专题二 力与物体的直线运动
- 格式:doc
- 大小:1.46 MB
- 文档页数:28
挑战高考压轴题专题二:受力分析和物体的平衡运动的合成分解与牵连体的速度关联一、单选题1.(2分)一物块在水平面内做直线运动,以0时刻物块的位置为坐标原点建立xOy平面直角坐标系,运动轨迹如图甲所示。
物块在x方向运动速度v x随时间t的变化规律如图乙所示。
下列关于物块在y方向运动的初速度v y0、加速度a y的判断,可能正确的是()A.v y0=0,a y=1m/s2B.v y0=0,a5=2m/s2C.v y0=4m/s,a5=2m/s2D.v y0=4m/s,a y=4m/s22.(2分)如图所示,AB杆以恒定角速度绕A点转动,并带动套在水平杆OC上的质量为M的小环运动,运动开始时,AB杆在竖直位置,则小环M的加速度将()A.逐渐增大B.先减小后增大C.先增大后减小D.逐渐减小3.(2分)如图所示,物体A和小车用轻绳连接在一起,小车以速度v0向右匀速运动。
当小车运动到图示位置时,轻绳与水平方向的夹角为θ,关于此时物体A的运动情况的描述正确的是()A .物体A 减速上升B .物体A 的速度大小 v A =v 0C .物体A 的速度大小 v A =v 0sinθD .物体A 的速度大小 v A =v 0cosθ4.(2分)空间内有一水平向右的电场E ,现有一带电量为q 的小球以初速度为v 0向右上抛出,已知E =√3mg3q ,求小球落地点距离抛出点的最远距离( )A .v 02gB .√2v 02gC .√3v 02gD .2v 02g5.(2分)如图所示,卡车通过定滑轮以恒定的功率P 0拉轻绳牵引河中的小船沿水面运动,已知小船的质量为m ,沿水面运动时所受的阻力为f,当绳AO 段与水平面夹角为θ时,小船的速度为v ,不计绳子与滑轮的摩擦,则此时小船的加速度等于( )A .P o cosθmvB .P o mv −f mC .P omvcosθ−f mD .P o cos 2θmv −f m6.(2分)如图所示,一端系有小球的轻绳穿过套在水平杆上的光滑圆环,另一端系在天花板上。
2022年高考物理三轮冲刺与命题大猜想专题02 力与直线运动目录猜想一 :突出匀变速直线运动规律在解决实际问题中的灵活运用 (1)猜想二 :借助图像在直线运动中的应用考科学思维 (2)猜想三:创新动力学图像的考查形式 (3)猜想四:强化应用牛顿运动定律处理经典模型 (5)猜想五:运动学与动力学联系实际的问题 (8)冲刺押题练习 (9)猜想一 :突出匀变速直线运动规律在解决实际问题中的灵活运用【猜想依据】匀变速直线运动是高中物理的基础运动模型,应用匀变速直线运动的规律解决运动问题是高考的重点问题,匀变速直线运动问题情景多种多样,涉及公式较多,能否正确选取公式就成了解决此类问题的第一要素而如若能能灵活应用推论公式解决问题将使问题得到大大简化。
【必备知识】1.两个基本公式:速度公式:v =v 0+at ,位移公式:x =v 0t +12at 2. 2.当遇到以下特殊情况时,用导出公式会提高解题的速度和准确率:(1)不涉及时间,比如从v 0匀加速到v ,求此过程的位移x ,可用v 2-v 02=2ax .(2)平均速度公式:①运用2t v =x t =v 求中间时刻的瞬时速度;②运用x =v 0+v 2t 求位移. (3)位移差公式:运用Δx =x 2-x 1=aT 2,x m -x n =(m -n )aT 2求加速度.【例1】(2022届云南省高三(下)第一次统测)无人驾驶汽车通过车载传感系统识别道路环境,自动控制车辆安全行驶。
无人驾驶有很多优点,如从发现紧急情况到车开始减速,无人车需要0.2s ,比人快了1s 。
人驾驶汽车以某速度匀速行驶,从发现情况到停下的运动距离为44m ,汽车减速过程视为匀减速运动,其加速度大小为210m /s 。
同样条件下,无人驾驶汽车从发现情况到停下的运动距离为( )A. 24mB. 26mC. 28mD. 30m【试题分析】:本题以无人驾驶汽车的安全行驶为情境贴合生活实际引导学生学以致用突出物理的应用性,构建示意图或v -t 图辅助分析并灵活选用公式是解决问题的关键。
训练2 力与物体的直线运动一、单项选择题1.如图2-10所示,一木块在光滑水平面上受一恒力F作用而运动,前方固定一个弹簧,当木块接触弹簧后( ).图2-10A.将立即做变减速运动B.将立即做匀减速运动C.在一段时间内仍然做加速运动,速度继续增大D.在弹簧处于最大压缩量时,物体的加速度为零2.以36 km/h的速度沿平直公路行驶的汽车,遇障碍物刹车后获得大小为a=4m/s2的加速度,刹车后第3s内,汽车走过的路程为( ).A.12.5 m B.2 mC.10 m D.0.5 m3.一质点受到10 N的力的作用时,其加速度为2 m/s2;若要使小球的加速度变为5 m/s2,则应该给小球施的力的大小为( ).A.10 N B.20 NC.50 N D.25 N4.我国道路安全部门规定,在高速公路上行驶的汽车最大速度为120 km/h,交通部门提供下列资料:资料一:驾驶员的反应时间:0.3~0.6 s资料二:各种路面与轮胎之间的动摩擦因数( ).A.100 m B.200 mC.300 m D.400 m5. (2012·安徽卷,17)如图2-11所示,放在固定斜面上的物块以加速度a沿斜面匀加速下滑,若在物块上再施加一个竖直向下的恒力F,则( ).图2-11A.物块可能匀速下滑B.物块仍以加速度a匀加速下滑C.物块将以大于a的加速度匀加速下滑D.物块将以小于a的加速度匀加速下滑6. (2012·海南单科,6)如图2-12所示,表面处处同样粗糙的楔形木块abc固定在水平地面上,ab面和bc面与地面的夹角分别为α和β,且α>β.一初速度为v0的小物块沿斜面ab向上运动,经时间t0后到达顶点b时,速度刚好为零;然后让小物块立即从静止开始沿斜面bc下滑.在小物块从a运动到c的过程中,可能正确描述其速度大小v与时间t的关系的图象是( ).图2-12二、多项选择题7.(2012·新课标,14)伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础,早期物理学家关于惯性有下列说法,其中正确的是( ).A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.行星在圆周轨道上保持匀速率运动的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动8.一个质量为0.3 kg的物体沿水平面做直线运动,如图2-13所示,图线a表示物体受水平拉力时的v-t图象,图线b表示撤去水平拉力后物体继续运动的v-t图象,下列说法正确的是( ).图2-13A.水平拉力的大小为0.1 N,方向与摩擦力方向相同B.水平拉力对物体做功的数值为1.2 JC.撤去拉力后物体还能滑行7.5 mD.物体与水平面间的动摩擦因数为0.19.(2012·天津卷,8)如图2-14甲所示,静止在水平地面的物块A,受到水平向右的拉力F作用,F与时间t的关系如图乙所示,设物块与地面的静摩擦力最大值f m与滑动摩擦力大小相等,则( ).图2-14A.0~t1时间内F的功率逐渐增大B.t2时刻物块A的加速度最大C.t2时刻后物块A做反向运动D.t3时刻物块A的动能最大10.如图2-15所示,在倾角θ=30°的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量均为m,弹簧的劲度系数为k,C为一固定挡板,系统处于静止状态.现开始用一沿斜面方向的力F拉物块A使之以加速度a向上做匀加速运动,当物块B刚要离开C时F的大小恰为2mg.则( ).图2-15A .物块B 刚要离开C 时B 的加速度也为a B .加速度a =gC .以A 、B 整体为研究对象可以计算出加速度a =12gD .从F 开始作用到B 刚要离开C ,A 的位移为mgk三、计算题11. (2012·江苏泰州三模)如图2-16所示,在光滑水平面上有A 、B 两个物体,B 在前,A 在后,A 正以6 m/s 的速度向右运动,B 静止;当A 、B 之间距离为18 m 时,在A 、B 之间建立相互作用,其作用力为恒力,此后B 物体加速,经过4 s ,物体B 的速度达到3 m/s ,此时撤去A 、B 之间的相互作用,A 、B 继续运动又经4 s ,A 恰好追上B ,在这一过程中:求:图2-16(1)在A 物体追上B 物体前,B 运动的位移大小;(2)在两物体间有相互作用时,物体A 和B 的加速度a A 和a B 的大小; (3)物体A 和B 的质量之比. 12.如图2-17所示,“”形木块放在光滑水平地面上,木块水平表面AB粗糙,光滑表面BC 与水平面夹角为θ=37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C 点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图乙所示.已知sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,求:图2-17(1)斜面BC 的长度;(2)滑块的质量;(3)运动过程中滑块克服摩擦力做的功.参考答案1.C [物体在力F作用下向左加速,接触弹簧后受到弹簧向右的弹力,合外力向左逐渐减小,加速度向左逐渐减小,速度增大,当弹簧的弹力大小等于力F时合外力为0,加速度为0,速度最大,物体继续向左运动,弹簧弹力大于力F,合外力向右逐渐增大,加速度向右逐渐增大,速度减小,最后速度减小到0,此时加速度最大,综上所述,A、B、D错误,C正确.]2.D [由v t=at可得t=2.5 s,则第3 s内的位移,实质上就是2~2.5 s内的位移,x=12at′2=0.5 m.]3.D [根据F1=ma1,把F1=10 N,a1=2 m/s2,代入,得m=5 kg,再由F2=ma2,把m=5 kg,a2=5 m/s2代入,解得F2=25 N.]4.B [当驾驶员的反应时间最长,路面的动摩擦因数最小时对应的最长距离是安全距离.v=120 km/h=33.3 m/s,反应时间t=0.6 s内位移x1约为20 m;又μmg=ma,a=3.2 m/s2,s2=v22a=173 m;s=s1+s2=193 m.]5.C [设斜面的倾角为θ,根据牛顿第二定律知物块的加速度a=mg sin θ-μmg cos θm,即μ<tan θ. 对物块施加竖直向下的压力F后,物块的加速度a′=mg+F sin θ-μmg+F cos θm=a+F sin θ-μF cos θm,且F sin θ-μF cos θ>0,故a′>a,物块将以大于a的加速度匀加速下滑.故选项C正确,选项A、B、D错误.]6.C [物块在整个运动过程中,由能量守恒知,物块在c点的动能小于初动能,即v<v0,A项错误;物块在ab段和bc段分别做匀减速和匀加速运动,且a1>a2,故B、D错误,C正确.]7.AD [物体的惯性指物体本身要保持原来运动状态不变的性质,或者说是物体抵抗运动状态变化的性质,选项A正确;没有力的作用,物体将保持静止状态或匀速直线运动状态,选项B错误;行星在圆周轨道上做匀速圆周运动,而惯性是指物体保持静止或匀速直线运动的状态,选项C错误;运动物体如果没有受到力的作用,根据牛顿第一定律可知,物体将继续以同一速度沿同一直线一直运动下去,选项D正确.]8.AB [图线a表示的v-t图象加速度较大,说明物体所受的拉力与摩擦力方向相同,则F+f=ma a=0.2 N,图线b表示物体只在摩擦力作用下做匀减速运动,有f=ma b =0.1 N ,解得F =f =0.1 N ,A 项正确;有水平拉力时,物体位移为s =5+32×3 m=12 m ,故拉力做功的数值为W =Fs =1.2 J ,B 项正确;撤去拉力后物体能滑行13.5 m ,C 项错误;动摩擦因数μ=f mg =130,D 项错误.] 9.BD [在0~t 1时间内物块A 所受的合力为零,物块A 处于静止状态,根据P =Fv 知,力F 的功率为零,选项A 错误;在t 2时刻物块A 受到的合力最大,根据牛顿第二定律知,此时物块A 的加速度最大,选项B 正确;物块A 在t 1~t 2时间内做加速度增大的加速运动,在t 2~t 3时间内做加速度减小的加速运动,t 3时刻,加速度等于零,速度最大,选项C 错误、选项D 正确.]10.BD [物块B 刚要离开C 时B 的加速度为0,A 项错;未加F 时对A 受力 分析得弹簧的压缩量x 1=mg sin 30°k =mg2k,B 刚要离开C 时对B 受力分析得弹簧的伸长量x 2=mg2k,此时对A 由牛顿第二定律得F -mg sin 30°-kx 2=ma ,解得a =g ,B 项正确、C 项错;物体A 的位移x 1+x 2=mg k,D 项正确.] 11.解析 物体B 先加速运动后匀速运动(1)x B =v B 2t 1+v B t 2=⎝⎛⎭⎫32×4+3×4m =18 m.(2)a B =Δvt 1=0.75 m/s 2A 物体先减速运动再匀速运动 A 减速运动的位移:x 1=v 0t 1-12a A t 21=6×4-12a A ×42=24-8a A , A 匀速运动的位移:x 2=(v 0-a A t 1)×t 2=24-16a A ,由题知x A =x 1+x 2=x B +18,即48-24a A =18+18, 解得a A =0.5 m/s 2.(3)由牛顿第三定律有F 1=-F 2,则质量之比m A m B =a B a A =32.答案 (1)18 m (2)a A =0.5 m/s 2 a B =0.75 m/s 2 (3)3212.解析 (1)分析滑块受力,由牛顿第二定律得:a 1=g sin θ=6 m/s 2通过图象可知滑块在斜面上运动的时间为:t 1=1 s由运动学公式得:s =121t 21=3 m.(2)滑块对斜面的压力为N 1′=mg cos θ 木块对传感器的压力为F 1=N 1′sin θ 由图象可知:F 1=12 N ,解得m =2.5 kg.(3)滑块滑到B 点时的速度为:v 1=a 1t 1=6 m/s ,由图象可知:f 1=5 N ,t 2=2 s ,滑块受到的摩擦力f =f 1=5 N ,a 2=f m 2 m/s ,s 2=v 1t 2-12a 2t 22=8 m ,W =fs 2=40 J.答案 见解析。
物理复习直线运动教案•相关推荐物理复习直线运动教案第二直线运动直线运动是整个高中物理知识的基础,本从最简单、最基本的直线运动入手,运用公式和图象两种数学工具研究如何描述物体的运动,即研究物体的位移、速度等随时间变化的规律,是学习力学相关物理问题的工具。
知识网络:专题一直线运动的基本概念【考点透析】一、本专题考点:机械运动、参考系、质点、瞬时速度是I类要求,位移、路程、加速度、平均速度以及匀速直线运动的速度、速率、位移公式是II类要求。
二、理解和掌握的内容1.基本概念(1)机械运动:物体相对于其他物体的位置变化叫做机械运动,简称运动。
(2)参考系:在描述一个物体的运动时,选作为标准的另外的物体,叫做参考系。
描述一个物体的运动时,参考系是可以任意选取的,选择不同的参考系观察同一物体的运动,观察结果会有不同,通常以地面为参考系研究物体的运动。
(3)质点:用代替物体的有质量的点。
在物体做平动时或物体的形状大小在所研究的问题中可以忽略的情况下,可将物体视为质点。
(4)位移:描述质点位置改变的物理量,它是矢量,方向由初位置指向末位置;大小是从初位置到末位置的线段长度。
(5)路程:是指质点运动轨迹的长度,它是标量。
位移、路程的联系与区别:位移是矢量,路程是标量;只有在物体做单方向直线运动时路程才等于位移的大小。
(6)平均速度:质点在某段时间内的位移△s与发生这段位移所用时间△t的比值叫做这段时间(或这段位移)的平均速度。
即v = △s/△t(7)瞬时速度:运动物体经过某一时刻(或某一位置)的速度,叫做瞬时速度。
(8)速率:瞬时速度的大小叫瞬时速率。
速率是标量。
(9)速度变化量△v = vt-v0:描述速度变化的大小和方向的物理量,它是矢量,△v可以与v0同方向、反方向。
当△v与v0同方向时,速度增大;当△v 与v0反方向时,速度减小,当△v与v0不共线时改变速度方向。
(10)加速度:加速度是表示速度改变快慢的的物理量,它等于速度的改变跟发生这一改变所用时间的比值。
专题2运动和力一.选择题(共10小题)1.(2022•杭州)小金和小杭并排坐在等待发车的和谐号列车上。
此时,边上有一列复兴号列车也在等待发车。
过了一会儿,小金说,我们的车开动了。
而小杭却说,我们的车没有开动,因为站台柱子没有动。
小金判断和谐号列车开动,选取的参照物是()A.小杭B.和谐号列车C.复兴号列车D.站台柱子2.(2022•温州)将小球竖直向上抛出后,每隔0.1秒的位置如图所示。
假设小球运动至甲处时,所受所有外力都消失,则推测小球从甲处开始,其运动情况及每隔0.1秒的位置正确的是()A.A B.B C.C D.D3.(2023•温州)利用频闪照相技术,拍摄击出的羽毛球在相同时间间隔的位置如图所示。
则从①→②过程中,羽毛球()A.重力变小,速度变大B.重力变小,速度变小C.重力不变,速度变大D.重力不变,速度变小4.(2021•湖州)2020年12月17日,“嫦娥五号”返回器携带了超过2千克的月球岩石及土壤样本,在预定区域成功着陆。
下列有关说法正确的是()A.月球岩石带回地球后质量变大B.月球岩石带回地球后受到的重力不变C.月球土壤带回地球后密度变大D.月球土壤和地球土壤相比不含空气5.(2023•杭州)小金用脚将足球踢出,足球在地面上运动了一段距离后停下。
下列分析错误的是()A.踢球时脚也受到球的作用力,是因为力的作用是相互的B.球离脚后能在地面上继续运动,是因为球具有惯性C.球运动越来越慢最后停下来,是因为球受到阻力的作用D.球在运动过程中,如果一切外力突然消失,球将立即静止6.(2021•杭州)小金在进行百米赛跑时经历了加速、减速等阶段,最终冲过终点线。
以下关于惯性的说法正确的是()A.小金加速跑时的惯性比减速跑时大B.小金冲过终点线,停下来时没有惯性C.小金整个跑步过程惯性大小不变D.小金在加速、减速等运动状态改变时才有惯性7.(2022•温州)跑步是一种健身方式。
人沿水平直道跑步,左脚后蹬时,图中箭头表示左脚受到的摩擦力方向正确的是()A.B.C.D.8.(2021•丽水)我市各县(市)在努力创建全国文明城市,市容市貌越来越好。
自由落体运动和竖直上抛运动1、一小石块从空中a 点自由落下,先后经过b 点和c 点,不计空气阻力。
经过b 点时速度为v ,经过c 点时速度为3v ,则ab 段与ac 段位移之比为( ) A.1:3 B.1:5 C.1:8 D.1:92、如图所示,一杂技演员用一只手抛球,他每隔0.4s 抛出一球,接到球便立即把球抛出.已知除抛、接球的时刻外,空中总有4个小球,将球的运动近似看成是竖直方向的运动,球到达的最大高度是(高度从抛球点算起,210m/s g =)( )A.1.6mB.2.4mC.3.2mD.4.0m3、空降兵某部官兵使用新装备从260m 超低空跳伞成功。
若跳伞空降兵在离地面224m 高处,由静止开始在竖直方向做自由落体运动。
一段时间后,立即打开降落伞,以12.52m/s 的平均加速度匀减速下降,为了空降兵的安全,要求空降兵落地速度最大不得超过m/s (g 取102m/s )。
则( )A.空降兵展开伞时离地面高度至少为125m,相当于从2.5m 高处自由落下B.空降兵展开伞时离地面高度至少为125m,相当于从1.25m 高处自由落下C.空降兵展开伞时离地面高度至少为99m,相当于从1.25m 高处自由落下D.空降兵展开伞时离地面高度至少为99m,相当于从2.5m 高处自由落下4、从塔顶由静止释放一个小球A 的时刻为计时零点,0t 时刻,在与A 球0t 时刻所在位置的同一水平高度,由静止释放小球B ,若两球都只受重力作用,设小球B 下落时间为t ,在A 、B 两球落地前,A 、B 两球之间的距离为x ∆,则0xt t∆-的图线为( )A. B. C.D.5、取一根长2m 左右的细线、5个铁垫圈和一个金属盘。
在线端系上第一个垫圈,隔12cm 再系一个,以后垫圈之间的距离分别为36cm 、60cm 、84cm,如图所示。
某同学站在椅子上,向上提起线的上端,让线自由垂下,且第一个垫圈紧靠放在地上的金属盘。
专题二力与物体的运动第1课时力与直线运动专题复习定位解决问题本专题主要解决直线运动中匀变速直线运动规律、牛顿运动定律和动力学方法的应用。
高考重点匀变速直线运动规律的应用;应用牛顿第二定律分析瞬时、超重和失重、连接体和图象等问题;应用动力学方法处理“传送带模型”和“板—块模型”等问题。
题型难度以选择题为主,有时候在计算题中的某一问或者单独以计算题的形式命题,题目难度一般为中档题。
1.匀变速直线运动的条件物体所受合力为恒力,且与速度方向共线。
2.匀变速直线运动的基本公式及推论速度公式:v=v0+at。
位移公式:x=v0t+12at2。
速度和位移公式的推论:v2-v20=2ax。
中间时刻的瞬时速度:v t2=xt=v0+v2。
任意两个连续相等的时间间隔内的位移之差是一个恒量,即Δx=x n+1-x n=aT2。
3.图象问题(1)速度—时间图线的斜率或切线斜率表示物体运动的加速度,图线与时间轴所包围的面积表示物体运动的位移。
匀变速直线运动的v-t图象是一条倾斜直线。
(2)位移—时间图线的斜率或切线斜率表示物体的速度。
4.超重和失重超重或失重时,物体的重力并未发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化。
物体发生超重或失重现象与物体的运动方向无关,只取决于物体的加速度方向。
当a有竖直向上的分量时,超重;当a有竖直向下的分量时,失重;当a=g且竖直向下时,完全失重。
5.瞬时问题应用牛顿第二定律分析瞬时问题时,应注意物体与物体间的弹力、绳的弹力和杆的弹力可以突变,而弹簧的弹力不能突变。
6.连接体问题在连接体问题中,一般取连接体整体为研究对象,求共同运动的加速度,隔离法求连接体内各物体间的相互作用力。
1.基本思路2.解题关键抓住两个分析,受力分析和运动情况分析,必要时要画运动情景示意图。
对于多运动过程问题,还要找准转折点,特别是转折点的速度。
3.常用方法(1)整体法与隔离法:单个物体的问题通常采用隔离法分析,对于连接体问题,通常需要交替使用整体法与隔离法。
专题一 力与物体的平衡一、典型例题1.在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A ,A 与竖直墙之间放一光滑圆球B ,整个装置处于静止状态.现对B 加一竖直向下的力F ,F 的作用线通过球心,设墙对B 的作用力为F 1,B 对A 的作用力为F 2,地面对A 的作用力为F 3.若F 缓慢增大而整个装置仍保持静止,截面如上图所示,在此过程中 ( )A .F 1保持不变,F 3缓慢增大B .F 1缓慢增大,F 3保持不变C .F 2缓慢增大,F 3缓慢增大D .F 2缓慢增大,F 3保持不变2. 如图7,人重600牛,木块A 重400牛,人与A 、A 与地面间的摩擦系数均为0.2,现人用水平力拉绳,使他与木块一起向右匀速直线运动,滑轮摩擦不计,求(1)人对绳的拉力.(2)人脚给A 的摩擦力方向和大小。
3.有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑.AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图1-20 甲所示).现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是 ( )A .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变大D .N 变大,T 变小4、如图所示,半圆形支架DAB ,两绳OA 和OB 接于圆心O ,下悬重为G 的物体,使OA 固定不动,将OB 绳的B 端沿半圆支架从水平位置逐渐移动竖直位置C 的过程中,说明OA 绳和OB 绳对节点O 的拉力大小如何变化?二、学生练习1.如图所示,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,A 和B 以相同的速度在水平地面C 上做匀速直线运动(空气阻力不计).由此可知,A 、B 间的动摩擦因数μ1和B 、C 间的动摩擦因数μ2有可能是( )A .μ1=0,μ2=0B .μ1=0,μ2≠0C .μ1≠0,μ2=0D .μ1≠0,μ2≠02.如图跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落.已知运动员和他身上装备的总重力为G 1,圆顶形降落伞伞面的重力为G 2,有8条相同的拉线,一端与飞行员相邻(拉线重力不计),另一端均匀分布在伞面边缘上(图中没有把拉线都画出来),每根拉线和竖直方向都成300角.那么每根拉线上的张力大小为( )A .1231G B .12)(321G G + C .8)(21G G + D .41G3.如图所示,两个完全相同的光滑球的质量均为m ,放在竖直挡板和倾角为α的固定斜面间.若缓慢转动挡板至与斜面垂直,在此过程中( )A .A 、B 两球间的弹力逐渐增大 B .B 球对挡板的压力逐渐减小C .B 球对斜面的压力逐渐增大D .A 球对斜面的压力逐渐增大4.如图所示,轻绳AC 与天花板夹角α=300,轻绳BC 与天花板夹角β=600.设AC 、BC 绳能承受的最大拉力均不能超过100N ,CD 绳强度足够大,求CD 绳下端悬挂的物重G 不能超过多少?5.三根不可伸长的相同的轻绳,一端系在半径为r 0的环1上,彼此间距相等,绳穿过半径为r 0的第2个圆环,另一端同样地系在半径为2r 0的环3上,如图所示,环1固定在水平面上,整个系统处于平衡状态.试求第2个环中心与第3个环中心之间的距离.(三个环都是用相同的金属丝制作的,摩擦不计)6.如图所示,用光滑的粗铁丝做成一直角三角形,BC 边水平,AC 边竖直,∠ABC =β.AB边及AC 两边上分别套有用细线相连的铜环(其总长度小于BC 边长),当它们静止时,细线跟AB 所成的角θ的大小为( )A .θ=βB .θ=2π C .θ<β D .β<θ<2π7.如图所示,质量为m 的工件置于水平放置的钢板C 上,二者间的动摩擦因数为μ,由于光滑导槽A 、B 的控制,工件只能沿水平导槽运动,现在使钢板以速度v 1向右运动,同时用力F 拉动工件(F 方向与导槽平行)使其以速度v 2沿导槽运动,则F 的大小为( )A .等于μmgB .大于μmgC .小于μmgD .不能确定8.如图所示,一个半球形的碗放在桌面上,碗口水平,碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=600.两小 球的质量比为m 2/m 1为( )A .33B .32C .23D .229.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上;②中弹簧的左端受大小也为F 的拉力作用;③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有( )A .l 2 > l 1B . l 4> l 3C .l 1 > l 3D .l 2 = l 410.如图所示,A 、B 两物体的质量分别为m A 和m B ,且m A >m B ,整个系统处于静止状态,滑轮的质量和一切摩擦均不计.如果绳一端由Q 点缓慢地向左移到P 点,整个系统重新平衡后,物体A 的高度和两滑轮间绳与水平方向的夹角θ如何变化?( )A .物体A 的高度升高,θ角变大B .物体A 的高度降低,θ角变小C .物体A 的高度升高,θ角不变D .物体A 的高度不变,θ角变小F ① F ②F ③ ④专题二 力与物体的直线运动一、例题【例1】在平直公路上,自行车与同方向行驶的一汽车同时经过A 点,自行车以v =4m/s 速度作匀速运动,汽车以v 0 =10m/s 的初速度、a =0.25m/s 2的加速度作匀减速运动。