高中数学必修五公式
- 格式:doc
- 大小:75.00 KB
- 文档页数:2
等差数列知识集结知识元等差数列的性质知识讲解1.等差数列的性质【等差数列】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{a n}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{a n}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴a n=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{a n}的通项公式为a n=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式a n=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).例题精讲等差数列的性质例1.设等差数列{a n}的前n项和为S n,若a2+a8=15-a5,则S9等于()A.18B.36C.45D.60例2.记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=()A.7B.8C.9D.10例3.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12等差数列的通项公式知识讲解1.等差数列的通项公式【知识点的认识】等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代入2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中a n的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为首项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.例题精讲等差数列的通项公式例1.在等差数列{a n}中,a4,a12是方程x2+3x+1=0的两根,则a8=()A.B.C.D.不能确定例2.在等差数列{a n}中,a2+a10=0,a6+a8=-4,a100=()A.212B.188C.-212D.-188例3.在等差数列{a n}中,若a2=5,a4=3,则a6=()A.-1B.0C.1D.6当堂练习单选题练习1.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12练习2.等差数列{a n}中,已知a2+a6=4,则a4=()A.1B.2C.3D.4练习3.在等差数列{a n}中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.9练习4.《孙子算经》是中国古代重要的数学著作,上面记载了一道有名的“孙子问题”(又称“物不知数题”),后来我国南宋数学家秦九韶在《数书九章∙大衍求一术》中将此问题系统解决.“大衍求一术”是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.后传入西方,被称为“中国剩余定理”.现有一道一次同余式组问题:将正整数中,被3除余2且被5除余1的数,按由小到大的顺序排成一列,则此列数中第10项为()A.116B.131C.146D.161练习5.已知2,b的等差中项为5,则b为()A.B.6C.8D.10练习6.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A.B.C.D.练习7.等差数列{a n}中,S n是它的前n项和,a2+a3=10,S6=54,则该数列的公差d为()A.2B.3C.4D.6练习8.等差数列{a n}中,a1+a8=10,a2+a9=18,则数列{a n}的公差为()A.1B.2C.3D.4练习9.在等差数列{a n}中,已知a2+a6=18,则a4=()A.9B.8C.81D.63。
高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示知识点2、等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列③等差中项:对于数列,若,则数列是等差数列知识点3、等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为该公式整理后是关于n的一次函数知识点4、等差数列的前n项和:⑤⑥对于公式2整理后是关于n的没有常数项的二次函数知识点5、等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有⑧对于等差数列,若,则也就是:⑨若数列是等差数列,是其前n项的和,,那么,,成等差数列如下图所示:10、等差数列的前项和的性质:①若项数为,则,且,.②若项数为,则,且,(其中,).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、。
等差数列{a n}的前三项依次为a-6,2a -5, -3a +2,则a 等于()A . -1B . 1C 。
—2 D. 22.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为( )A.49 B.50 C.51 D.523.等差数列1,-1,-3,…,-89的项数是()A.92 B.47 C.46 D.454、已知等差数列中,的值是()()A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是()A.d>B.d<3 C。
≤d<3 D.<d≤36、。
在数列中,,且对任意大于1的正整数,点在直上,则=_____________。
高中数学必修四必修五公式_知识点正弦定理:(R 为外接圆半径),sin sin sin sin sinsin a b c a b cC C ++===A +B +A B边角互化关系式:余弦定理:三角形面积公式:三角形判断方法: 设a 、b 、c 是△ABC 的角A 、B 、C 的对边,则:①若,则;②若,则;③,则。
等差数列: 通项公式:d n a a n)1(1-+=通项公式的变形:①()nm a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a nd-=+;⑤nm a a d n m -=-等差数列性质:m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{}n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+。
求和公式:()()22111n a a d n n na S n n +=-+=等差数列的前n项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd-=偶奇,1nn S a S a +=奇偶.②若项数为()*21n n -∈N ,则()2121n n Sn a -=-,且n S S a -=奇偶,1S n S n =-奇偶(其中n Sna =奇,()1n S n a =-偶)。
③n S ,2n n S S -,32n n S S -成等差数列(d n 2)等比数列: 通项公式:11-=n nq a a通项公式的变形:①n m n m a a q -=;②()11n n a a q --=;③11n naq a -=;④n mn ma qa -=求和公式:())1(11111≠--=--=q qq a q q a a S nn n , )1(1==q na S n等比数列的前n 项和的性质:①若项数为()*2nn ∈N ,则Sq S =偶奇,②n S ,2n n S S -,32n n S S -成等比数列(n q )同角三角函数关系式及诱导公式:1cos sin 22=+αα αααcos sin tan =公式一: sin (2k π+α) = sin α cos (2k π+α) = cos α tan (2k π+α)= tan α 公式二: sin (π+α) =-sin α cos (π+α)=-cos α tan (π+α)=tan α 公式三: sin(-α) =-sin α cos(-α) =cos α tan(-α) =-tan α 公式四: sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan α 公式五: sin(π/2-α) = cos α cos(π/2-α) = sin α 公式六: sin(π/2+α) = cos α cos(π/2+α) = -sin αsin (3π/2-α)=-cos α,cos (3π/2-α)=-sin α, sin (3π/2+α)=-cos α, cos (3π/2+α)=sin α, 三角函数本质:三角函数的本质来源于定义,如下图:根据上图,有。
用结构法求数列的通项公式在高中数学教材中,有好多已知等差数列的首项、公比或公差 (或许经过计算能够求出数列的首项 ,公比 ),来求数列的通项公式。
但实质上有些数列其实不是等差、等比数列,给出数列的首项和递推公式 ,要求出数列的通项公式。
而这些题目常常能够用结构法,依据递推公式结构出一个新数列,进而间接地求出原数列的通项公式。
关于不一样的递推公式,我们自然能够采纳不一样的方法结构不一样的种类的新数列。
下边给出几种我们常有的结构新数列的方法:一.利用倒数关系结构数列。
比如:数列 { a n } 中,若 a12,114(n N ), 求a n an 1an设b n 1 , 则b n 1b n+4,a n即 b n 1b n=4,{b n}是等差数列。
能够经过等差数列的通项公式求出b n,然再求后数列{ a n}的通项。
练习: 1)数列 { a n } 中, a n≠0,且知足a111N ), 求a n , a n11, (n23a nn}中, a11, a n 2a n n通项公式。
2)数列 { a1a n, 求a 2n}中 , a11, a n0,且a n2a n a n 1a n1 0(nn3)数列 { a2, n N ), 求 a .二.结构形如 b n a n2的数列。
例:正数数列 { a n } 中,若 a15, a n 12a n24(n N ), 求a n解:设 b n a n 2 , 则b n1bn4,即b n1b n4数列 { b n } 是等差数列,公差是4, b1225 a1b n25(n 1)( 4)294n即 a n 24n29a n294n , (1n7, n N )练习:已知正数数列 { a n } 中, a1 2, a n 2 a n 1 (n2, n N ) ,求数列 { a n } 的通项公式。
三.结构形如 b n lg a n的数列。
例:正数数列 { a} 中,若 a =10,且lg a n lg a n 1 , (n2, n N ), 求a .n11n2解:由题意得:lg a n1,可设 b n lg a n,lg a n 12即b n1,bn 12b n是等比数列,公比为1, b1 lg 10 12b n 1 (1) n 1(1)n 1 ,(n N) .22(1) n 1 , a n( 1 )n 1即 lg a n10 22练习:(选自 2002 年高考上海卷)数列 { a n } 中,若 a1=3, a n 1a n2 ,n 是正整数,求数列 { a n } 的通项公式。
高中数学必修五公式
第一章 三角函数
一.正弦定理:2(sin sin sin a b c
R
R A B C
===为三角形外接圆半径)
二.余弦定理:
三.三角形面积公式:111
sin sin sin ,222
ABC S bc A ac B ab C ∆=
== 第二章 数列
一.等差数列: 1.定义:a n+1-a n =d (常数)
2.通项公式:()d n a a n •-+=11或()d m n a a m n •-+=
3.求和公式:()()d n n n n a a a S n n 2
1211-+=+=
4.重要性质(1)a a a a q p n m q p n m +=+⇒+=+
(2)
m,2m,32m m m S S S S S --仍成等差数列
二.等比数列:1.定义:
)0(1
≠=+q q a a n
n 2.通项公式:q a a n n 1
1-•=或q
a a m
n m n -•=
3.求和公式: )(1q ,1==na S n
)(1q 11)1(11≠--=--=q
q
a a q q a S n n n
4.重要性质(1)a a a a q p n m q p n m =⇒+=+
(2)()m,2m,32q 1m m m m S S S S S --≠-仍成等比数列或为奇数
三.数列求和方法总结:
1.等差等比数列求和可采用求和公式(公式法).
2.非等差等比数列可考虑(分组求和法) ,(错位相减法)等转化为等差或等比数列再求和, 若不能转化为等差或等比数列则采用(拆项相消法)求和.
注意(1):若数列的通项可分成两项之和(或三项之和)则可用(分组求和法)。
(2)若一个等差数列与一个等比数列的对应相乘构成的新数列求和,采用(错位相减法). 过程:乘公比再两式错位相减
(3)若数列的通项可拆成两项之差,通过正负相消后剩有限项再求和的方法为(拆项相消法). 常见的拆项公式:11
1)1(1.
1+-=+n n n n
2222222222cos 2cos 2cos a b c bc A
b a
c ac B c a b ab C
=+-=+-=+-)11(1)(1.2k
n n k k n n +-=+)121121(21)12)(12(1.3+--=+-n n n n ]
)
2)(1(1
)1(1[21)2)(1(1.
4++-+=++n n n n n n n )
1(1
n 1
.
5n n n -+=++
四.数列求通项公式方法总结:
1..找规律(观察法).
2..若为等差等比(公式法)
3.已知Sn,用(Sn 法)即用公式()()⎩⎨⎧≥-==-2111
n S S n S a n n
n
4. 叠加法
5.叠乘法等
第三章:不等式
一.
解一元二次不等式三部曲:1.化不等式为标准式ax 2
+bx+c>0或 ax 2
+bx+c<O (a>0)。
22.0ax bx c ++=计算△的值,确定方程的根。
3.根据图象写出不等式的解集.
特别的:若二次项系数a 为正且有两根时写解集用口决:(不等号)大于0取两边,小于0取中间
二.分式不等式的求解通法:
(1)标准化:①右边化零,②系数化正.
(2)转 换:化为一元二次不等式(依据:两数的商与积同号)
三.二元一次不等式Ax+B y+C >0(A 、B 不同时为0),确定其所表示的平面区域用口诀:同上异下 (注意:包含边界直线用实线,否则用虚线)
四.线性规划问题求解步骤:画(可行域)移(平行线)求(交点坐标,最优解,最值)答.
五.基本不等式:
0,0)a b
a b +≥≥≥(当且仅当a=b 时,等号成立)利用基本不等式求最值应用条件:一正数 二定值 三相等
旧知识回顾:1.2
0ax bx c ++=求方程的根方法:
(1)十字相乘法:左列分解二次项系数a ,右列分解常数项c ,交叉相乘再相加凑成一次项系数b 。
12x =
,(2)求根公式:
2.韦达定理:2
121212,00),b c
x ax bx c x x a a
++=≠+=-
•=若x 是方程(a 的两根,则有x x 3.对数类:log a M+log a N=log a MN log a M-log a N=log a N M
log a M N =Nlog a M (M.>0,N>0)
()10()()0
()
()(2)0()()0()0()()()
30()()f x f x g x g x f x f x g x g x g x f x f x a a g x g x >⇔•>≥⇔•≥≠≥⇔-≥常用的解分式不等式的同解变形法则为
()且(),再通分。