3分(2)如图1中,连接AB,作DH⊥AB于H,交OB于P,此时PB+PD最小.理由:∵OA=1,OB=,∴tan∠ABO==,∴∠ABO=30°,∴PH=PB,…………………………………………5分∴PB+PD=PH+PD=DH,∴此时PB+PD最短(垂线段最短).在RT△ADH中,∵∠AHD=90°,AD=,∠HAD=60°,∴sin60°=,∴DH=,∴PB+PD的最小值为.故答案为.…………………………………………7分(3)如图,RT△AOB中,∵tan∠ABO==,∴∠ABO=30°,…………………………………………8分作AB的中垂线与y轴交于点E,连接EA,则∠AEB=120°,以E为圆心,EB为半径作圆,与抛物线对称轴交于点F、G.则∠AFB=∠AGB=60°,从而线段FG上的点满足题意,∵EB==,∴OE=OB﹣EB=,…………………………………………10分∵F(,t),EF2=EB2,∴()2+(t+)2=()2,解得t=或,…………………………………………12分故F(,),G(,),∴t的取值范围≤t≤…………………………………………14分例题2、解:(1)根据题意得A(﹣4,0),C(0,2),∵抛物线y=﹣x2+bx+c经过A、C两点,∴,∴,∴y=﹣x2﹣x+2;…………………………………………3分(2)①如图,令y=0,∴﹣x2﹣x+2=0,∴x1=﹣4,x2=1,∴B(1,0),…………………………………………4分过D作DM⊥x轴于M,过B作BN⊥x轴交于AC于N,∴DM∥BN,∴△DME∽△BNE,∴==,…………………………………………5分设D(a,=﹣a2﹣a+2),∴M(a,a+2),∵B(1.0),∴N(1,),∴==(a+2)2+;…………………………………………7分∴当a=2时,的最大值是;…………………………………………8分②∵A(﹣4,0),B(1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,………………………9分∴P(﹣,0),∴PA=PC=PB=,∴∠CPO=2∠BAC,∴tan∠CPO=tan(2∠BAC)=,…………………………………………10分过D作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,∴∠DCF=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=,即,令D(a,﹣a2﹣a+2),∴DR=﹣a,RC=﹣a2﹣a,∴,∴a1=0(舍去),a2=﹣2,∴x D=﹣2,…………………………………………12分情况二,∴∠FDC=2∠BAC,∴tan∠FDC=,设FC=4k,∴DF=3k,DC=5k,∵tan∠DGC==,∴FG=6k,∴CG=2k,DG=3k,∴∴RC=k,RG=k,DR=3k﹣k=k,∴==,∴a1=0(舍去),a2=,点D的横坐标为﹣2或﹣.…………………………………………14分例题3、解:(1)A(0,4),B(4,0),C(-1,0) ……………………………3分(2) ①AQ AO AQ COQP CO QP AO ==或 2431x x x =-2134x x x =-或 解得134x =或7x =, 均在抛物线对称轴的右侧. ∴点P 的坐标为1351(,)-416或(7,24). …………………5分 (图1) ② Q (x ,4) ,P (x ,2-34x x ++) PQ =23x x -=PM ,△AEM ∽△MFP . 则有AM MPME PF=. ∵ME =OA =4,AM=AQ =x ,PM =PQ =23x x -,所以234x x xPF-=.得PF =4x -12,∴ OM =(4x -12)-x =3x -12. ………………7分 Rt △AOM 中,由勾股定理得222OM OA AM +=,∴222(312)4x x -+=,解得x 1=4,x 2=5.,均在抛物线对称轴的右侧. (图2) ∴点P 的坐标为(4,0)或(5,-6).………………………………9分例题4、解:(1)由题意得,⎧⎪⎨⎪⎩∴二次函数的解析式为y =(10)B ∴,,其顶点坐标为(-(2)由题意知,3AO =,OB 60CBA ∴∠=︒,又BM BN =,∴△MBN将BMN ∆沿MN 翻折后,2t B N BN '==,60B NM BMN '∠=∠=︒,//,B N MB '∴(13t B '∴-). …………………………5分若点B '=化简得:29t 9t=0-,t 0≠∴,此时,(10(0M N -,),,(3)由题意可得ABC ∆且30,60.BAC ABC ∠=︒∠=︒又分二种情况讨论:1),当P 在x 轴上时,过Q 作1PQ BQ x ⊥交轴于1P ,则1PBQ ABC ∆∆∽,此时1(10)P -,; 过Q 作2PQ x ⊥轴于2P ,则2QBP ABC ∆∆∽,此时21(0)2P,;P 在x 轴上其他位置时,三角形PQB ∆不为直角三角形,不可能与ABC ∆相似. ……………………………11分2),同理,当P 点在y 轴上时,设1PQ BQ y ⊥交轴于3P ,则3BPQ ABC ∆∆∽,此时3(03P,;过B 作4P B BQ ⊥交y 轴于4P ,但4,BP ACBQ BC≠则2QBP ABC ∆∆与不相似,P 在y 轴上其他位置时,三角形PQB ∆不为直角三角形,不可能与ABC ∆相似. ……………………………14分例题5、解: (1) 抛物线223(0)y ax ax a =-->的对称轴为:212x a-=-=. ………………………1分 a >0,抛物线开口向上,大致图象如图所示. ∴当1x ≥时,y 随x 增大而增大;由已知:当24x ≤≤时,函数有最大值5.∴当4x =时, 5y =, 16835,1a a a ∴--==得:. 223y x x ∴=-- ……………………………2分令0,x = 得3y =- ,令0,y = 得13x x =-=或,∴ 抛物线与y 轴交于0(,-3), 抛物线与x 轴交于-(1,0)、(3,0). ……………………………3分 (2)2223(1)4y x x x =--=--,其折叠得到的部分对应的解析式为:2(1)43)y x x =--+<<(-1,其顶点为1,4(). …………………4分图象与直线y n =恒有四个交点, ∴04n <<由2(1)4x n --+=,解得1x =(1),(1)B n C n ∴,BC =…………………………6分当以BC 为直径的圆与x 轴相切时,2BC n =.即:2n =,=24n n ∴=- ,得n =,04n <<,∴n =………………………8分 (另法:∵BC 直径,且⊙F 与x 轴相切,∴FC =y =n ,∵对称轴为直线x =1,∴F (1,n ),则C (1+n ,n ),又∵C 在2(1)43)y x x =--+<<(-1上, ∴2(11)4n n =-+-+,得12n -±=,04n <<,∴12n -+=(3)若关于m 的一元二次方程20040m y m k y -+-+= 恒有实数根,则须 200=)4(4)0y k y ∆---+≥( 恒成立, ……………………………10分即2004416k y y ≤-+恒成立,即202124y k -+≤()恒成立点00(,)P x y 是(2)中翻折得到的抛物线弧部分上任意一点,004y ∴<≤,∴ 20212344y -+<≤(), ( k 取 202124y -+()值之下限)…………………………13分∴ 实数k 的最大值为3. ……………………………14分例题6、解:(1)∵C (0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax 2﹣2 x ﹣9a=0, ∵a ≠0,∴x 2﹣2 x ﹣9=0,解得:x=﹣ 或x=3 . ∴点A 的坐标为(﹣ ,0),B (3 ,0).∴抛物线的对称轴为x= .……………………………3分 (2)∵OA= ,OC=3, ∴tan ∠CAO= , ∴∠CAO=60°.∵AE 为∠BAC 的平分线, ∴∠DAO=30°.∴DO=AO=1. ∴点D 的坐标为(0,1)……………………………5分设点P 的坐标为( ,a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD=PA 时,4=12+a 2,方程无解.当AD=DP 时,4=3+(a ﹣1)2,解得a=2或a=0,∴点P的坐标为(,2)或(,0).……………………………6分当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,2)或(,0)或(,﹣4).…………………………8分(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m=,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.……………………………10分将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.……………………………12分过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.…………………14分例题7、解:(1)由题意,得点B的坐标为(4,–1).∵抛物线过点A(0,–1),B(4,–1)两点,∴21,1144.2c b c -=⎧⎪⎨-=-⨯++⎪⎩解得2,1.b c =⎧⎨=-⎩ ∴抛物线的函数表达式为:21212y x x =-+-. ……………………………3分(2)ⅰ)∵A 的坐标为(0,–1),C 的坐标为(4,3).∴直线AC 的解析式为:y =x –1.设平移前的抛物线的顶点为P 0,则由(1)可得P 0的坐标为(2,1),且P 0在直线AC 上. ∵点P 在直线AC 上滑动,∴可设P 的坐标为(m ,m -1),则平移后的抛物线的函数表达式为21()(1)2y x m m =--+-.解方程组21,1()(1).2y x y x m m =-⎧⎪⎨=--+-⎪⎩得{11,1,x m y m ==-{222,3.x m y m =-=- 即P (m ,m -1),Q (m -2,m -3).……………………………5分 过点P 作PE ∥x 轴,过点Q 作QE ∥y 轴,则 PE =m -(m -2)=2,QE =(m -1)-(m -3)=2. ∴PQ=AP 0.……………………………6分若△MPQ 为等腰直角三角形,则可分以下两种情况:①当PQ 为直角边时:M 到PQ 的距离为为22(即为PQ 的长). 由A (0,-1),B (4,-1),P 0(2,1)可知:△ABP 0为等腰直角三角形,且BP 0⊥AC ,BP 0=22.过点B 作直线l 1∥AC 交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线l 1的解析式为:1y x b =+.又∵点B 的坐标为(4,–1),∴114b -=+.解得15b =-. ∴直线l 1的解析式为:5y x =-.解方程组25,12 1.2y x y x x =-⎧⎪⎨=-+-⎪⎩得:114,1,x y =⎧⎨=-⎩222,7.x y =-⎧⎨=-⎩ ∴1(4,1)M -,2(2,7)M --. ……………………………8分②当PQ 为斜边时:MP =MQ =2,可求得M 到PQ 的距离为为2.取AB 的中点F ,则点F 的坐标为(2,-1).由A(0,-1),F(2,-1),P 0(2,1)可知:△AFP 0为等腰直角三角形,且F 到AC 的距离为2.∴过点F 作直线l 2∥AC 交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线l 2的解析式为:2y x b =+.又∵点F 的坐标为(2,–1),∴212b -=+.解得23b =-.∴直线l 2的解析式为:3y x =-. 解方程组23,12 1.2y x y x x =-⎧⎪⎨=-+-⎪⎩ 得:1112x y ⎧=⎪⎨=-⎪⎩2212x y ⎧=⎪⎨=-⎪⎩∴3(12M -,4(12M -.综上所述:所有符合条件的点M 的坐标为: 1(4,1)M -,2(2,7)M --,3(12M -,4(12M -.……………10分ⅱ) PQ NP BQ +存在最大值,理由如下: 由ⅰ)知PQ =22,当NP +BQ 取最小值时,PQ NP BQ+有最大值. 取点B 关于AC 的对称点B ′,易得B ′ 的坐标为(0,3),BQ = B ′Q .连接QF ,FN ,QB ′,易得FN PQ .∴四边形PQFN 为平行四边形.……………………………12分∴NP=FQ .∴NP +BQ =F Q + B ′P ≥F B ′当B ′,Q ,F 三点共线时,NP +BQ最小,最小值为. ∴PQ NP BQ +的最大值. …………………………14分例题8、解:(1)y =-223x +43x +2………………………………………………………2分[或y =-228(1)33x -+](2)△PAC的周长有最小值.……………………………………………………1分连结AC、BC,∵AC的长度一定,∴要使△PAC的周长最小,就是使PA+PC最小.∵点A关于对称轴x =1的对称点是B点,∴BC与对称轴的交点即为所求的点P(如图2).…………………………………2分设直线BC(用BC l 表示,其他直线可用相同方式表示)的表达为BC l :y =kx b +,则有302k b b +=⎧⎨=⎩,解得232k b ⎧=-⎪⎨⎪=⎩,∴BC l :y =-23x +2.……………………………3分 把x =1代入,得y =43, 即点P的坐标为P(1,43).…………………………………………………………4分 ∴△PAC的周长取得最小值,取得最小值时点P的坐标为P(1,43);作DE∥BC交x 轴于点E,DE交对称轴x =1于点Q(如图3).……………5分在Rt过点D作DF⊥y 轴于点F,交对称轴x =1于点N. ∵Rt △CDF∽Rt △CHO,∴CF CD CO CH=, ∴CF=CO CD CH ⋅=5,OF=CO-CF=2-5; 同样,FD CD OH CH =,FD=OH CD CH ⋅5, x y,…………………………6分. ∵DE∥BC,∴可设DE l (过点D、E的直线):y =-23x +1b ,把D点坐标代入其中,得-23⋅1b解得1b DE l :y =-23x 8分点E的纵坐标为0,代入其中,解得x =3-5,.∵点Q在对称轴x =1上,把x =1代入DE l 中,解得y =43∴Q(1,43.PQ=43-(43EH=3-5-1=2-5. S=S△PDE=S△PDQ+S△PEQ=12PQ·DN+12PQ·EH=12PQ(DN+EH)=12·15(1-5+2-5),化简得S=-225m 10分 可知S是关于m 的二次函数.S存在最大值.配方可得:S=-22(5m +12,由此可得,S取得最大值为12,…………12分取得最大值时m的值为:m14分例题9解:(1)∵将点A(﹣1,0)代入抛物线的解析式得:﹣1﹣b+3=0,解得:b=2,∴y=﹣x2+2x+3.………………………………………………1分∴抛物线的对称轴为直线x=1.令x=0得:y=3,则C(0,3).∵点B与点A、点D与点C分别关于该抛物线的对称轴对称,∴D(2,3),B(3,0).设直线AD的解析式为y=kx+b.∵将A(﹣1,0)、D(2,3)代入得:,解得:k=1,b=1,∴直线AD的解析式为y=x+1.…………………………………………………2分∴直线AD与x轴正方向的夹角为45°.………………………………………………3分(2)如图1所示:设E(m,﹣m2+2m+3),则F(﹣m2+2m+2,﹣m2+2m+3),EF=﹣m2+2m+2﹣m=﹣m2+m+2.∵∠EGF=90°,∠EFG=45°,∴△EFG为等腰直角三角形.…………………………………………………6分∴l=EF+FG+EG=EF+EF+EF=(1+)EF=(1+)(﹣m2+m+2)=﹣()m2+(+1)m+2+2.…………………………………………………7分(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4).…………………………………………………8分①AM为矩形的对角线时,如图2所示:∵由矩形的性质可知:N为AM的中点,A(﹣1,0),M(1,4),∴N(0,2).…………………………………………………10分∵由两点间的距离公式可知:MN==.∴NQ1=NQ2=,∴Q1(0,2+),Q2(0,2﹣).…………………………………………………11分②当AM为矩形的一边时,如图3所示:过Q3作Q3E⊥y轴,垂直为E,过Q4作Q4F⊥y轴,垂足为F.∵在△ANO中,AO=1,ON=2,∴tan∠ANO=,∴tan∠MNP4=,∴P4M MN=,NP4=MN=.…………………………………………………12分∴P4Q3=.∴P4E=P4Q3=1,EQ3=P4Q3=2.∵OE=OP4﹣P4E=4.5﹣1=3.5,∴Q3的坐标为(2,3.5).…………………………………………………13分∵点Q3与Q4关于点N对称,∴Q4(﹣2,).综上所述,点Q的坐标为(0,2+),或(0,2﹣)或(2,3.5)或(﹣2,).…………………………………………………14分例题10 解:(1)将(2,5)A -,(1,0)B -代入2y x bx c =++得42510b c b c -+=⎧⎨-+=⎩………………2分(每个各1分) 解得23b c =-⎧⎨=-⎩ ∴二次函数的解析式为223y x x =-- ………………3分 (2)将0y =代入223y x x =--得2230x x --=,解得121,3x x =-=∴点(3,0)C ……………………4分∵点P 直线AC 下方抛物线上的一动点,过点P 作PE x ⊥轴交AC 于点E ,如右图所示: 则1()2PAC C A S PE x x =-…………………5分 由(2,5)A -,(3,0)C 得直线AC 的解析式为:3y x =-+∴设2(,23)P x x x --,则点(,3)E x x -+ ………………………6分∴3(2)5C A x x -=--=22(3)(23)6E P PE y y x x x x x =-=-+---=-++……………………7分 ∴221155()(6)5152222PAC C A S PE x x x x x x =-=-++=-++ ……………………8分 ∵5125222()2b x a =-=-=-, 将12x =代入2551522PAC S x x =-++可得最大面积为1258PAC S =………………9分 (3)答:存在………………………10分1(1,8)Q ,2(1,2)Q -,3(1,6),Q 4(1,1)Q -………………………14分(注:每个坐标1分)【强化训练】1、解:(1)设抛物线为y=a(x﹣1)2+4,将点(2,3)代入得到a=﹣1 ∴抛物线解析式为y=﹣(x﹣1)2+4,∴y=﹣x2+2x+3.……………………………3分(2)如图1,令y=0,则﹣(x﹣1)2+4=0,∴x=﹣1或x=3,∴A(﹣1,0),B(3,0),∵C(0,3),M(1,4),∴直线CM的解析式为y=x+3,……………………………4分令y=0,则x+3=0,∴x=﹣3,∴D(﹣3,0),∵∠DEM=∠AEP=90°,∠DME=∠APE,∴△DEM∽△AEP,∴,……………………………6分∵A(﹣1,0),E(1,0),D(﹣3,0),M(1,4),∴DE=4,ME=4,AE=2,∴,∴PE=2,∴P(1,2)或(1,﹣2);……………………………8分(3)如图2,当点P在x轴上方时,连接BP,∵PE是抛物线的对称轴,∴∠APE=∠BPE,∵∠ANB=2∠APE,∴∠ANB=∠APB,∴点A,B,N,P四点共圆,……………………………9分∴设圆心F的坐标为(1,n),∴PF=AF=NF,∵A(﹣1,0),N(2,3),∴AF=,NF=,∴n2+4=1+(3﹣n)2,∴n=1,……………………………10分∴F(1,1),PF=AF=,∴PE=+1,∴P(1,+1),当点P在x轴下方时,由对称知,P'(1,﹣﹣1),……………………………12分即:点P的坐标为P(1,+1),或(1,﹣﹣1).……………………………14分2、解:(1)将点A、B坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x2+4x+5.……………………………3分(2)∵点P的横坐标为m,∴P(m,﹣m2+4m+5),E(m,﹣m+3),F(m,0).∴PE=|y P﹣y E|=|(﹣m2+4m+5)﹣(﹣m+3)|=|﹣m2+m+2|,EF=|y E﹣y F|=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF,即:|﹣m2+m+2|=5|﹣m+3|=|m+15| ……………………………5分(a)若﹣m2+m+2=m+15,整理得:2m2﹣17m+26=0,解得:m=2或m=;(b)若﹣m2+m+2=﹣(m+15),整理得:m2﹣m﹣17=0,解得:m=或m=.……………………………7分由题意,m的取值范围为:﹣1<m<5,故m=、m=这两个解均舍去.∴m=2或m=.……………………………8分(3)假设存在.作出示意图如下:∵点E、E′关于直线PC对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE平行于y轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.……………………………10分由直线CD解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E作EM∥x轴,交y轴于点M,易得△CEM∽△CDO,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m2+m+2|∴|﹣m2+m+2|=|m|.……………………………12分①若﹣m2+m+2=m,整理得:2m2﹣7m﹣4=0,解得m=4或m=﹣;②若﹣m2+m+2=﹣m,整理得:m2﹣6m﹣2=0,解得m=3+或m=3﹣.由题意,m的取值范围为:﹣1<m<5,故m=3+这个解舍去.综上所述,存在满足条件的点P,可求得点P坐标为(﹣,),(4,5),(3﹣,2﹣3).……………………………14分3、解:⑴ 点C 的坐标为(0,2).点A 坐标为(-1,0). ……………………………3分⑵ AD=. ……………………………6分 ⑶ 要使,由于PQA=PDE ,所以只须∽,即须∽.……………………………8分○1 当0 <m<1时,点P 在x 轴下方,此时PQA 显然为钝角, 而PDE 显然为锐角,故此时不能有∽. ………………………10分○2 当1<m<2时, ,而此时1<m<2, 则应有,由此知>1. ……………………………12分 综上所述,当>1时,才存在实数m 使得∽, 从而有,此时;当0<1时, 不存在实数m 使得.……………………………14分4、解:(1)设抛物线解析式为y =a (x +1)(x -3),则有4=a (6+1)(6-3),解得a =421, 故抛物线解析式为y =421(x +1)(x -3),对称轴为x =-1+32=1,………………………2分 顶点坐标D (1,-1621).……………………3分(2) 设E (1,t ),则有DE =t +1621, t =421(x +1)(x -3)即421x 2-821x -47-t =0 …………4分 故丨x 1-x 2丨=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16+21t ,即FG =16+21t ,由DE FG =157,解得DE =157FG , ∴t +1621=15716+21t ,解得 t =173,故E (1,173).……………………………6分 m 25DE PQ AQ CD ⋅=⋅∠∠PQA ∆CDE ∆PQA ∆PDE ∆∠∠PQA ∆CDE ∆a a m 1+=211<+<aa a a PQA ∆CDE ∆DE PQ AQ CD ⋅=⋅a a m 1+=≤a DE PQAQ CD ⋅=⋅如图,作∠ABC 的平分线与对称轴x =1的交点即为符合题意的H 点,记为H 1;在x 轴上取点R (-2,0),连接RC 交∠ABC 的平分线BH 1于Q ,则有RB =5;过点C 作CN ⊥x 轴交x 轴于点N在Rt △BCN 中,∵BC =RB ,BQ 平分∠ABC ,∴Q 为RC 中点∵R (-2,0),C (6,4)∴Q (2,2).∵B (3,0),∴过点B 、Q 两点的一次函数解析式为y =-2x +6当x =1时,y =4.故H 1(1,4)…………………………8分如图,过点B 作BH 2⊥BH 1交对称轴于点H 2,则点H 2符合题意,记对称轴于x 轴交于点T.∵BH 2⊥BH 1,∴∠H 1BH 2=90°即∠H 1BT +∠TBH 2=90°∵∠H 1BT +∠TH 1B =90°,∴∠TBH 2=∠TH 1B∵∠BTH 2=∠H 1TB =90°,∴Rt △BTH 2∽Rt △H 1TB∴BT H 1T =H 2T TB =即24=H 2T 2解得H 2T =1即H 2(1,-1)综上,H 1(1,4),H 2(1,-1).………………10分(3)存在定值λ=35,使得(CJ +λ·EJ )min =26. 理由如下: 如图,在对称轴上取点K (1,3),则EI =173-32=256,JI =4-32=52,IK =3-32=32故 EI JI =JI IK =53,∵∠JIE =∠KIJ ∴△IJE ∽△IKJ , ∴EJ KJ =IJ IK =53,即KJ =35EJ …………………………12分 从而CJ +35EJ =CJ +KJ ,当且仅当K 、J 、C 三点共线时, (CJ +λ·EJ )min =KC =26,即(CJ +λ·EJ )min =26故存在定值λ=35,使得(CJ +λ·EJ )min =26. ……………………………14分5、解:(1)∵直线l :y=x +m 经过点B (0,﹣1),∴m=﹣1, ……………………………1分∴直线l 的解析式为y=x ﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2……………………………2分(2)∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,……………………………5分∴抛物线的解析式为y=x2﹣x﹣1;……………………………7分(3)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,……………………………9分在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,……………………………11分在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,……………………………13分∴当t=2时,p有最大值;……………………………14分6、解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;……………………………3分(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,∴抛物线的对称轴l与⊙C相交.(7分)(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;(8分)设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;…………………………13分此时,P点的坐标为(3,).…………………………14分【课后训练】1、解:(1)由题意得,,∴,∴抛物线的解析式y=﹣x2﹣2x+3;…………………………3分(2)如图2,∵抛物线的解析式y=﹣x2﹣x+3;∴B(﹣3,0),∵A(1,0),∴AB=4,…………………………………………4分在x轴上方抛物线的对称轴上,取一点M,使DM=AB=2,∴∠AMB=90°,M(﹣1,2),∴MA=2,………………………………………………………5分以点M为圆心,以MA为半径,作圆,与y轴正半轴相较于点N,即:∠ANB=45°,∴MN=MA=2,…………………………………………6分设点N(0,m)(m>0),∴=2,∴m=2+或m=2﹣(舍)即:当∠ANB=45°时,N(0,2+);…………………………………………8分(3)如图3,∵D(﹣1,0),C(0,3),∴直线CD的解析式为y=3x+3,过点D作DE⊥CD交y轴于E,∴直线DX的解析式为y=﹣x﹣,…………………………………………9分∴E(0,﹣),∵∠CDP=45°,∴DF是∠CDE的平分线,∴,…………………………………………10分设F(0,n),∵C(0,3),∴CF=3﹣n,EF=n+,∵D(﹣1,0),C(0,3),E(0,﹣),∴CD=,DE=,…………………………………………11分∴,∴n=,∴直线DF的解析式为y=x+①,…………………………………………12分∵抛物线的解析式y=﹣x2﹣2x+3②;联立①②得,,或(舍)∴点P的坐标(,).…………………………………………14分2、解:⑴ 令01=y ,得△=222)1(4484)12(4)2(-=+-=---t t t t t , ……………………1分∵t >1,∴△=2)1(4-t >0,…………………………………………2分∴无论t 取何值,方程0)12(22=-+-t tx x 总有两个不相等的实数根,∴无论t 取何值,抛物线1C 与x 轴总有两个交点.…………………………………………3分 ⑵解法一:解方程0)12(22=-+-t tx x 得,11=x ,122-=t x , …………………………………………4分 ∵t >1,∴112>-t .得A (1,0),B (12-t ,0),∵D (m ,n ),E (m +2,n ), ∴DE =AB =2,即2112=--t ,解得2=t . …………………………………………5分 ∴二次函数为1)2(34221--=+-=x x x y ,…………………………………………6分显然将抛物线1C 向上平移1个单位可得抛物线2C :22)2(-=x y ,………………………7分故1=n . …………………………………………8分 解法二:∵D (m ,n )在抛物线2C :22)(t x y -=上,∴2)(t m n -=,解得n t m ±=, …………………………………………5分 ∴D (n t -,n ),E (n t +,n ),∵DE =2,∴n t +-(n t -)=n 2=2, …………………………………………7分解得 1=n . …………………………………………8分⑶由⑵得抛物线2C :22)2(-=x y ,D (1,1),E (3,1),翻折后,顶点F (2,0)的对应点为F '(2,2), 如图,当直线b x y +-=21经过点D (1,1)时,记为1l , 此时23=b ,图形G 与1l 只有一个公共点;………………10分 当直线b x y +-=21经过点E (3,1)时,记为2l ,此时25=b ,图形G 与2l 有三个公共点; ………………………………………12分当3<b 时,由图象可知,只有当直线l :b x y +-=21位于1l 与2l 之间时,图形G 与直线l 有且只有两个公共点,∴符合题意的b 的取值范围是2523<<b .…………………………………………14分3、解:(1)∵抛物线y=﹣ x +2与y 轴交于点C , ∴C (0,2),令y=0,则0=﹣x +2, ∴x=﹣1或x=4,…………………………………………1分∵点A 在点B 的左侧,∴A (﹣1,0),B (4,0),∴OA=1,OB=4,OC=2,根据勾股定理得,AC= ,BC=2 ,∵AB=OA +OB=5,∴AC 2+BC 2=5+20=25=AB 2,∴△ABC 是直角三角形,…………………………………………2分∴AB 是Rt △ABC 的外接圆的直径,∴△ABC 的外接圆的圆心是线段AB 的中点,∴其坐标为(,0);…………………………………………3分(2)∵C(0,2)设直线BC的解析式为y=kx+2,∵B(4,0),∴4k+2=0,∴k=﹣,∴直线BC的解析式为y=﹣x+2,…………………………………………4分∵P是抛物线上一点,设点P(m,﹣m2+m+2)如图,过点P作PQ∥y轴交直线BC于点Q,∴Q(m,﹣m+2),…………………………………………5分①当点P在直线BC上方时,S△PBC=S△PQC+S△PBQ=S△ABC,∴[(﹣m2+m+2)﹣(﹣m+2)]×m﹣[(﹣m2+m+2)﹣(﹣m+2)](m﹣4)=×5×2∴m2﹣4m+5=0,∵△=(﹣4)2﹣4×1×5=﹣4<0,…………………………………………6分∴此方程没有实数根;∴当点P在直线BC上方时,S△PBC ≠S△ABC,②当点P在直线BC下方时,S△PBC=S△PQC﹣S△PBQ=S△ABC,∴[(﹣m+2)﹣(﹣m2+m+2)]×m﹣[(m+2)﹣(﹣m2+m+2)](m﹣4)=×5×2∴m2﹣4m﹣5=0,∴m=﹣1(舍)或m=5,∴P(5,﹣3)…………………………………………6分作PM⊥x轴于,交BC于Q,∴PM=3,MB=1,根据勾股定理得,BP=,AP=3,过点B作BN⊥AP于N,∴∠ANB=∠AMP=90°,∠BAN=∠PAM,∴△ABN∽△APM,∴,,∴BN=,…………………………………………7分在Rt△BPN中,PN==,∴BN=PN,∴∠APB=45°;…………………………………………8分(3)存在,如图2,∵抛物线y=﹣x+2的对称轴为x=,由(2)知,P(5,﹣3),BP=,设E(n,﹣n2+n+2),…………………………………………9分①当点E在抛物线对称轴右侧时,即:点E处时,EF=BP=,∴点E到对称轴的距离为EG=BM=1,∴n﹣=1,∴n=,∴E(,),易知,FG=PM=3,∴F(,);…………………………………………11分②当点E在抛物线对称轴左侧时,即:E'处时,E'F'=BP=,∴点E'到对称轴的距离为E'G'=BM=1,∴﹣n=1,∴n=,∴E'(,),易知,F'G'=PM=3,∴F'(,﹣).…………………………………………13分即:满足条件的点F的坐标为(,)或(,﹣).…………………………………14分4、解:(1)∵抛物线y=mx 2+(m +2)x +2过点(2,4), ∴m•22+2(m +2)+2=4,解得m=﹣,…………………………………1分∴抛物线解析式为y=﹣x 2+x +2,令y=0,则﹣x 2+x +2=0,整理得,x 2﹣5x ﹣6=0,解得x 1=﹣1,x 2=6,令x=0,则y=2,∴A (﹣1,0),B (6,0),C (0,2),…………………………………2分 ∴()721621=⨯+⨯=∆ABC S …………………………………3分(2)过点B 作BM ⊥CD 交CD 的延长线于M , 在Rt △DOC 中,∵OC=OD=2,∴∠CDO=∠BDM=45°,CD=2,在Rt △BMD 中,∵BD=6﹣2=4,∴DM=BM=4×=2,…………………………………5分在Rt△CMB中,tan∠BCM===,又∵tan∠ACO==,∴∠ACO=∠BCD;…………………………………7分(3)①由勾股定理得,BC==2,BE=DE时,点E的横坐标为6﹣×(6﹣2)=4,点E的纵坐标是×(6﹣2)×=,所以,点E1(4,);…………………………………8分BE=BD时,点E的横坐标为6﹣(6﹣2)×=6﹣,点E的纵坐标为(6﹣2)×=,所以,点E2(6﹣,),综上所述,点E1(4,)或E2(6﹣,)时,△BDE是等腰三角形;…………………………………10分②设P(x,﹣x2+x+2),过点P作x轴的垂线,垂足为F,交CD的延长线于点Q,则直线CD的解析式为y=﹣x+2,∴点Q(x,﹣x+2),S△CDP=S△CPQ﹣S△DPQ,=PQ•OF﹣PQ•DF,=PQ•OD,∵OD=2,=PQ=﹣x2+x+2﹣(﹣x+2)=﹣x2+x(0<x<6),…………………………………11分∴S△CDP∵S=﹣x2+x=﹣(x﹣4)2+,∴当x=4时,△CDP的面积最大,此时,﹣x2+x+2=﹣×42+×4+2=,∴点P(4,),…………………………………12分设直线PD的解析式为y=kx+b(k≠0),∴,解得,∴直线PD的解析式为y=x﹣,…………………………………13分直线BC的解析式为y=﹣x+2,联立,解得,所以,点E的坐标为(,).…………………………………14分5、解:(1)∵y=x2﹣x﹣,∴y=(x+1)(x﹣3).∴A(﹣1,0),B(3,0).…………………………………1分当x=4时,y=.∴E(4,).…………………………………2分设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,解得:k=,b=.∴直线AE的解析式为y=x+.…………………………………3分(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.∴直线CE的解析式为y=x﹣.过点P作PF∥y轴,交CE与点F.设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.∴△EPC的面积=×(x2+x)×4=﹣x2+x.∴当x=2时,△EPC的面积最大.∴P(2,﹣).…………………………………5分如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.∵K是CB的中点,∴k(,﹣).∴tan∠KCP=.…………………………………6分∵OD=1,OC=,∴tan∠OCD=.∴∠ODD=∠KCP=30°.∴∠KCD=30°.∵k是BC的中点,∠OCB=60°,∴OC=CK.∴点O与点K关于CD对称.…………………………………7分∴点G与点O重合.∴点G(0,0).∵点H与点K关于CP对称,∴点H的坐标为(,﹣).…………………………………8分∴KM+MN+NK=MH+MN+GN.当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.∴GH==3.∴KM+MN+NK的最小值为3.…………………………………10分(3)如图3所示:∵y′经过点D,y′的顶点为点F,∴点F(3,﹣).…………………………………11分∵点G为CE的中点,∴G(2,).∴FG==.…………………………………13分∴当FG=FQ时,点Q(3,),Q′(3,).当GF=GQ时,点F与点Q″关于y=对称,∴点Q″(3,2).当QG=QF时,设点Q1的坐标为(3,a).由两点间的距离公式可知:a+=,解得:a=﹣.∴点Q1的坐标为(3,﹣).…………………………………13分综上所述,点Q的坐标为(3,)或′(3,)或(3,2)或(3,﹣).…………………………………14分。
广东省广州市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·乐山) ﹣2的相反数是()A . ﹣2B . 2C .D . ﹣2. (2分)(2018·遵义) 2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A . 532×108B . 5.32×102C . 5.32×106D . 5.32×10103. (2分)下列运算中,正确的是()A . ;B . ;C . ;D . .4. (2分) (2019九上·宝安期末) 下面的几何体中,俯视图为三角形的是()A .B .C .D .5. (2分)下列因式分解正确的是()A . x2-16=(x+16)(x-16)B . x2+6x+9=x(x+6)+9C . 3mx-9my=3m(x-y)D . x2-8x+16=(x-4)26. (2分)(2019·蒙城模拟) 某次文艺演中若干名评委对八(1)班节目给出评分.在计算中去掉一个最高分和最低分.这种操作,对数据的下列统计一定不会影响的是()A . 平均数B . 中位数C . 众数D . 方差7. (2分) (2019九上·鄂尔多斯期中) 某商品原价为200元,为了吸引更多顾客,商场连续两次降价后售价为162元,求平均每次降价的百分率是多少?设平均每次降价的百分率为x,根据题意可列方程为()A .B .C .D .8. (2分)(2017·鄂托克旗模拟) 如图,数轴上的点P表示的数可能是()A .B . ﹣C . ﹣3.8D . ﹣9. (2分)如图,B是线段AC的中点,过点C的直线l与AC成60°的角,在直线l上取一点P,使∠APB=30°,则满足条件的点P共有A . 1个B . 2个C . 3个D . 无数个10. (2分)(2019·阳信模拟) 如图,△ABC中,∠ACB=90°,AB=10,tanA= 。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C.D.【答案】A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.2.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°【答案】C【解析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.3.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.【答案】C【解析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=1【答案】A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答. 【详解】∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选A.【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.5.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 6.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】D【解析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.7.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6【答案】D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.8.如图,四边形ABCD内接于⊙O,F是CD上一点,且DF BC=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°【答案】B【解析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【详解】∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵DF BC=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.9.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间【答案】A【解析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A 为停靠点,则所有人的路程的和=15×100+10×300=1(米),②以点B 为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C 为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB 之间停靠时,设停靠点到A 的距离是m ,则(0<m <100),则所有人的路程的和是:30m+15(100﹣m )+10(300﹣m )=1+5m >1,⑤当在BC 之间停靠时,设停靠点到B 的距离为n ,则(0<n <200),则总路程为30(100+n )+15n+10(200﹣n )=5000+35n >1.∴该停靠点的位置应设在点A ;故选A .【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短.10.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.二、填空题(本题包括8个小题)11.关于x的不等式组3515-12xx a->⎧⎨≤⎩有2个整数解,则a的取值范围是____________.【答案】8⩽a<13;【解析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式3x−5>1,得:x>2,解不等式5x−a⩽12,得:x⩽125a+,∵不等式组有2个整数解,∴其整数解为3和4,则4⩽125a+<5,解得:8⩽a<13,故答案为:8⩽a<13【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键12.如图,已知△ABC和△ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB=4,则OE的最小值为_____.【答案】1【解析】根据等边三角形的性质可得OC=12AC,∠ABD=30°,根据“SAS”可证△ABD≌△ACE,可得∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,根据直角三角形的性质可求OE的最小值.【详解】解:∵△ABC的等边三角形,点O是AC的中点,∴OC=12AC,∠ABD=30°∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD当OE⊥EC时,OE的长度最小,∵∠OEC =90°,∠ACE =30°∴OE 最小值=12OC =14AB =1, 故答案为1【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键. 13.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .【答案】-2<k <12。
2018年广东省广州市白云区中考数学一模试卷一.选择题(本大题共10小题.有小题3分,满分30分,在每小题给出的四个选项中.只有一项是符合题目要求的)1.(3分)﹣2的绝对值是()A.﹣2B.2C.﹣D.2.(3分)下列说法正确的是()A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2cm3.(3分)下列计算,正确的是()A.3+2ab=5ab B.5xy﹣y=5xC.﹣5m2n+5nm2=0D.x3﹣x=x24.(3分)矩形ABCD的对角线AC、BD交于点O,以下结论不一定成立的是()A.∠BCD=90°B.AC=BD C.OA=OB D.OC=CD 5.(3分)不等式组的整数解有()A.4个B.3个C.2个D.1个6.(3分)在Rt△ABC中,∠C=90°,sin A=,则AC:AB=()A.3:5B.3:4C.4:3D.4:57.(3分)下列说法错误的是()A.必然发生的事件发生的概率为1B.不可能发生的事件概率为0C.不确定事件发生的概率为0D.随机事件发生的概率介于0和1之间8.(3分)下列判断中,正确的是()A.各有一个角是67°的两个等腰三角形相似B.邻边之比为2:1的两个等腰三角形相似C.各有一个角是45°的两个等腰三角形相似D.邻边之比为2:3的两个等腰三角形相似9.(3分)若抛物线y=x2+px+8的顶点在x轴的正半轴上,那么p的值为()A.±4B.4C.﹣4D.010.(3分)如图,D、E、F分别为△ABC边AC、AB、BC上的点,∠A=∠1=∠C,DE =DF,下面的结论一定成立的是()A.AF=FC B.AE=DE C.AE+FC=AC D.AD+FC=AB二.填空题(本大题共6小题,每小题3分,满分18分)11.(3分)式子在实数范围内有意义,则x的取值范围是.12.(3分)如图,四边形ABCD中,若∠A+∠B=180°,则∠C+∠D=°.13.(3分)已知二元一次方程组的解是方程kx﹣8y﹣2k+4=0的解,则k的值为.14.(3分)从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是.15.(3分)若分式的值为0,则a=.16.(3分)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为cm.三、解答题(本大题共9小题,满分102分.解答应智出文字说明、证明过程或演算步骤)17.(9分)分解因式:2x2﹣8.18.(9分)如图,C是线段BD的中点,AB∥EC,∠A=∠E.求证:AC=ED.19.(10分)我市某区为调查学生的视力变化情况,从全区九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,井将所得数据处理后,制成折线统计图(图①)和扇形统计图(图②)如下:解答下列问题:(1)该区共抽取了多少名九年级学生?(2)若该区共有9万名九年级学生,请你估计2018年该区视力不良(4.9以下)的该年级学生大约有多少人7(3)扇形统计图中B的圆心角度数为.20.(10分)如图,在平面直角坐标系中,一次函数y=kx+1的图象交y轴于点D,与反比例函数y=的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足分别为点B、C.(1)点D的坐标为;(2)当AB=4AC时,求k的值;(3)当四边形OBAC是正方形时,直接写出四边形ABCD与△ACD面积的比.21.(12分)如图,已知▱ABCD的周长是32cm,AB:BC=5:3,AE⊥BC,垂足为E,AF⊥CD,垂足为F,∠EAF=2∠C.(1)求∠C的度数;(2)已知DF的长是关于x的方程x2﹣ax﹣6=0的一个根,求该方程的另一个根.22.(12分)如图所示,A,B两地之间有一座山,原来从A地到B地需要经过C地,现在政府出资打通了一条山岭隧道,使从A地到B地可沿直线AB直接到达.已知BC=8km,∠A=45°,∠B=53°.(1)求点C到直线AB的距离;(2)求现在从A地到B地可比原来少走多少路程?(结果精确到0.1km.参考数据:≈1.41,sin53°≈0.80,cos53°≈0.60)23.(12分)如图,在平面直角坐标系中,点A坐标为(0,3),点B(,m)是以OA为直径的⊙M上的一点,且tan∠AOB=,BH⊥y轴,H为垂足,点C(,)(1)求H点的坐标;(2)求直线BC的解析式;(3)直线BC是否与⊙M相切?请说明理由.24.(14分)如图,AD是Rt△ABC斜边BC上的高.(1)尺规作图:作∠C的平分线,交AB于点E,交AD于点F(不写作法,必须保留作图痕迹,标上应有的字母);(2)在(1)的条件下,过F画BC的平行线交AC于点H,线段FH与线段CH的数量关系如何?请予以证明;(3)在(2)的条件下,连结DE、DH.求证:ED⊥HD.25.(14分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A.B两点,与y轴交于C点,其对称轴为x=1,且A(﹣1,0)、C(0,2).(1)直接写出该抛物线的解析式:(2)P是对称轴上一点,△P AC的周长存在最大值还是最小值?请求出取得最值(最大值或最小值)时点P的坐标;(3)设对称轴与x轴交于点H,点D为线段CH上的一动点(不与点C、H重合).点P是(2)中所求的点.过点D作DE∥PC交x轴于点E.连接PD、PE.若CD的长为m,△PDE的面积为S,求S与m之间的数关系式,试说明S是否存在最值.若存在,请求出最值,井写出S取得的最值及此时m的值;若不存在,请说明理由.2018年广东省广州市白云区中考数学一模试卷参考答案与试题解析一.选择题(本大题共10小题.有小题3分,满分30分,在每小题给出的四个选项中.只有一项是符合题目要求的)1.【解答】解:|﹣2|=2.故选:B.2.【解答】解:A.直线BA与直线AB是同一条直线,故本选项正确;B.延长线段AB,故本选项错误;C.射线BA与射线AB不是同一条射线,故本选项错误;D.线段AB的长为2cm,故本选项错误;故选:A.3.【解答】解:A、一个是数字,一个是字母,不是同类项,不能合并,错误;B、字母不同,不是同类项,不能合并,错误;C、正确;D、字母的指数不同,不是同类项,不能合并,错误.故选:C.4.【解答】解:∵四边形ABCD是矩形,∴∠BCD=90°,AC=BD,OA=OB=OC=OD,即选项A、B、C都正确,选项D不一定正确;故选:D.5.【解答】解:对一元一次不等式组求解可得:﹣1≤x<1.5.又由于x是整数,则x可取﹣1,0,1.故不等式组的整数解有3个.故选:B.6.【解答】解:如图所示:∵∠C=90°,sin A==,∴设BC=3x,则AB=5x,故AC=4x,故AC:AB=4:5.故选:D.7.【解答】解:A、必然发生的事件发生的概率为1,正确;B、不可能发生的事件概率为0,正确;C、不确定事件发生的概率>0并且<1,错误;D、随机事件发生的概率介于0和1之间,正确.故选:C.8.【解答】解:A,C没有指明角是顶角还是底角无法判定;D没有指明谁是底边谁是腰,所以不相似;B中因为边的比值为2:1,所以大的一定是腰,否则不能组成三角形,所以对应边都成比例,相似.故选:B.9.【解答】解:∵抛物线y=x2+px+8的顶点在x轴的正半轴上,∴p<0,且b2﹣4ac=p2﹣32=0,解得:p=﹣4.故选:C.10.【解答】解:∵∠A=∠1,∠CDE=∠1+∠CDF=∠A+∠AED,∴∠CDF=∠AED,在△ADE和△CFD中,,∴△ADE≌△CFD(AAS),∴AE=CD,AD=CF,∴AE+FC=CD+AD=AC,故选:C.二.填空题(本大题共6小题,每小题3分,满分18分)11.【解答】解:由题意可得:x﹣3≥0,解得:x≥3.故答案为:x≥3.12.【解答】解:∵∠A+∠B=180°,∴∠C+∠D=360°﹣180°=180°.故答案为:180.13.【解答】解:由方程组,得,∵二元一次方程组的解是方程kx﹣8y﹣2k+4=0的解,∴k×1﹣8×0﹣2k+4=0,解得,k=4,故答案为:4.14.【解答】解:P(2的倍数或是3的倍数)==.故本题答案为:.15.【解答】解:由题意,得|a|﹣3=0且(a+2)(a﹣3)≠0,解得a=﹣3,故答案为:﹣3.16.【解答】解:如图,圆心为A,设大正方形的边长为2x,圆的半径为R,∵正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE=BC=x,CE=2x;∵小正方形的面积为16cm2,∴小正方形的边长EF=DF=4,由勾股定理得,R2=AE2+CE2=AF2+DF2,即x2+4x2=(x+4)2+42,解得,x=4,∴R=4cm,故答案为:4三、解答题(本大题共9小题,满分102分.解答应智出文字说明、证明过程或演算步骤)17.【解答】解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).18.【解答】解:∵C是线段BD的中点,∴BC=CD,∵AB∥EC,∴∠B=∠ECD,在△ABC与△ECD中,∴△ABC≌△ECD(AAS),∴AC=ED.19.【解答】解:(1)1200÷40%=3000(人),∴该区共抽取了3000名九年级学生;(2)90000×40%=36000(人),∴2018年该区视力不良(4.9以下)的该年级学生大约有36000人;(3)扇形统计图中B的圆心角度数为30%×360°=108°,故答案为:108°.20.【解答】解:(1)由于点D是一次函数y=kx+1的图象与y轴的交点,当x=0时,kx+1=1所以点D的坐标为(0,1);故答案为:(0,1);(2)设AC=x,则AB=4x,所以点A(x,4x)由于点A在反比例函数y=上,所以16=x•4x,整理,得x2=4,所以x=2或x=﹣2(舍去),所以点A(2,8),因为A在一次函数y=kx+1的图象上,所以8=2k+1,解得:k=3.5;(3)由于点A在反比例函数y=上,所以AB•AC=16∵四边形OBAC是正方形,∴OB=AB=AC=OC=4,∵OD=1,∴CD=3,∵S四边形ABDC==(3+4)×4=14S△ACD=AC•CD=×4×3=6∴则四边形ABDC与△ACD面积的比7:3.21.【解答】解:(1)∵AE⊥BC,AF⊥CD,∴∠AFD=∠AEB=90°,∴∠EAF+∠C=360°﹣90°﹣90°=180°.又∵∠EAF=2∠C,∴∠C=60°.(2)∵▱ABCD的周长是32cm,AB:BC=5:3,∴AB=10cm,BC=6cm.在Rt△ADF中,∠AFD=90°,AD=6cm,∠ADF=∠C=60°,∴∠DAF=30°,∴DF=AD=3cm.∵DF的长是关于x的方程x2﹣ax﹣6=0的一个根,∴方程的另一根为﹣6÷3=﹣2.22.【解答】解:(1)如图所示,作CD⊥AB于点D,由题意知,∠B=53°、∠A=45°、BC=8,则CD=BC sin B=8sin53°≈6.4;(2)∵BD=BC cos53°≈4.8,AD=CD=6.4,∴AB=AD+BD=11.2,又∵AC=CD≈9.0,∴AC+BC=9.0+8=17.0,则17.0﹣11.2=5.8(km),答:现在从A地到B地可比原来少走5.8km路程.23.【解答】解:(1)如图,连结OB,∵点B(,m),tan∠AOB=,∴OH=÷tan∠AOB=,∴H点的坐标为(0,);(2)∵H点的坐标为(0,),∴点B(,),∵点C(,),设直线BC的解析式为y=kx+b,则,解得.故直线BC的解析式为y=﹣x+4;(3)∵点A坐标为(0,3),∴点M坐标为(0,),∵点B(,),点C(,),∴BC==,BM==,CM=,∵()2+()2=()2,∴△BMC是直角三角形,∠MBC=90°,∴直线BC与⊙M相切.24.【解答】解:(1)如图所示:(2)结论:FH=HC.理由:∵FH∥BC,∴∠HFC=∠FCB,∵∠FCB=∠FCH,∴∠FCH=∠HFC,∴FH=HC.(3)∵AD是Rt△ABC斜边BC上的高,∴∠ADC=∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,∴∠B=∠CAD,∵∠AEF=∠B+∠ECB,∠AFE=∠CAD+∠ACF,∠ACF=∠ECB,∴∠AEF=∠AFE,∴AE=AF,∵FH∥CD,∴=,∵AF=AE,CH=FH,∴=,∴=,∵∠BAD=∠DCH,∴△EAD∽△HCD,∴∠ADE=∠CDH,∴∠EDH=∠ADC=90°,∴ED⊥DH.25.【解答】解:(1)由题意抛物线交x轴于A(﹣1,0),B(3,0),∴可以假设抛物线的解析式为y=a(x+1)(x﹣3),把C(0,2)代入得到a=﹣,∴抛物线的解析式为y=﹣(x+1)(x﹣3),即y=﹣x2+x+2.(2)如图1中,连接BC甲对称轴于P,此时△P AC的周长最小.设直线BC的解析式为y=kx+b,∵C(0,2),B(3,0),∴,∴,∴直线BC的解析式为y=﹣x+2,∴P(1,).(3)如图2中,连接BD.作DF⊥AB于F.∵DE∥BC,∴S△PDE=S△BED,∵H(1,0),C(0,2),∴CH=,BH=2,∵=,∴=,∴BE=m,∵DF∥OC,∴=,∴=,∴DF=(﹣m),∴S=•BE•DF=﹣m2+m=﹣(m﹣)2+,∵﹣<0,∴m=时,s有最大值,最大值为,。
广州市2018年初中毕业生学业考试数学模拟试题(考试用时:120分钟满分:150分)第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1的值等于()A.2 B.-2 C.±2 D.2.下列计算正确的是()A.B.=- C.D.3.如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,若AD=1,BC=3,则的值为()A.B.C. D.4.下列图形中,既是轴对称图形,又是中心对称图形的是5.已知一次函数中,请问这函数不经过什么象限()A、第一象限B、第二象限C、第三象限D、第四象限6.二元一次方程组的解为()A.B. C. D.7.如图,的直径,是的弦,,垂足为,,则的长是()A.2cm B.3cmC.4cm D.cm8.某学校生物兴趣小组11人到校外采集标本,其中3人每人采集4件,4人每人采集3件,4人每人采集5件,则这个兴趣小组平均每人采集标本是()A、3件B、4件C、5件D、6件224+a a a=13-3624x x x÷=325()a a=AOCO12131419bkxy+=0,0k b<<⎩⎨⎧-=-=+24yxyx⎩⎨⎧==31yx⎩⎨⎧=-=31yx⎩⎨⎧-==31yx⎩⎨⎧==13yxO⊙5cmCD=AB O⊙AB CD⊥M35OM OD=∶∶AB(第7题C-5-4-3-2-15x9.关于的一元二次方程有两个实数根,则的取值范围是( )A .B .且C .D .且10.如图所示,在平面直角坐标系中,直线OM 是正比例函数的图象,点A 的坐标为(1,0),在直线OM 上找点N ,使△ONA 是直角三角形,符合条件的点N 的个数是( )A. 2个B. 3个C. 4个D. 5个第二部分 非选择题(共120分)二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡...上). 11.因式分解:22a a +=.12.某市在市中心建了一个文化广场,建成后总面积达163500平方米,成为该市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为平方米. 13.如图,等腰梯形ABCD 中,AB ∥DC ,BE ∥AD , 梯形ABCD的周长为26,DE =4,则△BEC 的周长为.14.已知O e 与2O e 的半径分别是方程0342=+-x x 的两实根,且221+=t O O ,若这两个圆相切,则t=.15.双曲线1y 、2y 在第一象限的图像如图,14y x=,过1y 上的任意一点A ,作x 轴的平行线交2y 于B ,交y 轴于C ,若1AOB S ∆=,则2y 的解析式是.16.若111a m =-,2111a a =-,3211a a =-,… ;则2014a 的值为.(用含m 的代数式表示) 三、解答题(本大题共9题,满分102分。
2018年广东省广州中学中考数学一模试卷一、选择题(每小题3分,满分30分)1.(3分)下列图案中,属于轴对称图形的是()A.B.C.D.2.(3分)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球3.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°4.(3分)下列运算正确的是()A.3﹣=3B.=4﹣3=1C.3x=D.(ab2)3÷(a2b﹣1)=ab75.(3分)如图,是由4个相同小正方体组合而成的几何体,它的主视图是()A.B.C.D.6.(3分)若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1+x2的值是()A.2B.﹣2C.3D.﹣37.(3分)亮亮想用一块铁皮制作一个圆锥模型,要求圆锥的母线长为12cm,底面圆的半径为5cm.那么,这个圆锥模型的侧面展开扇形铁皮的圆心角度数应为()A.90°B.120°C.150°D.240°8.(3分)如图,在⊙O中,AB是直径,C是弦,AB⊥CD,垂足为E,连接CO、AD、OD,∠BAD=22.5°,则下列说法中不正确的是()A.CE=EO B.OC=CD C.∠OCE=45°D.∠BOC=2∠BAD9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=710.(3分)如图,抛物线y=ax2+bx+c的开口向下,交x轴的正半轴于(1,0),则下列结论:(1)﹣abc<0;(2)a﹣b+c<0;(3)2a+b<0;(4)a+c<0,正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,满分18分)11.(3分)因式分解:ab2﹣16a=.12.(3分)方程组的解是.13.(3分)方程x2﹣9x+8=0的解是.14.(3分)把抛物线y=x2﹣2向左平移3个单位,然后向下平移4个单位,则平移后的抛物线解析式(用y=ax2+bx+c 的形式作答)为.15.(3分)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.16.(3分)问题:如图,点O是等边△ABC内部一点,OA=1,OB=2,OC=3,求∠AOB的度数,四位同学为了解决此题,分别作了各自的辅助线,具体如下:甲:旋转使得△AOB≌△APC:乙翻折使得△AOB≌△AOD,使得点B的对应点D落在边BC上;丙旋转使得△AOB≌△CEB;丁旋转使得△BOC≌△BMA,那么辅助线有利于实现解题的是(只填序号).三、解答下列各题(满分102分)17.(9分)解方程:﹣=118.(9分)如图,点E、F在线段BC上,BE=CF,AB=DC,∠B=∠C=78°,∠DEC=42°,求sin A的值.19.(10分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述事件所有可能的结果;(2)求一次打开锁的概率.20.(10分)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象相交于第二、四象限内的A,B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求k的值;(2)求的值.21.(12分)如图,等腰三角形ABC中,AC=BC=10,AB=12.(1)动手操作:利用尺规作以BC为直径的⊙O,⊙O交AB于点D,⊙O交AC于点E,并且过点D作DF⊥AC交AC于点F.(2)求证:直线DF是⊙O的切线;(3)连接DE,记△ADE的面积为S1,四边形DECB的面积为S2,求的值.22.(12分)某校九年级二班为开展“迎五一劳动最光荣”的主题班会活动,派小明和小丽两位同学去学校附近的超市购买钢笔作为奖品,已知该超市的宝克牌钢笔每支8元,英雄牌钢第每支4.8元.他们要购买这两种笔共40支.小明和小丽根据主题班会活动的设奖情况,决定所购买的宝克牌钢笔的数量要少于英雄牌钢笔的数量的,但又不少于英雄牌钢笔的数量的,如果他们买了宝克牌钢笔x支,买这两种笔共花了y元.(1)请写出y(元)关于x(支)的函数关系式,并求出自变量x的取值范围;(2)请帮助他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?23.(12分)已知:关于x的方程(a+2)x2﹣2ax+a=0有两个不相等的实数根x1和x2,并且抛物线y=x2﹣(2a+1)x+2a﹣5与x轴的两个交点A、B分别位于点(2,0)的两旁.(1)求实数a的取值范围;(2)点A和B是否可能都在原点的右侧?为什么?24.(14分)如图,AP是△ABC的外接圆⊙O的直径,AD是△ABC的高,直径AP交边BC于点M,延长AD交⊙O于点E,连接OE交边BC于点N.(1)求证:OA=;(2)按边分类,试判断△OMN的形状,并证明你的结论;(3)已知AB=15;BC=14,cos∠ABC=,求MN的长.25.(14分)如图,二次函数y=x2+bx﹣3的图象l交x轴于点A(﹣3,0)、B(1,0),交y轴于点C,将图象l 沿坐标轴翻折得到新的图象,与图象l开口方向相同的新的图象l1交x轴于点A1(在x轴的正半轴上)(1)求出b的值,并写出点A1的坐标以及新的图象所对应的函数解析式;(2)若P为y轴上的一个动点,E为直线A1C上的一个动点,请找出点P,使得PB+PE最小,并求出最小值;(3)在y轴的正半轴上有一点M,使得∠MA1O=k∠OCB,直线A1M交图象l1于点D(点D在第二象限).①若k=2,试求点D的坐标;②若k=3,请直接写出OM的长.2018年广东省广州中学中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,满分30分)1.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.【解答】解:A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选:A.3.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故选:A.4.【解答】解:A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=,所以C选项错误;D、原式=a3b6÷(a2b﹣1)=ab7,所以D选项正确.故选:D.5.【解答】解:从正面看易得第一层右边有1个正方形,第二层最有3个正方形.故选:C.6.【解答】解:∵一元二次方程x2﹣2x﹣3=0的一次项系数是a=1,二次项系数b=2,∴由韦达定理,得x1+x2=2.故选:A.7.【解答】解:=10π,解得n=150°.故选C.8.【解答】解:∵AB⊥CD,∴CE=DE,=,∴∠BOC=2∠BAD=2×22.5°=45°,∴△OCE为等腰直角三角形,∴∠OCE=45°,OC=CE,CE=OE,∴OC=CD.故选:B.9.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.【解答】解:①由图象可得a<0,c>0,对称轴在y轴右侧,又可知a、b异号,故b>0,故﹣abc<0,正确;②x=﹣1时,y<0,正确;③对称轴在y轴右侧,即﹣>0,2a+b>0,错误;④(1,0)在图象上,所以a+b+c=0,且b>0;故a+c<0,正确.正确个数有3个,故选C.二、填空题(每小题3分,满分18分)11.【解答】解:ab2﹣16a=a(b2﹣16)=a(b+4)(b﹣4).故答案为:a(b+4)(b﹣4).12.【解答】解:,①+②得:5x=15,x=3,将x=3代入2x﹣y=4,∴y=2,∴方程组的解为,故答案为:13.【解答】解:∵x2﹣9x+8=0,∴(x﹣1)(x﹣8)=0,∴x=1或x=8,故答案为:1或814.【解答】解:∵抛物线y=x2﹣2向左平移3个单位,然后向下平移4个单位,∴平移后的抛物线的解析式为:y=(x+3)2﹣2﹣4,即y=x2+6x+3故答案是:y=x2+6x+3.15.【解答】解:如图,在BE上截取BG=CF,连接OG,∵RT△BCE中,CF⊥BE,∴∠EBC=∠ECF,∵∠OBC=∠OCD=45°,∴∠OBG=∠OCF,在△OBG与△OCF中∴△OBG≌△OCF(SAS)∴OG=OF,∠BOG=∠COF,∴OG⊥OF,在RT△BCE中,BC=DC=6,DE=2EC,∴EC=2,∴BE===2,∵BC2=BF•BE,则62=BF,解得:BF=,∴EF=BE﹣BF=,∵CF2=BF•EF,∴CF=,∴GF=BF﹣BG=BF﹣CF=,在等腰直角△OGF中OF2=GF2,∴OF=.故答案为:.16.【解答】解:甲,丁的辅助线,有利于解题.理由:如图甲①中,连接OP.由题意:AO=AP,∠OAP=∠BAC=60°,∴△AOP是等边三角形,∴OP=OA=1,∠APO=60°,∵PC=OB=2,OC=3,∴OP2+PC2=OC2,∴∠OPC=90°,∴∠APC=∠APO+∠OPC=60°+90°=150°,∵∠AOB=∠APC,∴∠AOB=150°.如图丁④中,连接OM.同法可证:∠BOM=60°,∠AOM=90°,可得∠AOB=150°,故答案为甲,丁.三、解答下列各题(满分102分)17.【解答】解:去分母得:2(2x﹣1)﹣(5x﹣1)=6,去括号得:4x﹣2﹣5x+1=6,移项得:4x﹣5x=6+2﹣1,合并同类项得:﹣x=7,系数化成1得:x=﹣7.18.【解答】解:∵∠C=78°,∠DEC=42°,∴∠D=180°﹣78°﹣42°=60°,∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴∠A=∠D=60°,∴sin A=sin60°=.19.【解答】解:(1)分别用A与B表示锁,用A、B、C、D表示钥匙,画树状图得:则可得共有8种等可能的结果;(2)∵一次打开锁的有2种情况,∴一次打开锁的概率为:=.20.【解答】解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3),将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12.(2)∵反比例函数的解析式为y=﹣.将B点坐标代入y=﹣中,得﹣2=﹣,解得m=6.即B(6,﹣2),将A、B两点坐标代入y=ax+b,得,解得∴==﹣.21.【解答】解:(1)如右图所示,图形为所求;(2)证明:连接OD∵DF⊥AC,∴∠AFD=90°,∵AC=BC,∴∠A=∠B,∵OB=OD,∴∠B=∠ODB,∴∠A=∠ODB∴OD∥AC,∴∠ODF=∠AFD=90°,∴直线DF是⊙O的切线;(3)连接DE;∵BC是⊙O的直径,∴∠CDB=90°,即CD⊥AB,∵AC=BC,CD⊥AB,∴AD=BD=AB=6,∵四边形DECB是圆内接四边形,∴∠BDE+∠C=180°,∵∠BDE+∠ADE=180°,∴∠C=∠ADE,∵在△ADE和△ACB中,∠ADE=∠C,∠DAE=∠CAB,∴△ADE∽△ACB,∴=,∴=,∵S△ABC=S△ADE+S四边形DECB,∴==,∴=,即=.22.【解答】解:(1)买了宝克牌钢笔x支,则购买英雄牌钢笔(40﹣x)支,y=8x+4.8(40﹣x)=3.2x+192,∵所购买的宝克牌钢笔的数量要少于英雄牌钢笔的数量的,但又不少于英雄牌钢笔的数量的,∴,解得,8≤x<13,∵x为整数,∴8≤x≤13,即y(元)关于x(支)的函数关系式是y=3.2x+192(8≤x≤13且x为整数);(2)∵y=3.2x+192,8≤x≤13且x为整数,∴x=8时,y取得最小值,此时y=3.2×8+192=217.6,40﹣x=32,答:买了宝克牌钢笔8支,购买英雄牌钢笔32支时,所花钱最少,此时花了217.6元.23.【解答】解:(1)∵关于x的方程(a+2)x2﹣2ax+a=0有两个不相等的实数根∴解得:a<0,且a≠﹣2 ①设抛物线y=x2﹣(2a+1)x+2a﹣5与x轴的两个交点的坐标分别为(α,0)、(β,0),且α<β∴α、β是关于x的方程x2﹣(2a+1)x+2a﹣5=0的两个不相等的实数根∵△=[﹣(2a+1)]2﹣4×1×(2a﹣5)=(2a﹣1)2+21>0∴a为任意实数②由根与系数关系得:α+β=2a+1,αβ=2a﹣5∵抛物线y=x2﹣(2a+1)x+2a﹣5与x轴的两个交点分别位于点(2,0)的两旁∴α<2,β>2∴(α﹣2)(β﹣2)<0∴αβ﹣2(α+β)+4<0∴2a﹣5﹣2(2a+1)+4<0解得:a>﹣③由①、②、③得a的取值范围是﹣<a<0;(2)点A和B不可能都在原点的右侧,∵抛物线y=x2﹣(2a+1)x+2a﹣5与x轴的两个交点都在原点的右侧,则α>0,β>0,∴αβ>0,∵αβ=2a﹣5,∴2a﹣5>0,解得a>,这与关于x的方程(a+2)x2﹣2ax+a=0有两个不相等的实数根,a<0且a≠﹣2无公共解,故A和B不可能都在原点的右侧.24.【解答】(1)证明:∵AP是⊙O的直径,∴∠ABP=90°,AP=2OA,∵AD是△ABC的高,∴∠BDE=∠ADB=∠ADC=90°=∠ABP,∵∠P=∠C,∴△ABP∽△ADC,∴=,∴AP=,∴OA=;(2)解:△OMN是等腰三角形;理由如下:∵OA=OE,∴∠OAE=∠OEA,∵∠OMN+∠OAE=90°,∠DNE+∠OEA=90°,∠ONM=∠DNE,∴∠OMN=∠ONM,∴OM=ON,即△OMN是等腰三角形;(3)解:∵∠ADB=90°,AB=15,cos∠ABC==,∴BD=AB=×15=9,∴AD===12,CD=BC﹣BD=14﹣9=5,∴AC===13,由相交弦定理得:AD×DE=BD×CD,∴DE===,∴AE=AD+DE=12+=,作OF⊥AE于F,连接PE,如图所示:则OF∥BC,∴△DEN∽△FEO,∴=,∵OA=OE===,∴EF=AE=,AP=2OA=,∴OF===2,∴=,解得:DN=,∵AP是⊙O的直径,∴∠AEP=90°,∴PE===4,∴PE⊥AE,∵BC⊥AD,∴BC∥PE,∴△ADM∽△AEP,∴=,即=,解得:DM=,∴MN=DM﹣DN=﹣=.25.【解答】解:(1)函数l的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),即﹣3a=﹣3,解得:a=1,故函数l的表达式为:y=x2+2x﹣3,b=2,点A、A1关于y轴对称,故点A1(3,0);(2)点B′是点B关于y轴的对称点,过点B′作B′E⊥A1C交于点E,B′E交y轴于点P,则此时,PB+PE最小,最小值为B′E,∵OA1=OC=3,故直线A1C的表达式为:y=x﹣3…①,B′E⊥A1C,则B′E的函数表达式为:y=﹣x+s,将点B′坐标代入上式并解得:直线B′E的表达式为:y=﹣x﹣1…②,联立①②并解得:x=1,故点E(1,﹣2),则PB+PE的最小值B′E=2;(3)将图象A、B、C区域放大为图2,连接OB′,则∠BCB′=2OCB=2α,在点B右侧作∠BCB″=α,交x轴于点B″,则∠B′CB″=3α,则tan∠OCB===tanα,B′C=BC=,设∠CB′B=β,则tanβ=3,则sinβ=当k=2时,即∠MA1O=2∠OCB=2α,故点B作BH⊥CB′,BH=B′B sinβ=2×=,tan∠HCB=tan2α==,当k=3时,同理tan∠MA1O=tan3α=;①当k=2时,tan∠MA1O=tan2α=,则直线A1M的表达式为:y=﹣x+b,将点A1(3,0)的坐标代入上式并解得:直线A1M的表达式为:y=﹣x+,将A1M表达式与l的表达式联立并解得:x=﹣(正值也舍去),故点D(﹣,),②k=3时,tan∠MA1O=tan3α=;则OM=OA1tan∠MA1O=×3=.。
2018-2019学年白云区九年级一模考试数学科答案一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 A D D B D C A C B C二、填空题(每小题3分,共18分)11. 67︒12. 6110⨯13. 22(3)a b a-14. ()221y x=++15. 1 316. 11三、解答题(共102分)17. 解:去括号,得:2x﹣6>1,移项,得:2x>1+6,合并同类项,得:2x>7,系数化成1得:x>..18.证明:在△ABC和△DCB中,∴△ABC≌△DCB(SAS)∴AC=DB19. 解:(1)A=(3x﹣1)(2x+1)﹣x+1﹣6y2=6x2+x﹣1﹣x+1﹣6y2=6x2﹣6y2;(2)解方程组,得,A=6x2﹣6y2=6×32﹣6×22=54﹣24=30;20. 解:(1)“最喜欢篮球”的人数为40×12.5%=5(人),“最喜欢乒乓球”对应扇形的圆心角度数为360°×20%=72°,∵该校学生中“最喜欢足球”人数所占百分比为1﹣(12.5%+12.5%+20%+25%)=30%,∴估计该校学生中“最喜欢足球”的人数为1500×30%=450(人),故答案为:5,72°,450;(2)列表如下:由图可知总有20种等可能性结果,其中所抽取的2名学生中至少有1名女生的情况有14种,所以所抽取的2名学生中至少有1名女生的概率为=.21.解:(1)将点B(﹣3,﹣2)代入y=mx,∴m=6,∴y=6x,∴n=2,∴A(2,3),将A (2,3),B (﹣3,﹣2)代入y =kx +b ,3=223k bk b +⎧⎨-=-+⎩, ∴11k b =⎧⎨=⎩,∴y =x +1;(2)y =x +1与x 轴交点坐标(﹣1,0), ∴S =×1×(3+2)=;22. 解:设原来每套铅笔套装的价格是x 元,现在每套铅笔套装的价格是0.8x 元,依题意得:﹣2=.解得x =5.经检验:x =5是原方程的解,且符合题意. 答:原来每套铅笔套装的价格是5元.23. 解:(1)如图所示:EF ⊥EC ; (2)∵四边形ABCD 是矩形,∴∠A =∠D =90°,即∠AFE +∠AEF =90°, ∵EF ⊥EC ,∴∠DEC +∠AEF =90°, ∴∠AFE =∠DEC ,又∠A =∠D , ∴△AEF ∽△DCE , ∴=,∵AE =ED . ∴=,又∠A =∠FEC =90°,∴AEF ∽△ECF ;(3)存在k 值,使得△AEF 与△BFC 相似 理由如下:设BC =a ,则AB =ka ,∵△AEF 与△BFC 相似,∠A =∠B =90°,∠BCF ≠∠AFE ,∴△AEF∽△BCF,∴==,∴AF=ka,BF=ka,∵△AEF∽△DCE,∴=,即=,解得,k=.24. 解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故:抛物线的表达式为:y=x2﹣x﹣,令y=0,则x=﹣1或3,令x=0,则y=﹣,故点C坐标为(3,0),点P(1,﹣2);(2)当点D在C点右侧时,过点B作BH⊥AC交于点H,过点P作PG⊥x轴交于点G,设:∠DPC=∠BAC=α,S△ABC=×AC×BH=×BC×y A,解得:BH=2,sinα===,则tanα=,由题意得:GC=2=PG,故∠PCB=45°,延长PC,过点D作DM⊥PC交于点M,则MD=MC=x,在△PMD中,tanα===,解得:x=2,则CD=x=4,故点D(7,0);综上,D点坐标为(50703(,)或(,),02106242245322462535(0)3),D C D xAB AC BC PC ACB PCD DPC BACDPC BACDC PCBC ACxxD∠=∠=∠=∠∴∆∆∴=-∴==∴Q当点在点左侧时,设(由勾股定理可得:=,=,=,=,,∽(3)作点A关于对称轴的对称点A′(5,6),过点A′作A′N⊥AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,直线AP表达式中的k值为:=﹣2,则直线A′N表达式中的k值为,设直线A′N的表达式为:y=x+b,将点A′坐标代入上式并求解得:b=,故直线A′N的表达式为:y=x+…①,当x=1时,y=4,故点M(1,4),同理直线AP的表达式为:y=﹣2x…②,联立①②两个方程并求解得:x=﹣,故点N(﹣,).25.解:(1)∵∠BOC=120°,∴∠A=∠BOC=60°,∵∠ACB=60°,∴∠ABC=60°,∴△ABC是等边三角形,∵点M是的中点,点N是的中点,∴=,=,∴∠BCN=∠ACB=30°,∠CBM=∠ABC=30°,∴BF=CF,∠BFC=∠BOC=120°,又△ABC是等边三角形,∴点F与点O重合;(2)如图1,由(1)知∠BCN=∠ACN,∠CBM=∠ABM,∴⊙F是△ABC的内切圆,过点F作FW⊥AB于W,作FS⊥AC于S,则∠FWA=∠FSA=90°,FW=FS,∵∠A=60°,∴∠WFS=120°,∠ABC+∠ACB=120°,∵∠BCN=∠ACB,∠CBM=∠ABC,∴∠BCN+∠CBM=60°,∴∠BFC=∠EFD=120°,∴∠WFE=∠SFD,∴△FWE≌△FSD(ASA),∴EF=DF;(3)△DLJ的面积S改变,且≤S<,如图2,由(1)知△ABC是等边三角形,且点F是△ABC是内心和外心,∵=,=,∴BD⊥AC,且AD=CD=1,∴BD=,∠ADB=90°,∵F是△ABC的外心,∴DF=BD=,由旋转知∠ADB=∠GDH=90°,∠ADJ=∠FDI=m°,∵∠BFC=120°,∴∠DFI=∠A=60°,∴△FID∽△AJD,∴===,∴DI=DJ,则S=DI•DJ=DJ2,∴S随DJ的变化而变化,不是定值,当m=30时,DJ⊥AB,此时DJ=AD sin A=,S=×()2=;当m=60时,△ADJ是等边三角形,此时DJ=AD=1,S=×12=;由0<m<60知≤DJ<1,∴≤S<.。
2018年白云区初中毕业班综合测试数学试题本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟. 注意事项:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B 铅笔把准考证号对应的号码标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、-2的绝对值是(*) (A )-2 (B )2 (C )-12 (D )122.下列说法正确的是(*)(A )直线BA 与直线AB 是同一条直线 (B )延长直线AB(C )射线BA 与射线AB 是同一条射线 (D )直线AB 的长为2cm 3.下列各式中,正确的是(*)(A )3+2ab =5ab (B )5xy -x =5y (C )-25m n +25nm =0 (D )3x -x =2x4.矩形ABCD 的对角线AC 、BD 交于点O,以下结论不一定成立的是(*) (A )∠BCD=90° (B )AC=BD (C )OA=OB (D )OC=CD5.不等式组4610320x x -≥-⎧⎨->⎩的整数解有(*)(A )4个 (B )3个 (C )2个 (D )1个 6.在Rt△ABC 中,∠C=90°,sinA=35,则AC ︰AB=(*) (A )3︰5 (B )3︰4 (C )4︰3 (D )4︰5 7.下列说法错误的是(*)(A )必然发生的事件发生的概率为1 (B )不可能事件发生的概率为0(C )不确定事件发生的概率为0 (D )随机事件发生的概率介于0和1之间 8.下列判断中,正确的是(*)(A )各有一个角是67°的两个等腰三角形相似 (B )邻边之比为2︰1的两个等腰三角形相似 (C )各有一个角是45°的两个等腰三角形相似(D )邻边之比为2︰3的两个等腰三角形相似9.若抛物线y =2x +px +8的顶点在x 轴的正半轴上,那么p 的值为(*) (A )±42 (B)42 (C )-42 (D )010.如图1,D 、E 、F 分别为△ABC 边AC 、AB 、BC 上的点,∠A=∠1=∠C,DE=DF.下面的结论一定成立的是( )(A )AE=FC (B )AE=DE (C )AE+FC=AC (D )AD+FC=AB第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.若式子3x -在实数范围内有意义,则x 的取值范围是 * . 12.如图2,四边形ABCD 中,若∠A+∠B=180°,则∠C+∠D= * °.13.已知二元一次方程组5351x y x y -=⎧⎨+=⎩的解是方程kx -8y -2k +4=0的解,则k的值为 * .14.从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是 * . 15.若分式3(2)(3)a a a -+-的值为0,则a = * .16.如图3,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为 * (结果用根号表示).三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 分解因式:22x -818.(本小题满分9分)如图4,C 是线段BD 的中点,AB∥EC,∠A=∠E. 求证:AC=ED.AB CD EF 图11A BCD图2O 图319.(本小题满分10分)我市某区为调查学生的视力变化情况,从全区九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成折线统计图(图5①)和扇形统计图(图5②)如下:解答下列问题:(1)该区共抽取了多少名九年级学生?(2)若该区共有9万名九年级学生,请你估计2018年该区视力不良(4.9以下)的该年级学生大约有多少人?(3)扇形统计图中B的圆心角度数为 * °.20.(本小题满分10分)如图6,在平面直角坐标系中,一次函数y=kx+1的图象交y轴于点D,与反比例函数y=16x的图象在第一象限相交于点A.过点A分别作x轴、y轴的垂线,垂足为点B、C.(1)点D的坐标为 * ;(2)当AB=4AC时,求k值;(3)当四边形OBAC是正方形时,直接写出四边形ABOD与△ACD面积的比.21.(本小题满分12分)如图7,已知Y ABCD的周长是32cm,AB︰BC=5︰3,AE⊥BC,垂足为E,AF⊥CD,垂足为F,∠EAF=2∠C.(1)求∠C的度数;(2)已知DF的长是关于x的方程2x-ax-6=0的一个根,求该方程的另一个根.22.(本小题满分12分)如图8,A、B两地之间有一座山,以前从A地到B地需要经过C地.现在政府出资打通了一条山岭隧道,使从A地到B地可沿直线AB直接到达.已知BC=8km,∠A=45°,∠B=53°.(1)求点C到直线AB的距离;(2)求现在从A地到B地可比原来少走多少路程?(结果精确到0.1km;参考数据:2≈1.41,sin53°≈0.80,cos53°≈0.60)23.(本小题满分12分)如图8,在平面直角坐标系中,点A坐标为(0,3),点B(65,m)是以OA为直径的⊙M上的一点,且tan∠AOB=12,BH⊥y轴,H为垂足,点C(158,32).(1)求H点的坐标;(2)求直线BC的解析式;(3)直线BC是否与⊙M相切?请说明理由.24.(本小题满分14分)如图9,AD 是Rt△ABC 斜边BC 上的高.(1)尺规作图:作∠C 的平分线,交AB 于点E,交AD 于点F (不写作法,必须保留作图痕迹,标上应有的字母);(2)在(1)的条件下,过F 画BC 的平行线交AC 于点H,线段FH 与线段CH 的数量关系如何?请予以证明;(3)在(2)的条件下,连结DE 、DH.求证:ED⊥HD.25.(本小题满分14分)已知抛物线y =2ax bx c ++(a ≠0)与x 轴交于A 、B 两点,与y 轴交于C 点,其对称轴为x =1,且A (-1,0)、C (0,2).(1)直接写出该抛物线的解析式;(2)P 是对称轴上一点,△PAC 的周长存在最大值还是最小值?请求出取得最值(最大值或最小值)时点P 的坐标;(3)设对称轴与x 轴交于点H,点D 为线段CH 上的一动点(不与点C 、H 重合).点P 是(2)中所求的点.过点D 作DE∥PC 交x 轴于点E.连接PD 、PE.若CD 的长为m ,△PDE 的面积为S,求S 与m 之间的函数关系式,试说明S 是否存在最值,若存在,请求出最值,并写出S 取得的最值及此时m 的值;若不存在,请说明理由.参考答案及评分建议(2018一模)一题号 1 2 3 4 5 6 7 8 9 10 答案 B A C D B D C B C C二、题号11 12 13 14 15 16答案x≥3180° 4 23-3 45三、解答题17.(本小题满分9分)解:22x-8=2(2x-4)=2(2x-4)…………………………………………………………3分=2(2x-22)…………………………………………………………5分=2(x+2)(x-2)………………………………………………9分18.(本小题满分9分)证明:∵C是BD的中点,∴BC=CD(线段中点的定义);……………2分∵AB∥EC,∴∠B=∠ECD(两直线平行,同位角相等).…………4分在△ABC和△ECD中,……………………………………………………5分∵A EB ECDBC CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ECD(AAS),……………………8分∴AC=ED(全等三角形对应边相等)……………………………………9分19.(本小题满分10分,分别为4、4、2分)解:(1)1200÷40%=3000(人), ……………………………3分∴该区共抽取了3000名九年级学生;……………………………………4分(2)90000×40%=36000(人), …………………………3分∴该区九年级学生大约有36000人视力不良;…………………………4分(3)108.…………………………………………………………………2分20.(本小题满分10分,分别为1、6、3分)解:(1)D(0,1);…………………………………………………………1分(2)设点A(x,y),………………………………………………………1分∵点A在第一象限,∴x与y均大于0,即AB=y,AC=x.…………2分由AB=4AC,得y=4x,…………………………………………………3分代入反比例函数解析式,得4x =16x,…………………………………………4分 ∴24x =16,∴x =2或x =-2(不合题意,舍去),……………………5分 即A 的坐标为A (2,8),代入一次函数y =kx +1中,8=2k +1,解得k =72,∴k 的值为72;……………………………………………………6分 (3)四边形ABOD 与△ACD 面积的比为5︰3(或53).……………3分[方法一:连结OA,设△OAD 的面积为1,则△ACD 的面积为3,△OAB 的面积为4,∴四边形ABOD 面积为5;方法二:分别求出梯形ABOD 和△ACD 的面积,再求比]21.(本小题满分12分,分别为5、7分)解:(1)∵四边形AECF 的内角和为360°,……………………………1分 由AE⊥BC 及AF⊥CD,得∠E=∠F=90°,………………………2分 ∴∠EAF+∠C=360°-2×90°=180°,……………………3分 ∵∠EAF=2∠C,∴2∠C+∠C=180°,…………………………4分∴∠C=60°;…………………………………………………………………5分 (2)∵ABCD 为平行四边形,∴∠DAB=∠C=60°,CD∥AB,……………………………………1分 由已知AF⊥CD,得AF⊥AB,∴∠FAB=90°,∴∠FAD=∠FAB -∠DAB=30°.…………………………………2分 由平行四边形的性质,知AB=CD,AD=BC,…………………………3分 由周长为32cm,得AB+BC=16cm,由AB ︰BC=5︰3,可求得BC=6cm,∴AD=BC=6cm.………4分 在Rt△ADF 中,∵∠FAD=30°,∴DF=12AD=3cm.…………5分 把DF 的长代入方程中,求得a =1,∴原方程为2x -x -6=0.………6分 解该方程,得1x =3,2x =-2,∴方程的另一个根为x =-2.…………7分 [方程的解法,可用公式法、因式分解法或配方法均可]22.(本小题满分12分,分别为4、8分)解:(1)过点C 作CE⊥AB,垂足为点E (如图1).………………………1分 在Rt△BCE 中,∵CEBC=sin∠B,……………………………………………3分 ∴CE=BC·sin∠B≈8×0.80=6.4,………………………………4分 答:C 点到直线AB 的距离约为6.4km; (2)Rt△BCE 中,∵BEBC=cos∠B,…………………………………………1分∴BE=BC·cos∠B≈8×0.60=4.8.…………………………………2分[也可结合(1),由勾股定理,求得BE]在R t△ACE中,∵∠A=45°,∴∠ACE=45°,∴AE=CE=6.4,………………………………………………………………3分由CEAC=sin∠A,得AC=sinCEA∠≈6.422≈9.05,…………………………5分[由勾股定理求得AC,约9.02]由AC+BC-(AE+EB)………………………………………………………6分=9.05+8-(6.4+4.8)=5.85≈5.9……………………………7分[或9.02+8-(6.4+4.8)=5.82≈5.8]答:现在从A地到B地可比原来少走5.9km路程.………………………………8分23.(本小题满分12分,分别为3、3、6分)解:(1)由tan∠AOB=12,得BHOH=12,……………………………………1分∴OH=2BH,又B(65,m),即m=2×65=125,………………………2分∴H点的坐标为H(0,125);……………………………………………………3分(2)设过点B(65,125)及点C(158,32)的直线解析式为:y=kx+b,……………………………………………………1分把B、C坐标分别代入,得:6125515382k bk b⎧+=⎪⎪⎨⎪+=⎪⎩,……………………………………2分解得434kb⎧=-⎪⎨⎪=⎩,∴直线BC的解析式为:y=-43x+4;………………………………………3分(3)相切.…………………………………………………………………………1分 理由如下:方法一:设直线BC 分别与x 轴、y 轴交于点E 、F,则可求得其坐标分别为E (3,0)、F (0,4).……………………………2分 过圆心M 作MN⊥EF,垂足为N,连结ME (如图2).……………………3分∵S △FME =12EF·MN=12FM·EO,……………………………………4分 ∴得EF·MN=FM·EO,MN=FM EO EF ⋅=32,………………………5分即圆心M 到直线BC 的距离等于⊙M 的半径,……………………………………6分∴直线BC 是⊙M 的切线.方法二:设直线BC 分别与x 轴交于点E,则可求得其坐标分别为E (3,0). 作BK⊥x 轴于点K (如图3), 则点K 的坐标为K (65,0),EK=3-65=95, 在Rt△BEK 中,由勾股定理,可求得BE=22BK EK +=3;……………2分在Rt△MOE 中,由勾股定理,可求得ME=22OM OE +=35;………3分 HM=12352-=910,∵BM 是⊙M 的半径,∴BM=32. 2BE +2BM =2233()2+=454,2ME =235()=454,………………………4分 ∵2BE +2BM =2ME ,……………………………………………………………5分 ∴△BM E 为直角三角形,ME 为斜边,∠MBE=90°,…………………6分∴BC 切⊙M 于点B.[同样,也可运用勾股定理的逆定理,验算得△BMF 为直角三角形,∠MBF=90°]方法三:设直线BC 分别与x 轴、y 轴交于点E 、F,则可求得其坐标分别为E (3,0)、F (0,4),……………………………2分 连结MB (如图4).在Rt△FHB 中,FH=4-125=85,HB=65, 由勾股定理,得FB=22FH HB +=2,在Rt△FOE 中,由勾股定理,得EF=5. 在△BFM 和△OFE 中,∵FB FO =24=12,……………………………………3分 FM FE =FO MO FE -=12,即FB FO =FMFE,…………………………………………4分 又∠BFM=∠OFE,∴△BFM∽△OFE 中,………………………………5分 ∴∠FBM=∠FOE=90°,……………………………………………………6分 即半径MB⊥直线BC,∴直线BC 是⊙M 的切线.24.(本小题满分14分,分别为2、4、8分)解:(1)作图略;(作图正确)…………………………………………………………2分 (2)FH=CH.………………………………………………………………………1分 证明如下:如图5,∵FH∥BC,∴∠1=∠3,………………………………………………2分 ∵CE 平分∠ACB,∴∠1=∠2,∴∠2=∠3,……………………………………………………………………………3分 从而FH=CH (等角对等边);………………………………………………………4分(3)∵EA⊥CA,∴∠EAC=90°,∴∠2+∠5=90°(如图6).∵AD⊥DC,∴∠ADC=90°,∴∠1+∠6=90°,从而∠2+∠5=∠1+∠6,由∠1=∠2,得∠5=∠6,∵∠6=∠4,∴得∠5=∠4,……………………………………………………1分 ∴AE=AF(等角对等边).………………………………………………………2分 ∵FH∥BC,得△AFH∽△ADC,∴AF AD =FH DC ,………………………3分由(2)知,FH=CH,∴得AE AD =CHDC .……………………………………4分∠EAD+∠DAC=90°,∠HCD+∠DAC=90°,∴∠EAD=∠HCD.………………………………………………………………5分 在△EAD 和△HCD 中,∵AE AD =CHDC ,∠EAD=∠HCD,∴△EAD∽△HCD(两边对应成比例且夹角相等的两个三角形相似),……6分 ∴∠7=∠8.…………………………………………………………………………7分 ∠8+∠HDA=90°,从而得∠7+∠HDA=90°,即∠EDH=90°,…………………………………………………………………8分 ∴ED⊥HD25.(本小题满分14分,分别为2、4、8分)解:(1)y =-223x +43x +2………………………………………………………2分[或y =-228(1)33x -+](2)△PAC 的周长有最小值.……………………………………………………1分 连结AC 、BC,∵AC 的长度一定,∴要使△PAC的周长最小,就是使PA+PC 最小.∵点A 关于对称轴x =1的对称点是B 点,∴BC 与对称轴的交点即为所求的点P (如图8).…………………………………2分 设直线BC (用BC l 表示,其他直线可用相同方式表示)的表达为BC l :y =kx b +,则有302k b b +=⎧⎨=⎩,解得232kb ⎧=-⎪⎨⎪=⎩,∴BC l :y =-23x +2.……………………………3分把x =1代入,得y =43,即点P 的坐标为P (1,43).…………………………………………………………4分∴△PAC 的周长取得最小值,取得最小值时点P 的坐标为P (1,43);(3)作DE∥BC 交x 轴于点E,DE 交对称轴x =1于点Q (如图9).……………1分 在Rt△COH 中,由勾股定理得22CO OH +2221+5过点D 作DF⊥y 轴于点F,交对称轴x =1于点N.∵Rt△CDF∽Rt△CHO,∴CF CDCO CH =,∴CF=CO CD CH ⋅5=255m,OF=CO-CF=2-55m;同样,FD CDOH CH =,FD=OH CDCH ⋅555m,∴点D 的坐标为D (55m ,2-55m),…………………………………………3分从而N (1,2-55m).∵DE∥BC,∴可设DE l (过点D 、E 的直线):y =-23x +1b ,把D 点坐标代入其中,得-23⋅55m +1b =2-255m , 解得1b =2-4515m ,∴DE l :y =-23x +2-4515m.………………………4分点E 的纵坐标为0,代入其中,解得x =3-255m ,∴E(3-25m,0).∵点Q 在对称轴x =1上,把x =1代入DE l 中,解得y =43-4515m,∴Q(1,43-4515m).PQ=43-(43-4515m )=4515m ,DN=1-5m, EH=3-25m -1=2-25m.S=S △PDE =S △PDQ +S △PEQ =12PQ·DN+12PQ·EH =12PQ (DN+EH )=12·4515m (1-55m +2-255m),化简得S=-225m 25m分可知S 是关于m 的二次函数. S 存在最大值.配方可得:S=-225(5m -+12,由此可得,S 取得最大值为12,…………7分取得最大值时m 的值为:m =52分。