立体几何中添加辅助线的基本方法
- 格式:pdf
- 大小:223.94 KB
- 文档页数:4
几何证明题辅助线基本方法几何证明题是数学中的一种重要题型,需要通过逻辑推理和几何知识来证明给定的几何关系。
在解决几何证明题时,辅助线是一种常用的策略,可以帮助我们简化问题、构建更简洁的证明过程。
本文将介绍几何证明题中常用的辅助线基本方法。
1. 平行辅助线法当我们需要证明两条线段平行时,可以在图形中引入一条辅助线来构建平行关系。
具体步骤如下:1. 观察图形,找到可能存在平行关系的线段。
2. 在相应的位置引入一条辅助线。
3. 利用平行线的性质进行推理,证明所需的平行关系。
2. 相等辅助线法当我们需要证明两个线段相等时,可以通过引入一条相等的辅助线来简化证明过程。
具体步骤如下:1. 观察图形,找到可能具有相等关系的线段。
2. 在相应的位置引入一条相等的辅助线。
3. 利用等边、等角等性质进行推理,证明所需的相等关系。
3. 垂直辅助线法当我们需要证明两条线段垂直时,可以通过引入一条垂直的辅助线来简化证明过程。
具体步骤如下:1. 观察图形,找到可能具有垂直关系的线段。
2. 在相应的位置引入一条垂直的辅助线。
3. 利用垂直线的性质进行推理,证明所需的垂直关系。
4. 同位角辅助线法当我们需要证明两条直线的同位角相等时,可以通过引入同位角的辅助线来简化证明过程。
具体步骤如下:1. 观察图形,找到可能存在同位角的直线。
2. 在相应的位置引入同位角的辅助线。
3. 利用同位角的性质进行推理,证明所需的同位角相等关系。
5. 其他辅助线方法除了上述介绍的常用辅助线方法外,还可以根据具体的几何证明题目选择其他辅助线的方法。
例如,可以利用中位线、角平分线、内切圆、外接圆等辅助线,根据题目要求灵活运用。
综上所述,几何证明题辅助线基本方法包括平行辅助线法、相等辅助线法、垂直辅助线法、同位角辅助线法等。
通过合理引入辅助线,可以帮助我们简化问题、构建更简洁的证明过程,提高解题效率。
在实际解题中,我们需要综合运用不同的辅助线方法,根据题目要求灵活选择适合的策略。
2020年高考数学-解立体几何添加辅助线的技巧-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN解立体几何添加辅助线的技巧。
在学习立体几何时,空间中平行、垂直的证明,距离、角的计算,点、线、面位置关系的判断大多都需要做出辅助线,有些同学一涉及辅助线问题就懵圈,不知如何下手。
解决异面直线夹角、线面角、二面角、面面垂直的问题时,通常需要结合定义法求解,可是题目往往不会那么好心的为我们给出满足定义的所有条件,此时就需要添加辅助线,使已知条件满足某个定义,即把定义中缺少的线、面、体补全,所以理解并熟知立体几何当中的定义、概念很重要.总结一下就是:按照定义条件作辅助线凑条件.1定义法作辅助线求异面直线所成的角2定义法作辅助线求线面角3定义法作辅助线求二面角上述各例都是利用定义法作平行线和垂线,凑足条件后利用定义找到相应的角,结合解三角形得到相应的答案.二定理法添加辅助线—证明平形&垂直问题证明空间中的平行和垂直问题利用定义法一般较为麻烦,通常采用判定定理和性质定理。
来证明,利用定理作出辅助线,构造定理使用的条件.故定理法作辅助线即找满足定理的条件,核心为作平行线和垂线.1添加平行线的策略把不在一起的线集中到一个图形中,构造三角形、梯形的中位线,平行四边形、矩形、菱形的对边等,通过图形性质就可得到所需的平行关系.2添加垂线的策略立体几何中的许多定理是与垂线有关的,如三垂线定理,线面垂直、面面垂直的判定定理和性质定理,正棱柱、正棱锥的性质,球的性质等,所以运用这些定理,就需要作辅助线把没有的垂线补全.尤其要注意平面的垂线,因为有了平面的垂线,才能建立空间直角坐标系和使用三垂线定理或其逆定理.作垂线方法:等腰三角形或正三角形取底边中点,连接顶点和中点;连接正方形、菱形的对角线;直立方体,可连接上下面中心;构造勾股定理等构造垂直关系.三、割补法添加辅助线解决三视图或求体积、表面积问题几何体的三视图,常常可以看作是由基本几何体(如正方体、长方体)切割出的几何体的三视图,作直观图时,可以画出正方体(或长方体),在此基础上切割并想象三视图得到所需几何体的直观图.利用辅助线或辅助面,通过“割”或“补”把一些线面关系放到一些特殊的几何体中思考,或把原几何体分割成几个特殊的常见的简单几何体,使各种线、面关系易于理解.四、中心对称问题中的对称连线法当遇到对称几何体或几何面的问题时,如球、正三棱锥、立方体、圆、正三角形、矩形、平行四边形等,根据题意可以把对称几何体或几何面的中心几何面的外心、内心、垂心、重心和所求问题涉及的点线面连接起来,然后利用几何体或面的性质求解问题.例如平行四边形连对角线;圆的问题向圆心连线;球的问题向球心连线等,使问题简单易解.总结立体几何作辅助线问题,看到求角想定义,看到求证想定理,看到结论想性质.定义、定理是打开解题思路的关键,也是引入辅助线的基础。
几何证明题辅助线基本方法几何证明题辅助线方法是解决几何问题的基本策略之一。
通过引入辅助线,可以简化问题,使证明过程更加清晰和易于理解。
本文将介绍几何证明题中常用的辅助线方法。
垂直、平行辅助线方法当给定几何图形中存在垂直或平行线段时,可以通过引入垂直或平行辅助线来简化证明过程。
这些辅助线可以将问题中的角度或长度关系转化为更易于理解和证明的形式。
例如,当一个问题中涉及到两条平行线段之间的关系时,可以通过引入一条垂直辅助线将问题转化为两个相似三角形的比较问题。
中位线辅助线方法中位线辅助线方法是在一个三角形中引入中位线来简化证明过程。
中位线是连接一个三角形的一个顶点和对位边中点的线段。
通过引入中位线,可以将原问题转化为两个相似三角形的比较问题。
中位线辅助线方法在证明三角形的性质和关系时特别有用。
例如,在证明三角形的垂心、重心等性质时,可以使用中位线辅助线方法来简化证明过程。
旁切辅助线方法旁切辅助线方法是在一个圆和一个与之相切的直线或线段之间引入一条辅助线来解决问题。
通过引入旁切辅助线,可以将问题转化为关于切点、切线以及圆的性质和关系的证明问题。
旁切辅助线方法在证明圆的性质和关系时特别有用。
例如,在证明切线与半径垂直、切线之间的夹角等性质时,可以使用旁切辅助线方法来简化证明过程。
相似三角形辅助线方法相似三角形辅助线方法是通过引入辅助线,将原问题转化为相似三角形的比较问题。
通过比较相似三角形的边长或角度,可以得出原问题的结论。
相似三角形辅助线方法在证明三角形的比较性质时特别有用。
例如,在证明一个三角形是等腰三角形、直角三角形或全等三角形时,可以使用相似三角形辅助线方法来简化证明过程。
结论几何证明题中的辅助线方法是解决问题的基本策略之一。
通过引入不同类型的辅助线,可以简化问题,使证明过程更加清晰和易于理解。
在解决几何证明题时,我们可以根据问题的性质选择适当的辅助线方法。
初中数学常用辅助线添加技巧人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
一.添辅助线有二种情况:1 按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2 按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形; 当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
几何证明例题及常见的添加辅助线方法几何证明是数学中的一个重要分支,通过使用几何定理和性质,以及一些常见的辅助线方法,来证明几何命题的正确性。
下面将提供几个几何证明的例题,并介绍一些常见的添加辅助线方法:1.证明等边三角形的高线与垂直平分线重合。
添加辅助线方法:连接等边三角形的顶点与底边的中点,将三角形分为两个等腰三角形。
然后,通过利用等腰三角形的性质,可以证明三角形的高线与垂直平分线重合。
2.证明等腰梯形的对角线垂直。
添加辅助线方法:在等腰梯形的两个腰上各取一个点,使得这两个点与梯形的底边相连,形成两个等边三角形。
通过证明这两个等边三角形的高线与底边的中线相垂直,可以得出对角线垂直的结论。
3.证明一个四边形是平行四边形的充要条件是其对角线互相垂直。
添加辅助线方法:对四边形的两个对角线进行延长,连接延长线的交点与四边形的两个相邻顶点,形成两个三角形。
通过证明这两个三角形是直角三角形,可以得出对角线互相垂直的结论。
4.证明正方形的对角线互相垂直。
添加辅助线方法:连接正方形的相邻顶点,形成两个等腰三角形。
通过证明这两个等腰三角形的高线与底边的中线相垂直,可以得出对角线互相垂直的结论。
5.证明一个三角形的内心到三边的距离和边长的乘积是相等的。
添加辅助线方法:通过从三角形的顶点向内切圆引垂线,连接垂足与内心,形成三个小三角形。
通过证明这三个小三角形是相似三角形,可以得出内心到三边的距离和边长的乘积相等的结论。
以上是几个常见的几何证明例题及其对应的添加辅助线方法。
在几何证明中,添加辅助线是一种常用的方法,可以将原始图形分解成更简单的图形,以便于应用几何定理和性质进行证明。
但需要注意的是,添加辅助线时应选择合适的位置和方式,以确保辅助线的添加不会引入其他不必要的情况,更好地辅助证明目标命题的正确性。
专题29 几何问题辅助线添加技巧专题知识点概述全国各地每年的中考试卷里都会出现考查几何的证明和计算问题,在解答试题过程中,我们发现当题设条件不够,必须添加辅助线,把分散条件集中,建立已知和未知的桥梁,结合学过的知识,采用一定的数学方法,把问题转化为自己能解决的问题。
学会添加辅助线技巧,是培养学生科学思维、科学探究的重要途径。
所以希望大家学深学透添加辅助线的技巧和方法。
一、以基本图形为切入点研究添加辅助线的技巧策略1.三角形问题方法1:有关三角形中线的题目,常将中线加倍。
含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。
方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。
方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。
方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。
2.平行四边形问题平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形;(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;(5)过顶点作对角线的垂线,构成线段平行或三角形全等。
3.梯形问题梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
高中立体几何辅助线技巧高中立体几何辅助线技巧立体几何是数学中的一个重要分支,它研究的是空间中的三维图形。
在高中数学学习过程中,立体几何是一个非常重要的部分,而辅助线技巧则是解决立体几何问题的关键。
本文将为大家介绍一些高中立体几何辅助线技巧。
一、平行四边形法平行四边形法是解决平面内两直线或两平面之间的夹角问题时经常使用的方法。
具体步骤如下:1. 画出两个相交直线或平面。
2. 在其中一个直线或平面上任选一点,连一条与另一个直线或平面相交于该点的直线。
3. 在另一个直线或平面上找到与上述直线相交于同一点的另一条直线。
4. 连接这两条相交于同一点的直线所构成的平行四边形对角线。
5. 平行四边形对角线所在的直线就是原来两个相交直线或平面之间夹角所在的位置。
二、垂足法垂足法主要用于求解空间内点到某个面或某条直线距离最短的问题。
具体步骤如下:1. 画出一个点和一个面或一条直线。
2. 连接该点到面或直线上的垂线。
3. 在垂线上找到垂足点。
4. 连接该点和垂足点,这条连线就是点到面或直线的最短距离。
三、平面几何基本定理法平面几何基本定理法主要用于解决空间内平行关系和相交关系的问题。
具体步骤如下:1. 画出两个平行或相交的直线或平面。
2. 根据平面几何基本定理,选择适当的辅助线,将图形分割成几个简单的部分。
3. 利用简单部分之间的关系,求出所需结果。
四、向量法向量法主要用于解决空间内向量运算相关问题。
具体步骤如下:1. 画出所需向量及其所在位置。
2. 根据向量运算公式,选择适当的辅助向量,并进行计算得到所需结果。
五、截距法截距法主要用于求解空间内某个图形与坐标轴之间的交点坐标。
具体步骤如下:1. 画出所需图形及其所在位置。
2. 根据图形与坐标轴的交点坐标关系,选择适当的辅助线,并进行计算得到所需结果。
综上所述,以上五种高中立体几何辅助线技巧在解决立体几何问题时非常实用。
在学习过程中,我们应该灵活运用这些技巧,提高解决问题的效率和准确性。
立体几何中添加辅助线的方法贺精瑞立体几何中添加辅助线的主要策略:一是把定义或者定理中缺少的线、面、体补完整;二是要把已知量和未知量统一在一个图形中,如统一在一个三角形中,这样可以用解三角形的方法求得一些未知量,再如也可以统一在平行四边形或其他几何体中。
下面加以说明。
一、添加垂线策略。
因为立体几何的许多定义或定理是与垂线有关的,如线面角、二面角的定义,点到平面、线到平面、平面到平面距离的定义,三垂线定理,线面垂直、面面垂直的判定及性质定理,正棱柱、正棱锥的性质,球的性质等,所以运用这些定义或定理,就需要把没有的垂线补上。
尤其要注意平面的垂线,因为有了平面的垂线,才能建立空间直角坐标系,才能使用三垂线定理或其逆定理。
例1.在三棱锥ABCO-中,三条棱OA、OB、OC两两互相垂直,且OA=OB=OC,M 是AB边的中点,则OM与平面ABC所成的角的大小是________(用反三角函数表示)。
图1解:如图1,由题意可设aOA=,则3ABCOa61V,a2CABCAB====-,O点在底面的射影D为底面ABC∆的中心,a33S31VODABCABCO==∆-。
又a63MC31DM==,OM与平面ABC所成角的正切值是2a66a33tan==θ,所以二面角大小是2arctan。
点评:本题添加面ABC的垂线OD,正是三棱锥的性质所要求的,一方面它构造出了正三棱锥里面的ODMRt∆,ODCRt∆,另一方面也构造出了OM与平面ABC所成的角。
二、添加平行线策略。
其目的是把不在一起的线,集中在一个图形中,构造出三角形、平行四边形、矩形、菱形,这样就可以通过解三角形等,求得要求的量,或者利用三角形、梯形的中位线来作出所需要的平行线。
例2.如图2,在正方体1111DCBAABCD-中,4BAFDEB11111==,则1BE与DF所成角的余弦值是()A. 1715B. 21C. 178D. 23图2解析:取4B A G A 111=,易得四边形ADFG 是平行四边形,则AG//DF ,再作AG //E E 1,四边形EA GE 1也是平行四边形,E BE 1∠就是1BE 与DF 所成角,由余弦定理,算出结果,选A 。
立体几何中添加辅助线的策略立体几何中添加辅助线的主要策略:一是把定义或者定理中缺少的线、面、体补完整;二是要把已知量和未知量统一在一个图形中,如统一在一个三角形中,这样可以用解三角形的方法求得一些未知量,再如也可以统一在平行四边形或其他几何体中。
下面加以说明。
一、添加垂线策略。
因为立体几何的许多定义或定理是与垂线有关的,如线面角、二面角的定义,点到平面、线到平面、平面到平面距离的定义,三垂线定理,线面垂直、面面垂直的判定及性质定理,正棱柱、正棱锥的性质,球的性质等,所以运用这些定义或定理,就需要把没有的垂线补上。
尤其要注意平面的垂线,因为有了平面的垂线,才能建立空间直角坐标系,才能使用三垂线定理或其逆定理。
例1. 在三棱锥ABC O -中,三条棱OA 、OB 、OC 两两互相垂直,且OA=OB=OC ,M 是AB 边的中点,则OM 与平面ABC 所成的角的大小是________(用反三角函数表示)。
图1解:如图1,由题意可设a OA =,则3ABC O a 61V ,a 2CA BC AB ====-,O 点在底面的射影D 为底面ABC ∆的中心,a 33S 31V OD ABC ABCO ==∆-。
又a 63MC 31DM ==,OM 与平面ABC 所成角的正切值是2a 66a 33tan ==θ,所以二面角大小是2arctan 。
点评:本题添加面ABC 的垂线OD ,正是三棱锥的性质所要求的,一方面它构造出了正三棱锥里面的ODM Rt ∆,ODC Rt ∆,另一方面也构造出了OM 与平面ABC 所成的角。
二、添加平行线策略。
其目的是把不在一起的线,集中在一个图形中,构造出三角形、平行四边形、矩形、菱形,这样就可以通过解三角形等,求得要求的量,或者利用三角形、梯形的中位线来作出所需要的平行线。
例2. 如图2,在正方体1111D C B A ABCD -中,4B A F D E B 11111==,则1BE 与DF 所成角的余弦值是( )A. 1715B. 21C. 178D. 23图2解析:取4B A G A 111=,易得四边形ADFG 是平行四边形,则AG//DF ,再作AG //E E 1,四边形EA GE 1也是平行四边形,E BE 1∠就是1BE 与DF 所成角,由余弦定理,算出结果,选A 。
高中数学立体几何辅助线技巧立体几何是数学中一个重要且复杂的分支。
学习立体几何需要掌握一定的知识和技巧。
辅助线是在解决几何问题中,为了方便思考和计算而添加的直线。
在立体几何中,辅助线技巧的使用可以大大简化问题的解决过程。
本文将介绍一些常用的立体几何辅助线技巧。
1. 三个面都相切的球的直径共线在立体几何中,如果我们遇到三个面都相切的球,那么可以通过连接它们的直径来确定直径的共线。
这是由于,如果三个球的直径不共线,那么必然有两个球的球心不在同一平面上,就无法同时与第三个球相切。
2. 三角锥的几何中心在一个三角锥中,我们可以通过连接中心点和顶点的直线,将三角形分成三个小三角形。
这三个小三角形的重心将是整个三角锥的几何中心。
这是因为,重心是三角形上任何一条中线的交点,所以我们只需要找到三个顶点到对面中线的中点的连线交点,就可以确定几何中心。
3. 圆锥截面的轮廓线当我们在分析圆锥截面的形状时,我们可以通过画出截面的轮廓线来更好地理解形状。
在画轮廓线时,我们可以先将圆锥的底部画出,然后将截面的形状投射到底部上,并连接相应的点。
这样就可以得到截面的轮廓线。
4. 球的外接和内切立方体的体积关系如果一个球能够恰好被一个立方体内切,那么立方体的体积将是球体积的三倍。
如果一个球能够恰好被一个立方体外接,那么立方体的体积将是球体积的二倍。
5. 正八面体的对角线长度在一个正八面体中,通过一个顶点和对面没有共同角的点连接一条直线,这条直线就是正八面体的对角线。
对角线长度可以通过正八面体的体积和边长来计算。
在一个正方体中,对角线可以通过勾股定理计算。
假设正方体的边长为a,则对角线长度为a√3。
7. 球冠的体积当我们需要计算一个球冠的体积时,可以通过将球冠切开为一个锥形和一个球形来计算。
锥形的体积可以通过其底面积和高度来计算,而球形的体积则可以通过其半径和两个锥形的高度之和来计算。
将两个体积相加就是球冠的总体积。
辅助线技巧是解决立体几何问题的一个重要工具。