142空间图形的基本关系和公理
- 格式:ppt
- 大小:796.00 KB
- 文档页数:2
高一数学空间图形的基本关系与公理教案空间图形的基本关系与公理一.教学内容:空间图形的基本关系与公理二.学习目标:学会观察长方体模型中点、线、面之间的关系,并能结合长方体模型,掌握空间图形的有关概念和有关定理;掌握平面的基本性质、公理4和等角定理;培养和发展自己的空间想象能力、运用图形语言进行交流的能力、几何直观能力、通过典型例子的学习和自主探索活动,理解数学概念和结论,体会蕴涵在其中的数学思想方法;培养严谨的思维习惯与严肃的科学态度;体会推理论证中反映出的辩证思维的价值观。
三、知识要点空间位置关系:I、空间点与线的关系空间点与直线的位置关系有两种:点P在直线上:;点P在直线外:;II、空间点与平面的关系空间点与平面的位置关系有两种:点P在平面上:点P在平面外:;III、空间直线与直线的位置关系:IV、空间直线与平面的位置关系:V、空间平面与平面的位置关系:平行;相交说明:本模块中所说的“两个平面”“两条直线”等均指不重合的情形。
异面直线的判定定义法:采取反证法的思路,否定平行与相交两种情形即可;判定定理:已知P点在平面上,则平面上不经过该点的直线与平面外经过该点的直线是异面直线。
平面的基本性质公理公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
公理2经过不在同一条直线上的三点,有且只有一个平面。
公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条通过该点的公共直线。
平面的基本性质公理的三个推论经过直线和直线外一点,有且只有一个平面;经过两条相交直线,有且只有一个平面;经过两条平行直线,有且只有一个平面思考:公理是公认为正确而不需要证明的命题,那么推论呢?平面的基本性质公理是如何刻画平面的性质的?平行公理:平行于同一条直线的两条直线平行。
等角定理:空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补。
空间四边形:顺次连接不共面的四点构成的图形称为空间四边形。
空间图形的基本关系与公理研究对象:点、线、面的关系 三种语言:文字语言、符合语言、图形语言(看图说话)点线关系:点在线上、点在线外 点面关系:点在面上、点在面外 线线关系:平行、相交、异面线面关系:线面平行、线面相交、线在面内 面面关系:面面平行、面面相交公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
公理2:不共线的三点,可以确定一个平面。
推论1:直线和直线外的一点可以确定一个平面 推论2:两条平行直线可以确定一个平面。
推论3:两条相交直线可以确定一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线(两个平面的交线)。
公理4:平行于同一条直线的两条直线平行(平行的传递性)。
等角定理:空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补。
推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所组成的锐角(或直角)相等。
异面直线a 、b 所成角:过空间任意一点P 分别引两条异面直线a 、b 的平行线1l 、2l ()12//,//a l b l ,这两条相交直线所成的锐角(或直角)就是异面直线a 、b 所成角。
如果两条异面直线所成的角是直角,我们称这两条直线互相垂直,记作a b ⊥。
论证点、线共面的通法之一,即证部分元素确定一个平面,再证余下元素也在平面内。
论证点、线共面的通法之二,即根据确定平面的条件,先证各部分元素分别确定平面,再证这些平面有相同的确定平面的条件,即重合。
点共线、线共点:依据是公理3,如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线(两个平面的交线)。
证明多点共线:通常是过其中两点作一直线,然后证明其他的点在这条直线上,或者根据已知条件设法证明这些点在两个相交平面内,然后根据公理2就得到这些点在两个平面的交线上。
证明多线共点:可把其中一条作为分别过其余两条的两个平面的交线,然后再证另两条直线的交点在此直线上。