2012年全国各地中考数学解析汇编图形的相似与位似
- 格式:doc
- 大小:1.14 MB
- 文档页数:30
2012年全国中考数学试题分类解析汇编(159套63专题)专题34:命题与证明一、选择题1. (2012广东深圳3分)下列命题①方程x 2=x 的解是x=1②4的平方根是2③有两边和一角相等的两个三角形全等④连接任意四边形各边中点的四边形是平行四边形其中真命题有:【 】A .4个 B.3个 C.2个 D.1个2. (2012广东广州3分)在平面中,下列命题为真命题的是【 】A .四边相等的四边形是正方形B .对角线相等的四边形是菱形C .四个角相等的四边形是矩形D .对角线互相垂直的四边形是平行四边形3. (2012浙江温州4分)下列选项中,可以用来证明命题“若a²>1,则a >1”是假命题的反例是【 】A. a=-2.B. a==-1C. a=1D. a=24. (2012江苏泰州3分)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对 角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④正五边形既是 轴对称图形又是中心对称图形.其中真命题...共有【 】 A .1个 B .2个 C .3个 D .4个5. (2012福建龙岩4分)下列命题中,为真命题的是【 】A .对顶角相等B .同位角相等C .若22=a b ,则=a bD .若a >b ,则22a >b -- 6. (2012湖北黄冈3分)下列说法中 x 1-x >1.②已知∠α=27°,则∠α的补角是153°. ③已知x=2 是方程x 2-6x+c=0 的一个实数根,则c 的值为8. ④在反比例函数k 2y=x-中,若x >0 时,y 随x 的增大而增大,则k 的取值范围是k >2. 其中正确命题有【 】A. 1 个B. 2 个C. 3 个D. 4 个7. (2012湖南益阳4分)下列命题是假命题的是【 】A .中心投影下,物高与影长成正比B .平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径8. (2012湖南岳阳3分)下列命题是真命题的是【】A.如果|a|=1,那么a=1 B.一组对边平行的四边形是平行四边形C.如果a是有理数,那么a是实数D.对角线相等的四边形是矩形9. (2012湖南娄底3分)下列命题中,假命题是【】A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y10. (2012四川宜宾3分)给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y=14x2的切线②直线x=﹣2与抛物线y=14x2相切于点(﹣2,1)③直线y=x+b与抛物线y=14x2相切,则相切于点(2,1)④若直线y=kx﹣2与抛物线y=14x2相切,则实数其中正确的命题是【】A.①②④B.①③C.②③D.①③④11. (2012四川攀枝花3分)下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有【】A. 1个B. 2个C. 3个D. 4个12. (2012四川凉山4分)下列命题:①圆周角等于圆心角的一半;②x=2是方程x-1=1的解;③平行4。
2012年全国中考数学试题分类解析汇编(159套63专题)专题44:矩形、菱形、正方形一、选择题1. (2012天津市3分)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD 至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为【】(A1(B)3(C(D1【答案】D。
【考点】正方形的性质,勾股定理。
【分析】利用勾股定理求出CM的长,即ME的长,有DM=DE,所以可以求出DE,从而得到DG的长:∵四边形ABCD是正方形,M为边AD的中点,∴DM=12DC=1。
∴CM=1。
∵四边形EDGF1。
故选D。
2. (2012安徽省4分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为【】A.22a B. 32a C. 42a D.52a【答案】A。
【考点】正多边形和圆,等腰直角三角形的性质,正方形的性质。
【分析】图案中间的阴影部分是正方形,面积是2a ,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a 的正方形的一半,它的面积用对角线积的一半来计算:222114222a a a +⨯⨯=。
故选A 。
3. (2012山西省2分)如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE⊥BC 于点E ,则AE 的长是【 】A .B .C .48cm 5D .24cm 5 【答案】D 。
【考点】菱形的性质,勾股定理。
【分析】∵四边形ABCD 是菱形,∴CO=12AC=3,BO=12BD=,AO⊥BO,∴5=。
∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形。
又∵ABCD S BC AE =⋅菱形,∴BC·AE=24,即()24AE cm 5=。
故选D 。
4. (2012陕西省3分)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE⊥AB,垂足为E ,若∠ADC=1300,则∠AOE 的大小为【 】A .75°B .65°C .55°D .50°【答案】B 。
2012年全国各地中考数学解析汇编图形的相似与位似28.1 图形的相似15.(2012北京,15,5)已知023a b =≠,求代数式()225224a b a b a b -⋅--的值. 【解析】【答案】设a =2k ,b =3k ,原式=525210641(2)(2)(2)22682a b a b k k k a b a b a b a b k k k ----====+-++【点评】本题考查了见比设份的解题方法,以及分式中的因式分解,约分等。
28.2 线段的比、黄金分割与比例的性质(2011山东省潍坊市,题号8,分值3)8、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( )A .215- B .215+ C . 3D .2考点:多边形的相似、一元二次方程的解法解答:根据已知得四边形ABEF 为正方形。
因为四边形EFDC 与矩形ABCD 相似所以DF:EF=AB:BC 即 (AD-1):1=1:AD 整理得:012=--AD AD ,解得251±=AD 由于AD 为正,得到AD=215+,本题正确答案是B. 点评:本题综合考察了一元二次方程和多边形的相似,综合性强。
28.3 相似三角形的判定(2012山东省聊城,11,3分)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,下列结论不正确的是( )A.BC=2DEB. △ADE ∽△ABCC.ACABAE AD =D. ADE ABC S S ∆∆=3 解析:根据三角形中位线定义与性质可知,BC=2DE ;因DE//BC ,所以△ADE ∽△ABC ,AD :AB=AE :AC ,即AD :AE=AB :AC ,ADE ABC S S ∆∆=4.所以选项D 错误.答案:D点评:三角形的中位线平行且等于第三边的一半.有三角形中位线,可以得出线段倍分关系、比例关系、三角形相似、三角形面积之间关系等.(2012四川省资阳市,10,3分)如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC=MABN 的面积是A.B. C.D.【解析】由MC =6,NC=∠C =90°得S △CMN=再由翻折前后△CMN ≌△DMN 得对应高相等;由MN ∥AB 得△CMN ∽△CAB 且相似比为1:2,故两者的面积比为1:4,从而得S △CMN :S 四边形MABN =1:3,故选C. 【答案】C【点评】本题综合考查了直角三角形的面积算法、翻折的性质、由平行得相似的三角形相似的判定方法、相似图形的面积比等于相似比的平方等一些类知识点.知识点丰富;考查了学生综合运用知识来解决问题的能力.难度较大.(2012湖北随州,14,4分)如图,点D,E 分别在AB 、AC 上,且∠ABC=∠AED 。
2012年全国中考数学试题分类解析汇编(159套63专题)专题46:相似和位似一、选择题1. (2012海南省3分)如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确...的是【 】A .∠ABD=∠C B.∠ADB=∠ABC C.AB CB BD CD = D .AD AB AB AC= 【答案】C 。
【考点】相似三角形的判定。
【分析】由∠ABD=∠C 或∠ADB=∠ABC,加上∠A 是公共角,根据两组对应相等的两三角形相似的判定,可得△ADB∽△ABC;由AD AB AB AC=,加上∠A 是公共角,根据两组对应边的比相等,且相应的夹角相等的两三角形相似的判定,可得△ADB∽△ABC;但AB CB BD CD =,相应的夹角不知相等,故不能判定△ADB 与△ABC 相似。
故选C 。
2. (2012陕西省3分)如图,在△ABC 中,AD ,BE 是两条中线,则EDC ABC S S :∆∆=【 】A .1∶2B .2∶3C .1∶3D .1∶4【答案】D 。
【考点】三角形中位线定理,相似三角形的判定和性质。
【分析】∵△ABC 中,AD 、BE 是两条中线,∴DE 是△ABC 的中位线,∴DE∥AB,DE=12AB 。
∴△EDC∽△ABC。
∴()2EDC ABC S :S ED:AB =1:4∆∆=。
故选D 。
3. (2012浙江湖州3分)△ABC 中的三条中位线围成的三角形周长是15cm ,则△ABC 的周长为【 】A .60cmB .45cmC .30cmD .152cm 【答案】C 。
【考点】三角形中位线定理,相似三角形的性质。
【分析】∵三角形的中位线平行且等于底边的一半,∴△ABC 三条中位线围成的三角形与△ABC 相似,且相似比是12。
∵△ABC 中的三条中位线围成的三角形周长是15cm ,∴△ABC 的周长为30cm 。
故选C 。
4. (2012湖北咸宁3分)如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为【 】.A .(2,0)B .(23,23)C .(2,2)D .(2,2)【答案】C 。
2012年全国中考数学试题分类解析汇编(159套63专题)专题32:图形的镶嵌与图形的设计一、选择题1. (2012安徽省4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是【】A.10B.54 D.10或174 C. 10或522. 7. (2012四川广元3分)下面的四个图案中,既可以用旋转来分析整个图案的形成过程,又可以用轴对称来分析整个图案的形成过程的图案有【】A. 4个B. 3个C. 2个D. 1个3. (2012贵州铜仁4分)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是【】A.54B.110C.19D.1094. (2012山东济宁3分)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是【】A .12厘米B .16厘米C .20厘米D .28厘米5. (2012山东枣庄3分)如图,从边长为(a 4+)cm 的正方形纸片中剪去一个边长为(a 1+)cm 的正方形(a 0>),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为【 】A .22(2a 5a )cm +B .2(3a 15)cm +C .2(6a 9)cm +D .2(6a 15)cm +6. (2012山东潍坊3分)甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是【 】.[说明:棋子的位置用数对表示,如A 点在(6,3)]A .黑(3,7);白(5,3)B .黑(4,7);白(6,2)C .黑(2,7);白(5,3)D .黑(3,7);白(2,6)7. (2012广西贵港3分)如果仅用一种多边形进行镶嵌,那么下列正多边形不能够...将平面密铺的是【 】 A .正三角形B .正四边形C .正六边形D .正八边形 二、填空题1. (2012四川成都4分)如图,长方形纸片ABCD 中,AB=8cm ,AD=6cm ,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为▲ cm,最大值为▲ cm.2. (2012贵州遵义4分)在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有▲ 种.三、解答题1. (2012山西省6分)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.2. (2012四川广安8分)现有一块等腰三角形板,量得周长为32cm,底比一腰多2cm,若把这个三角形纸板沿其对称轴剪开,拼成一个四边形,请画出你能拼成的各种四边形的示意图,并计算拼成的各个四边形的两条对角线长的和.3. (2012辽宁鞍山8分)如图,某社区有一矩形广场ABCD,在边AB上的M点和边BC上的N点分别有一棵景观树,为了进一步美化环境,社区欲在BD上(点B除外)选一点P再种一棵景观树,使得∠MPN=90°,请在图中利用尺规作图画出点P的位置(要求:不写已知、求证、作法和结论,保留作图痕迹).4. (2012贵州遵义4分)cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动6次后,正方形的中心O经过的路线长是▲ cm.(结果保留π)5. (2012贵州铜仁5分)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)6. (2012山东德州8分)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)7. (2012山东济宁5分)如图,AD 是△ABC 的角平分线,过点D 作DE ∥AB ,DF ∥AC ,分别交AC 、AB 于点E 和F .(1)在图中画出线段DE 和DF ;(2)连接EF ,则线段AD 和EF 互相垂直平分,这是为什么?8. (2012广西桂林8分)如图,△ABC 的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)作出与△ABC 关于x 轴对称的△A 1B 1C 1,并写出A 1、B 1、C 1的坐标;(2)以原点O 为位似中心,在原点的另一侧画出△A 2B 2C 2,使22AB1A B 2 .9. (2012江西南昌5分)如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼出一个三角形、一个四边形、一个五边形、一个六边形.10. (2012吉林长春6分)图①、图②均为4×4的正方形网格,线段AB 、BC 的端点均在网点上.按要求在图①、图②中以AB 和BC 为边各画一个四边形ABCD .要求:四边形ABCD 的顶点D 在格点上,且有两个角相等(一组或两组角相等均可);所画的两个四边形不全等.11. (2012吉林省7分)在平面直角坐标系中,点A 关于y 轴的对称点为点B ,点A 关于原点O 的对称 点为点C .(1)若A 点的坐标为(1,2),请你在给出的坐标系中画出△ABC .设AB 与y 轴的交点为D ,则 AD OABC S S △△=________;(2)若点A 的坐标为(a ,b )(ab≠0),则△ABC 的形状为_______.12. (2012黑龙江绥化6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,O、M也在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出△ABC绕点O按顺时针方向旋转90°后所得的△A2B2C2;(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形吗?如果是轴对称图形,请画出对称轴.13. (2012黑龙江哈尔滨6分)图l、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可);14. (2012黑龙江黑河、齐齐哈尔、大兴安岭、鸡西6分)顶点在网格交点的多边形叫做格点多边形,如图,在一个9 X 9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为l个单位长度.(1)在网格中画出△ABC向上平移4个单位后得到的△A l B l C l.(2)在网格中画出△ABC绕点A逆时针旋转900后得到的△AB2C2(3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积.15. (2012黑龙江龙东地区6分)如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1;(2)写出A1、C1的坐标;(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1,求线段B1C1旋转过程中扫过的面积(结果保留π)。
(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)第二十一章 勾股定理 21.1勾股定理(2012广州市,7, 3分)在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )A. 365B. 1225C. 94D. 334D C BA【解析】首先根据勾股定理求出直角三角形的斜边,利用直角三角形面积的两种求法,求出点C 到AB 的距离。
【答案】由勾股定理得AB=2222912a b +=+=15,根据面积有等积式11BC=AB CD 22AC ••,于是有CD=365。
【点评】本题用了考查常用的勾股定理,直角三角形根据面积得到的一个等积式,列方程求线段CD 的长。
(2012安徽,10,4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A.10B.54C. 10或54D.10或172解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的.解答:解:如下图,54)44()22(22=++⨯,1054)44()32(22=++⨯故选C.点评:在几何题没有给出图形时,有的同学会忽略掉其中一种情况,错选A或B;故解决本题最好先画出图形,运用数形结合和分类讨论的数学思想进行解答,避免出现漏解.(2012四川省南充市,14,4分) 如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积是24cm2,则AC长是_____________cm.【解析】过点A作A E⊥BC于点E,AF⊥CD交CD的延长线于点F.则⊿ABE≌⊿ADF,得AE=AF,进一步证明四边形AECF是正方形,且正方形AECF与四边形ABCD的面积相等.则AE=,所以22264324=26AC AE===.【答案】43【点评】本题考查了三角形的全等变换、正方形的性质以及勾股定理.解题的关键是正确的做出旋转的全等变换,将四边形的问题转化成正方形的问题来解决.(2012山东省荷泽市,16(2),6)(2)如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.【解析】根据折叠问题及矩形的性质,可以利用勾股定理求出线段的长来确定点的坐标.【答案】(1)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt ABE∆中,10,8===,2222AE AO AB=-=-=,BE AE AB1086∴=,(4,8)4CE∴.E在Rt DCE∆中,222+=,DC CE DE又DE OD=,222∴-+=,OD OD(8)4∴=,(0,5)5OD∴.D【点评】在平面直角坐标系中,求点的坐标实质就是求这个点到两轴的距离,也就是求线段的长,求线段的就是利用勾股定理、三角函数或相似三角形的对应边成比例.(2012贵州贵阳,8,3分)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC 的延长线于F,若∠F=30°,DE=1,则EF的长()A.3B.2C.3D.1解析:由已知得,BF=2BD=AB,所以FC=AD,不难得到Rt△FE C≌Rt△AED,故得EC=ED=1,结合∠F=30°,∠FCE=90°,可得EF=2EC=2.解答:选B.点评:本题主要考查“直角三角形中30°度角所对的直角边等于斜边的一半”的知识,也涉及到全等三角形的判定与性质,相对综合.(2012浙江省嘉兴市,6,4分)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90° , ∠C=40° ,则AB等于( )米A. asin4o°B. acos40°C.atan4o°D.atan40【解析】如图,在Rt △ABC 中,∵∠A=90° , ∠C=40° , AC=a 米,∴tan40°=AB AC,∴A B =atan4o°, 故选C.【答案】C.【点评】本题要求适当选用三角函数关系,解直角三角形.22.2 勾股定理的逆定理22.3 直角三角形的性质(2012浙江省湖州市,5,3分)如图,在Rt △ABC 中,∠ACB=900,AB=10,CD 是AB 边上的中线,则CD 的长是( )A.20B.10C.5D.25【解析】直角三角形斜边上的中线等于斜边的一半,故CD=21AB=21×10=5.【答案】选:C .【点评】此题考查的是直角三角形的性质,属于基础题。
图形的相似与位似一、选择题1. (2011浙江金华,9,3分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A.600mB.500mC.400mD.300m【答案】B2.(2011安徽,9,4分)如图,四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若P 到BD 的距离为 32,则点P 的个数为( )A .1B .2C .3D .4【答案】B3. (2011广东东莞,31,3分)将左下图中的箭头缩小到原来的12,得到的图形是( )【答案】A4. (2011浙江省,6,3分)如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B 重合,折痕为DE ,则S △BCE :S △BDE 等于( )A. 2:5B.14:25C.16:25D. 4:21【答案】B5. (2011浙江台州,5,4分)若两个相似三角形的面积之比为1:4,则它们的周长之比为( )A. 1:2B. 1:4C. 1:5D. 1:16【答案】A6. (2011浙江省嘉兴,7,4分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )36【答案】B7. (2011浙江丽水,9,3分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A.600mB.500mC.400mD.300m【答案】B8. (2011台湾台北,26)图(十)为一ABC ∆,其中D 、E 两点分别在AB 、AC 上,且AD=31,DB =29,AE =30,EC =32。
若︒∠50=A ,则图中1∠、2∠、3∠、4∠的大小关系,下列何者正确?(第7题)ABCD EA .1∠>3∠B .2∠=4∠C .1∠>4∠D .2∠=3∠【答案】D9. (2011甘肃兰州,13,4分)现给出下列四个命题:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形。
2012年全国中考数学试题分类解析汇编(159套63专题) 专题37:三角形全等一、选择题1。
(2012海南省3分)图是一个风筝设计图,其主体部分(四边形ABCD )关于BD 所在的直线对称,AC 与BD 相交于点O,且AB≠AD,则下列判断不正确...的是【 】A .△ABD≌△CBD B.△ABC≌△ADC C .△AOB≌△COB D.△AOD≌△COD 【答案】B 。
【考点】全等三角形的判定,轴对称的性质。
【分析】根据轴对称的性质,知△ABD≌△CBD,△AOB≌△COB,△AOD≌△COD。
由于AB≠AD,从而△ABC 和△ADC 不全等。
故选B 。
2. (2012四川巴中3分)如图,已知AD是△ABC 的边BC 上的高,下列能使△ABD≌△ACD 的条件 是【 】A 。
AB=AC B. ∠BAC=90°C 。
BD=AC D. ∠B=45° 【答案】A 。
【考点】全等三角形的判定。
【分析】添加AB=AC ,符合判定定理HL 。
而添加∠BAC=90°,或BD=AC ,或∠B=45°,不能使△ABD≌△ACD。
故选A.3。
(2012贵州贵阳3分)如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE,BC=EF ,要使△ABC≌△DEF,还需要添加一个条件是【 】A .∠BCA=∠F B.∠B=∠EC .BC∥EF D.∠A=∠EDF 【答案】B 。
【考点】全等三角形的判定.190187。
【分析】应用全等三角形的判定方法逐一作出判断:A 、由AB=DE ,BC=EF 和∠BCA=∠F构成SSA ,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误;B 、由AB=DE ,BC=EF 和∠B=∠E 构成SAS,符合全等的条件,能推出△ABC≌△DEF,故本选项正确;C 、∵BC∥EF,∴∠F=∠BCA。
由AB=DE ,BC=EF 和∠F=∠BCA构成SSA ,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误;D、由AB=DE,BC=EF和∠A=∠EDF构成SSA,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误。
(最新最全)2012年全国各地中考数学解析汇编(按章节考点整理)第二十八章 图形的相似与位似28.1 图形的相似15.(2012北京,15,5)已知023ab =≠,求代数式()225224a ba b a b -⋅--的值.【解析】 【答案】设a =2k ,b =3k ,原式=525210641(2)(2)(2)22682a b a b k k k a b a b a b a b k k k ----====+-++【点评】本题考查了见比设份的解题方法,以及分式中的因式分解,约分等。
28.2 线段的比、黄金分割与比例的性质(2011山东省潍坊市,题号8,分值3)8、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△AB E 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( )A .215- B .215+ C . 3 D .2 考点:多边形的相似、一元二次方程的解法解答:根据已知得四边形ABEF 为正方形。
因为四边形EFDC 与矩形ABCD 相似 所以DF:EF=AB:BC 即 (AD-1):1=1:AD 整理得:012=--AD AD ,解得251±=AD 由于AD 为正,得到AD=215+,本题正确答案是B. 点评:本题综合考察了一元二次方程和多边形的相似,综合性强。
28.3 相似三角形的判定(2012山东省聊城,11,3分)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,下列结论不正确的是( )A.BC=2DEB. △ADE ∽△ABCC.ACABAE AD = D. AD E ABC S S ∆∆=3解析:根据三角形中位线定义与性质可知,BC=2DE ;因DE//BC ,所以△ADE ∽△ABC ,AD :AB=AE :AC ,即AD :AE=AB :AC ,ADE ABC S S ∆∆=4.所以选项D 错误. 答案:D点评:三角形的中位线平行且等于第三边的一半.有三角形中位线,可以得出线段倍分关系、比例关系、三角形相似、三角形面积之间关系等.(2012四川省资阳市,10,3分)如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC=则四边形MABN 的面积是A.B..D.【解析】由MC =6,NC=∠C =90°得S △CMN=,再由翻折前后△CMN ≌△DMN 得对应高相等;由MN ∥AB 得△CMN ∽△CAB 且相似比为1:2,故两者的面积比为1:4,从而得S △CMN :S 四边形MABN =1:3,故选C. 【答案】C【点评】本题综合考查了直角三角形的面积算法、翻折的性质、由平行得相似的三角形相似的判定方法、相似图形的面积比等于相似比的平方等一些类知识点.知识点丰富;考查了学生综合运用知识来解决问题的能力.难度较大.(2012湖北随州,14,4分)如图,点D,E 分别在AB 、AC 上,且∠ABC=∠AED 。
若DE=4,AE=5,BC=8,则AB 的长为______________。
10(第10题图)NMD A CB解析::∵∠ABC=∠AED,∠BAC=∠EAD∴△AED∽△ABC,∴AE DEAB CB,DE=10答案:10点评:本题主要考查了三角形相似的判定和性质。
利用两三角形的相似比,通过已知边长度求解某边长度,是常用的一种计算线段长度的方法。
28.4 相似三角形的性质(2012重庆,12,4分)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△ABC与△DEF的面积之比为_______解析:相似三角形的周长比等于相似比,相似三角形的面积比等于相似比的平方,故可求出答案。
答案:9:1点评:本题考查相似三角形的基本性质。
(2012浙江省衢州,15,4分)如图,□ABCD中,E是CD的延长线上一点,BE 与AD交于点F,CD=2DE.若△DEF的面积为a,则□ABCD中的面积为 .(用a的代数式表示)【解析】根据四边形ABCD是平行四边形,利用已知得出△DEF∽△CEB,△DEF∽△ABF,进而利用相似三角形的性质分别得出△CEB、△ABF的面积为4a、9a,然后推出四边形BCDF的面积为8a即可.【答案】12a【点评】此题主要考查相似三角形的判定、性质和平行四边形的性质等知识点的理解和掌握,解答此题的关键是熟练掌握相似三角形的判定定理和性质定理.(2012山东省荷泽市,16(1),6)(1)如图,∠DAB=∠CAE,请你再补充一个条件____________,使得△ABC∽△ADE,并说明理由.【解析】从已知条件中可得出一组角对应相等,要判定两个三角形相似,可以增加另外一组对应相等或者是这两角的两边对应成比.【答案】D B AED C∠=∠∠=∠或-----------------------------------------------------2分理由:两角对应相等,两三角形相似------------------------------------------------------6分【点评】判断两个三角形相似的条件中两角对应相等两三角形相似比较常用,在选择方法一定要根据题目中或图形中所给提供的条件进行添加.(湖南株洲市6,20题)((本题满分6分)如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.(1)、求证:△COM∽△CBA;(2)、求线段OM的长度.【解析】要证明△COM∽△CBA就是要找出∠COM=∠B即可,求线段的长就是利用第(1)问中的相似建立比例式,构造出OM的方程求解.【解】(1)证明: A与C关于直线MN对称∴AC⊥MN∴∠COM=90°在矩形ABCD中,∠B=90°∴∠COM=∠B----------------------------------------1分又 ∠ACB=∠ACB------------------------------------2分∴△COM∽△CBA ---------------------------------3分(2) 在Rt△CBA中,AB=6,BC=8∴AC=10----------------------------------------- -----4分∴OC=5△COM∽△CBA----------------------------------------5分∴OC OM=BC AB∴OM=154----------------------------------------------6分【点评】求证两个三角形相似的方法主要是两角对应相等,两三角形相似、两边对应成比例及夹角相等,两三角形相似及三边对应成比例,两三角形相似,求线段的长的方法,主要是利用三角形相似及直角三角形的勾股定理.(2012湖南娄底,25,10分)如图13,在△ABC 中,AB =AC ,∠B =30︒,BC =8,D 在边BC 上,E 在线段DC 上,DE =4,△DEF 是等边三角形,边DF 交边AB 于点M ,边EF 交边AC 于点N .(1)求证:△BMD ∽△CNE ;(2)当BD 为何值时,以M 为圆心,以MF 为半径的圆与BC 相切? (3)设BD =x ,五边形ANEDM 的面积为y ,求y 与x 之间的函数解析式(要求写出自变量x 的取值范围);当x 为何值时,y 有最大值?并求y 的最大值.【解析】(1)由AB=AC ,∠B=30°,根据等边对等角,可求得∠C=∠B=30°,又由△DEF 是等边三角形,根据等边三角形的性质,易求得∠MDB=∠NEC=120°,∠BMD=∠B=∠C=∠CNE=30°,即可判定:△BMD ∽△CNE ;(2)首先过点M 作MH ⊥BC ,设BD=x ,由以M 为圆心,以MF 为半径的圆与BC 相切,可得MH=MF=4-x ,由(1)可得MD=BD ,然后在Rt △DMH 中,利用正弦函数,即可求得答案; (3)首先求得△ABC 的面积,继而求得△BDM 的面积,然后由相似三角形的性质,可求得△BCN 的面积,再利用二次函数的最值问题,即可求得答案. 【答案】(1)证明:∵AB=AC ,∴∠B=∠C=30°.∵△DEF 是等边三角形,∴∠FDE=∠FED=60°,∴∠MDB=∠NEC=120°,∴∠BMD=∠B=∠C=∠CNE=30°,∴△BMD ∽△CNE ;(2)过点M 作MH ⊥BC ,∵以M 为圆心,以MF 为半径的圆与BC 相切,∴MH=MF ,设BD=x ,∵△DEF 是等边三角形,∴∠FDE=60°,∵∠B=30°,∴∠BMD=∠FDE-∠B=60°-30°=30°=∠B ,∴DM=BD=x ,∴MH=MF=DF-MD=4-x ,在Rt △DMH 中,sin ∠MDH=sin60°=MH MD =4-x x解得:x=16-∴当BD=16-时,以M 为圆心,以MF 为半径的圆与BC 相切;(3)过点M 作MH ⊥BC 于H ,过点A 作AK ⊥BC 于K ,∵AB=AC ,∴BK=12BC=12×8=4。
∵∠B=30°,∴AK=BK •tan∠B=4∴S △ABC=12BC •AK=12×8,由(2)得:MD=BD=x ,∴MH=MD •sin ∠,∴S △BDM =12•x2x .∵△DEF 是等边三角形且DE=4,BC=8,∴EC=BC-BD-DE=8-x-4=4-x ,∵△BMD ∽△CNE ,∴S △BDM :S △B D EC NAF MCEN =2()BD CE =22(4)xx -,∴S△CEN=2)x -,∴y=S △ABC-S△CEN-S△BDM2x -2)x -= 2+=22)x -+0≤x ≤4),当x=2时,y . 【点评】此题考查了相似三角形的判定与性质、等腰三角形的性质、等边三角形的性质、二次函数的性质以及三角函数等知识.此题综合性较强,注意数形结合思想与方程思想的应用.(2012重庆,12,4分)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则△ABC 与△DEF 的面积之比为_______ 解析:相似三角形的周长比等于相似比,相似三角形的面积比等于相似比的平方,故可求出答案。
答案:9:1点评:本题考查相似三角形的基本性质。